Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis

Abstract

Glucocorticoids have been exploited therapeutically for more than six decades through the use of synthetic glucocorticoids as anti-inflammatory agents, and are still used in as many as 50% of patients suffering from inflammatory diseases such as rheumatoid arthritis (RA). Better understanding of the mechanisms of action of glucocorticoids could enable the development of therapies that dissociate the broad-spectrum benefits of glucocorticoids from their adverse metabolic effects. The glucocorticoid-induced leucine zipper protein (GILZ; also known as TSC22 domain family protein 3) is a glucocorticoid-responsive molecule whose interactions with signal transduction pathways, many of which are operative in RA and other inflammatory diseases, suggest that it is a key endogenous regulator of the immune response. The overlap between the observed effects of GILZ on the immune system and those of glucocorticoids strongly suggest GILZ as a critical mediator of the therapeutic effects of glucocorticoids. Observations of the immunomodulatory effects of GILZ in human RA synovial cells, and in an in vivo model of RA, support the hypothesis that GILZ is a key glucocorticoid-induced regulator of inflammation in RA. Moreover, evidence that the effect of GILZ on bone loss might be in contrast to those of glucocorticoids suggests manipulation of GILZ as a potential means of dissociating the beneficial anti-inflammatory effects of glucocorticoids from their negative metabolic repercussions.

Key Points

  • Glucocorticoids have been used in the therapy of inflammatory diseases such as rheumatoid arthritis (RA) for more than 60 years

  • The glucocorticoid-induced leucine zipper protein (GILZ) binds to and inhibits the important proinflammatory transcription factors nuclear factor κB and activator protein 1, and also exerts an inhibitory effect on other signal transduction pathways

  • Current data support a role for GILZ in the suppression of both innate and adaptive immune responses

  • GILZ potentially mediates the physiological and therapeutic effects of glucocorticoids

  • GILZ is expressed in RA synovial tissues, where it exerts inhibitory effects on cytokine expression, and inhibiting the expression of GILZ results in exacerbation of disease in a mouse model of RA

  • GILZ is a pivotal endogenous regulator of inflammation in RA and could represent a potential new therapeutic target

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GILZ binding domains.
Figure 2: Interactions of GILZ with key signaling pathways.
Figure 3: Mechanisms of regulation of GILZ.
Figure 4: Potentially different metabolic effects of glucocorticoids and GILZ.
Figure 5: Effects of GILZ on immune and inflammatory responses involved in rheumatoid arthritis.

Similar content being viewed by others

References

  1. Chrousos, G. P. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 332, 1351–1362 (1995).

    Article  CAS  Google Scholar 

  2. Slocumb, C. H., Polley, H. F., Hench, P. S. & Kendall, E. C. Effects of cortisone and ACTH on patients with rheumatoid arthritis. Proc. Staff Meet. Mayo Clin. 25, 476–478 (1950).

    CAS  PubMed  Google Scholar 

  3. Barnes, P. J. & Adcock, I. M. Glucocorticoid resistance in inflammatory diseases. Lancet 373, 1905–1917 (2009).

    Article  CAS  Google Scholar 

  4. Galon, J. et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 16, 61–71 (2002).

    Article  CAS  Google Scholar 

  5. Stahn, C. & Buttgereit, F. Genomic and nongenomic effects of glucocorticoids. Nat. Clin. Pract. Rheumatol. 4, 525–533 (2008).

    Article  CAS  Google Scholar 

  6. McMaster, A. & Ray, D. W. Drug insight: selective agonists and antagonists of the glucocorticoid receptor. Nat. Clin. Pract. Endocrinol. Metab. 4, 91–101 (2008).

    Article  CAS  Google Scholar 

  7. Lowenberg, M., Stahn, C., Hommes, D. W. & Buttgereit, F. Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids 73, 1025–1029 (2008).

    Article  Google Scholar 

  8. Clark, A. R. Anti-inflammatory functions of glucocorticoid-induced genes. Mol. Cell Endocrinol. 275, 79–97 (2007).

    Article  CAS  Google Scholar 

  9. Mittelstadt, P. R. & Ashwell, J. D. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J. Biol. Chem. 276, 29603–29610 (2001).

    Article  CAS  Google Scholar 

  10. Ayroldi, E. et al. Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulated kinase pathway by binding to Raf-1. Mol. Cell Biol. 22, 7929–7941 (2002).

    Article  CAS  Google Scholar 

  11. Ayroldi, E. et al. GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling. J. Clin. Invest. 117, 1605–1615 (2007).

    Article  CAS  Google Scholar 

  12. Ayroldi, E. et al. Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor κB. Blood 98, 743–753 (2001).

    Article  CAS  Google Scholar 

  13. Ayroldi, E. & Riccardi, C. Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J. 23, 3649–3658 (2009).

    Article  CAS  Google Scholar 

  14. Riccardi, C., Bruscoli, S., Ayroldi, E., Agostini, M. & Migliorati, G. GILZ, a glucocorticoid hormone induced gene, modulates T lymphocytes activation and death through interaction with NF-κB. Adv. Exp. Med. Biol. 495, 31–39 (2001).

    Article  CAS  Google Scholar 

  15. D'Adamio, F. et al. A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity 7, 803–812 (1997).

    Article  CAS  Google Scholar 

  16. Simmonds, R. E. & Foxwell, B. M. Signalling, inflammation and arthritis. Rheumatology 47, 584–590 (2008).

    Article  CAS  Google Scholar 

  17. De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr. Rev. 24, 488–522 (2003).

    Article  CAS  Google Scholar 

  18. Eddleston, J., Herschbach, J., Wagelie-Steffen, A. L., Christiansen, S. C. & Zuraw, B. L. The anti-inflammatory effect of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells. J. Allergy Clin. Immunol. 119, 115–122 (2007).

    Article  CAS  Google Scholar 

  19. Yang, Y. H., Aeberli, D., Dacumos, A., Xue, J. R. & Morand, E. F. Annexin-1 regulates macrophage IL-6 and TNF via glucocorticoid-induced leucine zipper. J. Immunol. 183, 1435–1445 (2009).

    Article  CAS  Google Scholar 

  20. Yang, N., Zhang, W. & Shi, X. M. Glucocorticoid-induced leucine zipper (GILZ) mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2 expression. J. Cell Biochem. 103, 1760–1771 (2008).

    Article  CAS  Google Scholar 

  21. Berrebi, D. et al. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101, 729–738 (2003).

    Article  CAS  Google Scholar 

  22. Delfino, D. V., Agostini, M., Spinicelli, S., Vacca, C. & Riccardi, C. Inhibited cell death, NF-κB activity and increased IL-10 in TCR-triggered thymocytes of transgenic mice overexpressing the glucocorticoid-induced protein GILZ. Int. Immunopharmacol. 6, 1126–1134 (2006).

    Article  CAS  Google Scholar 

  23. Shiozawa, S. & Tsumiyama, K. Pathogenesis of rheumatoid arthritis and c-Fos/AP-1. Cell Cycle 8, 1539–1543 (2009).

    Article  CAS  Google Scholar 

  24. Wagner, E. F. Bone development and inflammatory disease is regulated by AP-1 (Fos/Jun). Ann. Rheum. Dis. 69 (Suppl. 1), i86–i88 (2010).

    Article  CAS  Google Scholar 

  25. Ralph, J. A. & Morand, E. F. MAPK phosphatases as novel targets for rheumatoid arthritis. Expert Opin. Ther. Targets. 12, 795–808 (2008).

    Article  CAS  Google Scholar 

  26. Yang, Y. H. et al. Annexin 1 negatively regulates IL-6 expression via effects on p38 MAPK and MAPK phosphatase-1. J. Immunol. 177, 8148–8153 (2006).

    Article  CAS  Google Scholar 

  27. Bladh, L. G., Johansson-Haque, K., Rafter, I., Nilsson, S. & Okret, S. Inhibition of extracellular signal-regulated kinase (ERK) signaling participates in repression of nuclear factor (NF)- κB activity by glucocorticoids. Biochim. Biophys. Acta 1793, 439–446 (2009).

    Article  CAS  Google Scholar 

  28. Reedquist, K. A., Ludikhuize, J. & Tak, P. P. Phosphoinositide 3-kinase signalling and FoxO transcription factors in rheumatoid arthritis. Biochem. Soc. Trans. 34, 727–730 (2006).

    Article  CAS  Google Scholar 

  29. Schmidt, M. et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell Biol. 22, 7842–7852 (2002).

    Article  CAS  Google Scholar 

  30. Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27KIP1. Mol. Cell Biol. 20, 9138–9148 (2000).

    Article  CAS  Google Scholar 

  31. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  Google Scholar 

  32. Asselin-Labat, M. L. et al. GILZ, a new target for the transcription factor FoxO3, protects T lymphocytes from interleukin-2 withdrawal-induced apoptosis. Blood 104, 215–223 (2004).

    Article  CAS  Google Scholar 

  33. Asselin-Labat, M. L. et al. FoxO3 mediates antagonistic effects of glucocorticoids and interleukin-2 on glucocorticoid-induced leucine zipper expression. Mol. Endocrinol. 19, 1752–1764 (2005).

    Article  CAS  Google Scholar 

  34. Latré de Laté, P. et al. Glucocorticoid-induced leucine zipper (GILZ) promotes the nuclear exclusion of FOXO3 in a Crm1-dependent manner. J. Biol. Chem. 285, 5594–5605 (2010).

    Article  Google Scholar 

  35. Hamdi, H. et al. Glucocorticoid-induced leucine zipper: A key protein in the sensitization of monocytes to lipopolysaccharide in alcoholic hepatitis. Hepatology 46, 1986–1992 (2007).

    Article  Google Scholar 

  36. Godot, V. et al. Dexamethasone and IL-10 stimulate glucocorticoid-induced leucine zipper synthesis by human mast cells. Allergy 61, 886–890 (2006).

    Article  CAS  Google Scholar 

  37. Cohen, N. et al. GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood 107, 2037–2044 (2006).

    Article  CAS  Google Scholar 

  38. Baschant, U. & Tuckermann, J. The role of the glucocorticoid receptor in inflammation and immunity. J. Steroid Biochem. Mol. Biol. 120, 69–75 (2010).

    Article  CAS  Google Scholar 

  39. Hamdi, H. et al. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood 110, 211–219 (2007).

    Article  CAS  Google Scholar 

  40. Pulendran, B., Tang, H. & Manicassamy, S. Programming dendritic cells to induce TH2 and tolerogenic responses. Nat. Immunol. 11, 647–655 (2010).

    Article  CAS  Google Scholar 

  41. Dudhgaonkar, S. P., Janardhanam, S. B., Kodumudi, K. N. & Srinivasan, M. CD80 blockade enhance glucocorticoid-induced leucine zipper expression and suppress experimental autoimmune encephalomyelitis. J. Immunol. 183, 7505–7513 (2009).

    Article  CAS  Google Scholar 

  42. Delfino, D. V., Agostini, M., Spinicelli, S., Vito, P. & Riccardi, C. Decrease of Bcl-xL and augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice. Blood 104, 4134–4141 (2004).

    Article  CAS  Google Scholar 

  43. Herold, M. J., McPherson, K. G. & Reichardt, H. M. Glucocorticoids in T cell apoptosis and function. Cell. Mol. Life Sci. 63, 60–72 (2006).

    Article  CAS  Google Scholar 

  44. Cannarile, L. et al. Increased GILZ expression in transgenic mice up-regulates Th-2 lymphokines. Blood 107, 1039–1047 (2006).

    Article  CAS  Google Scholar 

  45. Cannarile, L. et al. Glucocorticoid-induced leucine zipper is protective in Th1-mediated models of colitis. Gastroenterology 136, 530–541 (2009).

    Article  CAS  Google Scholar 

  46. Beaulieu, E. et al. Glucocorticoid-induced leucine zipper is an endogenous anti-inflammatory mediator in arthritis. Arthritis Rheum. 62, 2651–2661 (2010).

    Article  CAS  Google Scholar 

  47. van der Laan, S. et al. Chromatin immunoprecipitation scanning identifies glucocorticoid receptor binding regions in the proximal promoter of a ubiquitously expressed glucocorticoid target gene in brain. J. Neurochem. 106, 2515–2523 (2008).

    Article  CAS  Google Scholar 

  48. Wang, Y. et al. Enhanced resistance of restraint-stressed mice to sepsis. J. Immunol. 181, 3441–3448 (2008).

    Article  CAS  Google Scholar 

  49. Lekva, T. et al. The glucocorticoid-induced leucine zipper gene (GILZ) expression decreases after successful treatment of patients with endogenous Cushing's syndrome and may play a role in glucocorticoid-induced osteoporosis. J. Clin. Endocrinol. Metab. 95, 246–255 (2010).

    Article  CAS  Google Scholar 

  50. Redjimi, N. et al. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer. Mol. Cancer 8, 83 (2009).

    Article  Google Scholar 

  51. Zacharchuk, C. M., Mercep, M., Chakraborti, P. K., Simons, S. S. Jr & Ashwell, J. D. Programmed T lymphocyte death. Cell activation- and steroid-induced pathways are mutually antagonistic. J. Immunol. 145, 4037–4045 (1990).

    CAS  PubMed  Google Scholar 

  52. Ploner, C. et al. Glucocorticoid-induced apoptosis and glucocorticoid resistance in acute lymphoblastic leukemia. J. Steroid Biochem. Mol. Biol. 93, 153–160 (2005).

    Article  CAS  Google Scholar 

  53. Smit, P. et al. Differential regulation of synthetic glucocorticoids on gene expression levels of glucocorticoid-induced leucine zipper and interleukin-2. J. Clin. Endocrinol. Metab. 90, 2994–3000 (2005).

    Article  CAS  Google Scholar 

  54. Donn, R. et al. Use of gene expression profiling to identify a novel glucocorticoid sensitivity determining gene, BMPRII. FASEB J. 21, 402–414 (2007).

    Article  CAS  Google Scholar 

  55. Spreafico, A. et al. Role of apoptosis in osteoporosis induced by glucocorticoids. J. Endocrinol. Invest. 31, 22–27 (2008).

    CAS  PubMed  Google Scholar 

  56. Shi, X. et al. A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells. EMBO Rep. 4, 374–380 (2003).

    Article  CAS  Google Scholar 

  57. Zhang, W., Yang, N. & Shi, X. M. Regulation of MSC osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ). J. Biol. Chem. 283, 4723–4729 (2008).

    Article  CAS  Google Scholar 

  58. Bruscoli, S. et al. Glucocorticoid-induced leucine zipper (GILZ) and long GILZ inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids. J. Biol. Chem. 285, 10385–10396 (2010).

    Article  CAS  Google Scholar 

  59. Muller, O. G. et al. Mineralocorticoid effects in the kidney: correlation between αENaC, GILZ, and Sgk-1 mRNA expression and urinary excretion of Na+ and K+. J. Am. Soc. Nephrol 14, 1107–1115 (2003).

    Article  CAS  Google Scholar 

  60. Fernandes-Rosa, F. L. et al. Mineralocorticoid receptor mutations differentially affect individual gene expression profiles in pseudohypoaldosteronism type 1. J. Clin. Endocrinol. Metab. 96, E519–E527 (2011).

    Article  CAS  Google Scholar 

  61. Di Marco, B. et al. Glucocorticoid-induced leucine zipper (GILZ)/NF-κB interaction: role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids Res 35, 517–528 (2007).

    Article  CAS  Google Scholar 

  62. Ehrchen, J. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109, 1265–1274 (2007).

    Article  CAS  Google Scholar 

  63. Bhalla, V., Soundararajan, R., Pao, A. C., Li, H. & Pearce, D. Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. Am. J. Physiol. Renal Physiol. 291, F714–F721 (2006).

    Article  CAS  Google Scholar 

  64. Soundararajan, R., Zhang, T. T., Wang, J., Vandewalle, A. & Pearce, D. A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J. Biol. Chem. 280, 39970–39981 (2005).

    Article  CAS  Google Scholar 

  65. Chivers, J. E. et al. Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids. Mol. Pharmacol. 70, 2084–2095 (2006).

    Article  CAS  Google Scholar 

  66. Wang, J. C. et al. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc. Natl Acad. Sci. USA 101, 15603–15608 (2004).

    Article  CAS  Google Scholar 

  67. Soundararajan, R., Wang, J., Melters, D. & Pearce, D. Differential activities of glucocorticoid-induced leucine zipper protein isoforms. J. Biol. Chem. 282, 36303–36313 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by the National Health and Medical Research Council of Australia and Arthritis Australia.

Author information

Authors and Affiliations

Authors

Contributions

E. Beaulieu and E. F. Morand contributed equally to researching data for the article, discussion of content, writing and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Eric F. Morand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaulieu, E., Morand, E. Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis. Nat Rev Rheumatol 7, 340–348 (2011). https://doi.org/10.1038/nrrheum.2011.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing