Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mediators of the inflammatory response to joint replacement devices

Abstract

Joint replacement surgery is one of the success stories of modern medicine, restoring mobility, diminishing pain and improving the overall quality of life for millions of people. Unfortunately, wear of these prostheses over time generates debris, which activates an innate immune response that can ultimately lead to periprosthetic resorption of bone (osteolysis) and failure of the implant. Over the past decade, the biological interactions between the particulate debris from various implant materials and the immune system have begun to be better understood. The wear debris induces a multifaceted immune response encompassing the generation of reactive oxygen species and damage-associated molecular patterns, Toll-like receptor signaling and NALP3 inflammasome activation. Acting alone or in concert, these events generate chronic inflammation, periprosthetic bone loss and decreased osteointegration that ultimately leads to implant failure.

Key Points

  • Wear debris is generated by the movements of the articulating surfaces of a joint replacement under load

  • Microparticle wear debris induces “frustrated phagocytosis” and multinucleated giant cell fusion

  • Nanoparticle wear debris induces endosomal destabilization and NALP3 inflammasome activation

  • Ultra-high-molecular-weight polyethylene polymeric wear debris and damage-associated molecular patterns induce activation of Toll-like receptors 2 and 4

  • Metal wear debris and metal ions can induce a type IV hypersensitivity reaction

  • The multifaceted myelomonocytic inflammatory response induced by wear debris increases osteoclastogenesis and promotes periprosthetic osteolysis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of typical joint implant devices.
Figure 2: Radiography of a total knee replacement complicated by osteolysis.
Figure 3: Schematic of periprosthetic inflammation and aseptic osteolysis.
Figure 4: Infiltration of macrophages and dendritic cells in periprosthetic tissue.
Figure 5: UHMWPE wear debris are phagocytosed by infiltrating cells.
Figure 6: Schematic of the multifaceted immune response to wear debris.

Similar content being viewed by others

References

  1. Bozic, K. J. et al. The epidemiology of bearing surface usage in total hip arthroplasty in the United States. J. Bone Joint Surg. Am. 91, 1614–1620 (2009).

    Article  PubMed  Google Scholar 

  2. Canadian Institute for Health Information. Hip and Knee Replacements in Canada—Canadian Joint Replacement Registry (CJRR) 2008–2009 Annual Report [online] (2009).

  3. Lee, K. & Goodman, S. B. Current state and future of joint replacements in the hip and knee. Expert Rev. Med. Devices 5, 383–393 (2008).

    Article  PubMed  Google Scholar 

  4. Buckwalter, A. et al. Results of Charnley total hip arthroplasty with use of improved femoral cementing techniques. a concise follow-up, at a minimum of twenty-five years, of a previous report. J. Bone Joint Surg. Am. 88, 1481–1485 (2006).

    Article  PubMed  Google Scholar 

  5. Sundfeldt, M., Carlsson, L. V., Johansson, C. B., Thomsen, P. & Gretzer, C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 77, 177–97 (2006).

    Article  PubMed  Google Scholar 

  6. Goodman, S. B. Wear particles, periprosthetic osteolysis and the immune system. Biomaterials 28, 5044–5048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harris, W. H. Wear and periprosthetic osteolysis: the problem. Clin. Orthop. Relat. Res. 393, 66–70 (2001).

    Article  Google Scholar 

  8. Looney, R. J., Schwarz, E. M., Boyd, A. & O'Keefe, R. J. Periprosthetic osteolysis: an immunologist's update. Curr. Opin. Rheumatol. 18, 80–7 (2006).

    Article  PubMed  Google Scholar 

  9. Sargeant, A. & Goswami, T. Pathophysiological aspects of hip implants. J. Surg. Orthop. Adv. 15, 111–112 (2006).

    PubMed  Google Scholar 

  10. Purdue, P. E., Koulouvaris, P., Potter, H. G., Nestor, B. J. & Sculco, T. P. The cellular and molecular biology of periprosthetic osteolysis. Clin. Orthop. Relat. Res. 454, 251–261 (2007).

    Article  PubMed  Google Scholar 

  11. Ito, S., Matsumoto, T., Enomoto, H. & Shindo, H. Histological analysis and biological effects of granulation tissue around loosened hip prostheses in the development of osteolysis. J. Orthop. Sci. 9, 478–487 (2004).

    Article  PubMed  Google Scholar 

  12. Stea, S. et al. Cytokines and osteolysis around total hip prostheses. Cytokine 12, 1575–1579 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. O'Neill, L. A. Immunology. How frustration leads to inflammation. Science 320, 619–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Maitra, R. et al. Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol. Immunol. 47, 175–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirayama, T. et al. Toll-like receptors and their adaptors are regulated in macrophages after phagocytosis of lipopolysaccharide-coated titanium particles. J. Orthop. Res. 28, 984–992 (2011).

    Article  CAS  Google Scholar 

  16. Maitra, R., Clement, C. C., Crisi, G. M., Cobelli, N. & Santambrogio, L. Immunogenecity of modified alkane polymers is mediated through TLR1/2 activation. PLoS One 3, e2438 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Islam, A. S., Beidelschies, M. A., Huml, A. & Greenfield, E. M. Titanium particles activate Toll-like receptor 4 independently of lipid rafts in RAW264.7 murine macrophages. J. Orthop. Res. 29, 211–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Piccinini, A. M. & Midwood, K. S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010, 672395 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tamaki, Y. et al. Increased expression of toll-like receptors in aseptic loose periprosthetic tissues and septic synovial membranes around total hip implants. J. Rheumatol. 36, 598–608 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Holt, G., Murnaghan, C., Reilly, J. & Meek, R. M. The biology of aseptic osteolysis. Clin. Orthop. Relat. Res. 460, 240–252 (2007).

    CAS  PubMed  Google Scholar 

  21. Charnley, J. Arthroplasty of the hip. A new operation. Lancet 1, 1129–1132 (1961).

    Article  CAS  PubMed  Google Scholar 

  22. äkelä, K . et al. Cemented versus cementless total hip replacements in patients fifty-five years of age or olderwith rheumatoid arthritis. J. Bone Joint Surg. Am. 93, 178–186 (2011).

    Article  Google Scholar 

  23. Thomas, G. E. et al. The seven-year wear of highly cross-linked polyethylene in total hip arthroplasty: a double-blind, randomized controlled trial using radiostereometric analysis. J. Bone Joint Surg. Am. 93, 716–722 (2011).

    Article  PubMed  Google Scholar 

  24. Huo, M. H. & Brown, B. S. What's new in hip arthroplasty. J. Bone Joint Surg. Am. 85-A, 1852–1864 (2003).

    Article  Google Scholar 

  25. Baudriller, H., Chabrand, P. & Moukoko, D. Modeling UHMWPE wear debris generation. J. Biomed. Mater. Res. B Appl. Biomater. 80, 479–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ingham, E. & Fisher, J. The role of macrophages in osteolysis of total joint replacement. Biomaterials 26, 1271–1286 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Endo, M. et al. Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. Proc. Inst. Mech. Eng. H 216, 111–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Atienza, C. Jr & Maloney, W. J. Highly cross-linked polyethylene bearing surfaces in total hip arthroplasty. J. Surg. Orthop. Adv. 17, 27–33 (2008).

    PubMed  Google Scholar 

  29. Doorn, P. F. et al. Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J. Biomed. Mater. Res. 42, 103–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Yoon, T. R., Rowe, S. M., Jung, S. T., Seon, K. J. & Maloney, W. J. Osteolysis in association with a total hip arthroplasty with ceramic bearing surfaces. J. Bone Joint Surg. Am. 80, 1459–1468 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Hatton, A. et al. Alumina–alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials 23, 3429–3440 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Tipper, J. L. et al. Alumina-alumina artificial hip joints. Part II: characterisation of the wear debris from in vitro hip joint simulations. Biomaterials 23, 3441–3448 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Elfick, A., Green, S., Krikler, S. & Unsworth, A. The nature and dissemination of UHMWPE wear debris retrieved from periprosthetic tissue of THR. J. Biomed. Mater. Res. A 65, 95–108 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. Schmalzried, T., Dorey, F. & McKellop, H. The multifactorial nature of polyethylene wear in vivo. J. Bone Joint Surg. Am. 80, 1234–1242 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Galvin, A. L. et al. Wear and biological activity of highly crosslinked polyethylene in the hip under low serum protein concentrations. Proc. Inst. Mech. Eng. H 221, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Schmalzried, T., Peters, P., Maurer, B., Bragdon, C. & Harris, W. Long-duration metal-on-metal total hip arthroplasties with low wear of the articulating surfaces. J. Arthroplasty 11, 322–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Goldsmith, A. A., Dowson, D., Isaac, G. H. & Lancaster, J. G. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc. Inst. Mech. Eng. H 214, 39–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Dorlot, J., Christel, P. & Meunier, A. Wear analysis of retrieved alumina heads and sockets of hip prostheses. J. Biomed. Mater. Res. 23 (A3 Suppl.), 299–310 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Boehler, M. et al. Long-term results of uncemented alumina acetabular implants. J. Bone Joint Surg. Br. 76, 53–59 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Kuzyk, P. et al. Cross-linked versus conventional polyethylene for total hip replacement: a meta-analysis of randomised controlled trials. J. Bone Joint Surg. Br. 93, 593–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Urban, R. M. et al. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J. Bone Joint Surg. Am. 82, 457–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Delaunay, C., Petit, I., Learmonth, I. D., Oger, P. & Vendittoli, P. A. Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthop. Traumatol. Surg. Res. 96, 894–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Keegan, G. M., Learmonth, I. D. & Case, C. P. Orthopaedic metals and their potential toxicity in the arthroplasty patient: a review of current knowledge and future strategies. J. Bone Joint Surg. Br. 89, 567–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Malviya, A., Ramaskandhan, J., Holland, J. & Lingard, E. Metal-on-metal total hip arthroplasty. J. Bone Joint Surg. Am. 92, 1675–1683 (2010).

    Article  PubMed  Google Scholar 

  45. Charnley, J. Fracture of femoral prostheses in total hip replacement. A clinical study. Clin. Orthop. Relat. Res. 111, 105–120 (1975).

    Article  Google Scholar 

  46. Harris, W. H., Schiller, A. L., Scholler, J. M., Freiberg, R. A. & Scott, R. Extensive localized bone resorption in the femur following total hip replacement. J. Bone Joint Surg. Am. 58, 612–618 (1976).

    Article  CAS  PubMed  Google Scholar 

  47. Ollivere, B., Darrah, C., Barker, T., Nolan, J. & Porteous, M. J. Early clinical failure of the Birmingham metal-on-metal hip resurfacing is associated with metallosis and soft-tissue necrosis. J. Bone Joint Surg. Br. 91, 1025–1030 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Kwon, Y. M. et al. Analysis of wear of retrieved metal-on-metal hip resurfacing implants revised due to pseudotumours. J. Bone Joint Surg. Br. 92, 356–361 (2010).

    Article  PubMed  Google Scholar 

  49. Pandit, H. et al. Pseudotumours associated with metal-on-metal hip resurfacings. J. Bone Joint Surg. Br. 90, 847–851 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Pandit, H. et al. Necrotic granulomatous pseudotumours in bilateral resurfacing hip arthoplasties: evidence for a type IV immune response. Virchows Arch. 453, 529–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Davies, A. P., Willert, H. G., Campbell, P. A., Learmonth, I. D. & Case, C. P. An unusual lymphocytic perivascular infiltration in tissues around contemporary metal-on-metal joint replacements. J. Bone Joint Surg. Am. 87, 18–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Huber, M., Reinisch, G., Zenz, P., Zweymüller, K. & Lintner, F. Postmortem study of femoral osteolysis associated with metal-on-metal articulation in total hip replacement: an analysis of nine cases. J. Bone Joint Surg. Am. 92, 1720–1731 (2010).

    Article  PubMed  Google Scholar 

  53. Willert, H. G. et al. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J. Bone Joint Surg. Am. 87, 28–36 (2005).

    Article  PubMed  Google Scholar 

  54. Brach del Prever, E. M. et al. The biological reactivity of polyethylene wear debris is related with sterilisation methods of UHMWPE. Chir. Organi. Mov. 88, 291–304 (2003).

    CAS  PubMed  Google Scholar 

  55. Bosetti, M., Zanardi, L., Bracco, P., Costa, L. & Cannas, M. In vitro evaluation of the inflammatory activity of ultra-high molecular weight polyethylene. Biomaterials 24, 1419–1426 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Renò, F., Bracco, P., Costa, L. & Cannas, M. Cytotoxicity and MMP-9 activation induced in human mononuclear cells by UHMWPE oxidation. Biomaterials 23, 3645–3650 (2002).

    Article  PubMed  Google Scholar 

  57. Smith, R. A., Maghsoodpour, A. & Hallab, N. J. In vivo response to cross-linked polyethylene and polycarbonate-urethane particles. J. Biomed. Mater. Res. A 93, 227–234 (2010).

    PubMed  Google Scholar 

  58. Goodman, S. B. & Ma, T. Cellular chemotaxis induced by wear particles from joint replacements. Biomaterials 31, 5045–5050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lenz, R. et al. Response of human osteoblasts exposed to wear particles generated at the interface of total hip stems and bone cement. J. Biomed. Mater. Res. A 89, 370–378 (2009).

    Article  PubMed  CAS  Google Scholar 

  60. Kanaji, A. et al. Co-Cr-Mo alloy particles induce tumor necrosis factor alpha production in MLO-Y4 osteocytes: a role for osteocytes in particle-induced inflammation. Bone 45, 528–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, C. T., Lin, Y. T., Chiang, B. L., Lee, S. S. & Hou, S. M. Over-expression of receptor activator of nuclear factor-kappaB ligand (RANKL), inflammatory cytokines, and chemokines in periprosthetic osteolysis of loosened total hip arthroplasty. Biomaterials 31, 77–82 (2010).

    Article  PubMed  CAS  Google Scholar 

  62. Haynes, D. R. et al. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J. Bone Joint Surg. Br. 83, 902–911 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Teitelbaum, S. L. Osteoclasts: what do they do and how do they do it? Am. J. Pathol. 170, 427–435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, Y., Humphrey, M. B. & Nakamura, M. C. Osteoclasts—the innate immune cells of the bone. Autoimmunity 41, 183–194 (2008).

    Article  PubMed  CAS  Google Scholar 

  65. Boyce, B. F., Schwarz, E. M. & Xing, L. Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease. Curr. Opin. Rheumatol. 18, 427–432 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Kahn, A. J., Teitelbaum, S. L., Malone, J. D. & Krukowski, M. The relationship of monocytic cells to the differentiation and resorption of bone. Prog. Clin. Biol. Res. 110 Pt B, 239–248 (1982).

    CAS  PubMed  Google Scholar 

  67. Alnaeeli, M. & Teng, Y. T. Dendritic cells differentiate into osteoclasts in bone marrow microenvironment in vivo. Blood 113, 264–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maitra, R. et al. Dendritic cell-mediated in vivo bone resorption. J. Immunol. 185, 1485–1491 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Lamkanfi, M. & Dixit, V. M. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev. 227, 95–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Caicedo, M. S. et al. Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J. Orthop. Res. 27, 847–854 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. St Pierre, C. A. et al. Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-particles. J. Orthop. Res. 28, 1418–1424 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cassel, S. L. et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl Acad. Sci. USA 105, 9035–9040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Freeman, T. A., Parvizi, J., Della Valle, C. J. & Steinbeck, M. J. Reactive oxygen and nitrogen species induce protein and DNA modifications driving arthrofibrosis following total knee arthroplasty. Fibrogenesis Tissue Repair 2, 5 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hallab, N., Merritt, K. & Jacobs, J. J. Metal sensitivity in patients with orthopaedic implants. J. Bone Joint Surg. Am. 83-A, 428–436 (2001).

    Article  CAS  Google Scholar 

  77. Campbell, P. et al. in Histopathology of Metal-on-Metal Hip Joint Tissues (eds Rieker, C. et al.) 167–180 (World Tribology Forum in Arthroplasty, Gottingen, 2000).

    Google Scholar 

  78. Campbell, P. et al. The John Charnley Award: a study of implant failure in metal-on-metal surface arthroplasties. Clin. Orthop. Relat. Res. 453, 35–46 (2006).

    Article  PubMed  Google Scholar 

  79. Gamerdinger, K. et al. A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J. Exp. Med. 197, 1345–1353 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Budinger, L. & Hertl, M. Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. Allergy 55, 108–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Nasorri, F. et al. Activation of nickel-specific CD4+ T lymphocytes in the absence of professional antigen-presenting cells. J. Invest. Dermatol. 118, 172–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Thierse, H. J., Gamerdinger, K., Junkes, C., Guerreiro, N. & Weltzien, H. U. T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology 209, 101–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Chiu, R., Ma, T., Smith, R. L. & Goodman, S. B. Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro. J. Biomed. Mater. Res. A 89, 242–247 (2009).

    PubMed  Google Scholar 

  84. Nawrocki, B., Polette, M., Burlet, H., Birembaut, P. & Adnet, J. J. Expression of gelatinase A and its activator MT1-MMP in the inflammatory periprosthetic response to polyethylene. J. Bone Miner. Res. 14, 288–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Takei, I. et al. Messenger ribonucleic acid expression of 16 matrix metalloproteinases in bone–implant interface tissues of loose artificial hip joints. J. Biomed. Mater. Res. 52, 613–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Nam, J. L. et al. Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Ann. Rheum. Dis. 69, 976–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Rémy, A., Avouac, J., Gossec, L. & Combe, B. Clinical relevance of switching to a second tumour necrosis factor-alpha inhibitor after discontinuation of a first tumour necrosis factor-alpha inhibitor in rheumatoid arthritis: a systematic literature review and meta-analysis. Clin. Exp. Rheumatol. 29, 96–103 (2011).

    PubMed  Google Scholar 

  88. De Giglio, E. et al. Development and characterization of rhVEGF-loaded poly(HEMA-MOEP) coatings electrosynthesized on titanium to enhance bone mineralization and angiogenesis. Acta Biomater. 6, 282–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, Z. Y. et al. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 31, 8684–8695 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Hildebrandt, C., Büth, H. & Thielecke, H. A scaffold-free in vitro model for osteogenesis of human mesenchymal stem cells. Tissue Cell 43, 91–100 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the generous donation of Arnold Penner and the Jabez and Helen Hardin Foundation. We would like to thank Paolo Verzani for assistance with Figure 1 and Figure 2.

Author information

Authors and Affiliations

Authors

Contributions

N. Cobelli, B. Scharf, G. M. Crisi and L. Santambrogio researched data for the article. G. M. Crisi and J. Hardin made substantial contributions to the discussion of content. N. Cobelli, B. Scharf and L. Santambrogio wrote the article. N. Cobelli and L. Santambrogio performed review/editing of the manuscript before submission.

Corresponding author

Correspondence to Laura Santambrogio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobelli, N., Scharf, B., Crisi, G. et al. Mediators of the inflammatory response to joint replacement devices. Nat Rev Rheumatol 7, 600–608 (2011). https://doi.org/10.1038/nrrheum.2011.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing