Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA

Abstract

Osteoarthritis (OA) is the most prevalent joint disease, but neither preventive measures nor disease-modifying drugs are available and a continuing need exists for safe and effective symptom-modifying therapies. Clinical trials of candidate disease-modifying OA drugs in patients with established or advanced disease have not demonstrated their efficacy, but these failed trials have motivated investigation into the mechanisms that maintain joint health. The enhancement of such mechanisms could be a novel approach to reducing the risk of OA. Aging is one of the most important risk factors for OA; however, aging of joint cartilage is a process that is distinct from the subsequent cartilage changes that develop following the onset of OA. This Review focuses on the mechanisms that maintain cell and tissue homeostasis, and how these mechanisms fail during the aging process. Autophagy is a cellular homeostasis mechanism for the removal of dysfunctional organelles and macromolecules. Defective autophagy is involved in the pathogenesis of aging-related diseases and recent observations indicate that this process is compromised in aging cartilage. Augmentation of homeostasis mechanisms is discussed as a novel avenue to delay joint aging and reduce OA risk.

Key Points

  • In clinical trials in patients with established or advanced osteoarthritis (OA), candidate disease-modifying drugs have failed to show efficacy

  • Aging represents one of the main risk factors for OA, and pharmacological approaches that aim to delay cartilage aging could reduce OA risk

  • Failure of cellular homeostasis mechanisms is among the earliest events that precede cartilage cell death and extracellular matrix damage in the pathogenesis of OA

  • Autophagy is a central cellular homeostasis mechanism that is compromised in aging cartilage

  • Approaches to enhance autophagy and other homeostasis mechanisms might protect against aging-related cell dysfunction, and could be effective in reducing the risk for aging-related degenerative diseases such as OA

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis pathways in established OA.
Figure 2: Mechanisms of cartilage superficial zone disruption.
Figure 3: Determinants of cartilage homeostasis.
Figure 4: Regulation and execution of autophagy.

Similar content being viewed by others

References

  1. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kim, S. Changes in surgical loads and economic burden of hip and knee replacements in the US: 1997–2004. Arthritis Rheum. 59, 481–488 (2008).

    Article  PubMed  Google Scholar 

  3. Mahomed, N. N. et al. Rates and outcomes of primary and revision total hip replacement in the United States medicare population. J. Bone Joint Surg. Am. 85-A, 27–32 (2003).

    Article  Google Scholar 

  4. Guccione, A. A. et al. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am. J. Public Health 84, 351–358 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campbell, A. J., Borrie, M. J. & Spears, G. F. Risk factors for falls in a community-based prospective study of people 70 years and older. J. Gerontol. 44, M112–M117 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, W. et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: Changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 18, 476–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Hellio Le Graverand-Gastineau, M. P. OA clinical trials: current targets and trials for, OA. Choosing molecular targets: what have we learned and where we are headed? Osteoarthritis Cartilage 17, 1393–1401 (2009).

    Article  PubMed  Google Scholar 

  8. Herman, C. J., Allen, P., Hunt, W. C., Prasad, A. & Brady, T. J. Use of complementary therapies among primary care clinic patients with arthritis. Prev. Chronic Dis. 1, A12 (2004).

    PubMed  PubMed Central  Google Scholar 

  9. Ramsey, S. D., Spencer, A. C., Topolski, T. D., Belza, B. & Patrick, D. L. Use of alternative therapies by older adults with osteoarthritis. Arthritis Rheum. 45, 222–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Loeser, R. F. Molecular mechanisms of cartilage destruction in osteoarthritis. J. Musculoskelet. Neuronal Interact. 8, 303–306 (2008).

    CAS  PubMed  Google Scholar 

  11. Felson, D. T. Developments in the clinical understanding of osteoarthritis. Arthritis Res. Ther. 11, 203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Valdes, A. M. & Spector, T. D. The genetic epidemiology of osteoarthritis. Curr. Opin. Rheumatol. 22, 139–143 (2010).

    Article  PubMed  Google Scholar 

  13. Goldring, S. R. & Goldring, M. B. Bone and cartilage in osteoarthritis: is what's best for one good or bad for the other? Arthritis Res. Ther. 12, 143 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scanzello, C. R. et al. Synovial inflammation in patients undergoing arthroscopic meniscectomy: Molecular characterization and relationship with symptoms. Arthritis Rheum. 63, 391–400 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lohmander, L. S., Englund, P. M., Dahl, L. L. & Roos, E. M. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35, 1756–1769 (2007).

    Article  PubMed  Google Scholar 

  16. Pelletier, J. P. & Martel-Pelletier, J. DMOAD developments: present and future. Bull. NYU Hosp. Jt Dis. 65, 242–248 (2007).

    PubMed  Google Scholar 

  17. Matthews, G. L. & Hunter, D. J. Emerging drugs for osteoarthritis. Expert Opin. Emerg. Drugs doi:10.1517/14728214.2011.576670.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Miller, K. L. & Clegg, D. O. Glucosamine and chondroitin sulfate. Rheum. Dis. Clin. North Am. 37, 103–118 (2011).

    Article  PubMed  Google Scholar 

  19. Frech, T. M. & Clegg, D. O. The utility of nutraceuticals in the treatment of osteoarthritis. Curr. Rheumatol. Rep. 9, 25–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Le Graverand-Gastineau, M. P. Disease modifying osteoarthritis drugs: facing development challenges and choosing molecular targets. Curr. Drug Targets 11, 528–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Aigner, T., Rose, J., Martin, J. & Buckwalter, J. Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res. 7, 134–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage 17, 971–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horton, W. E. Jr, Bennion, P. & Yang, L. Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis. J. Musculoskelet. Neuronal Interact. 6, 379–381 (2006).

    PubMed  Google Scholar 

  24. Blaney Davidson, E. N., Scharstuhl, A., Vitters, E. L., van der Krann, P. M. & van den Berg, W. B. Reduced transforming growth factor-β signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res. Ther. 7, R1338–R1347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barbero, A. et al. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12, 476–484 (2004).

    Article  PubMed  Google Scholar 

  26. van der Krann, P. M. & van den Berg, W. B. Osteoarthritis in the context of ageing and evolution: Loss of chondrocyte differentiation block during ageing. Ageing Res. Rev. 7, 106–113 (2008).

    Article  Google Scholar 

  27. Poole, A. R., Guilak, F. & Abramson, S. “Etiopathogenesis of osteoarthritis” in Osteoarthritis: Diagnosis and Medical/Surgical Management (eds Moskowitz, R. W., Altman, R. D., Hochberg, M. C., Buckwalter, J. A. & Goldberg, V. M) (Lippincott, Williams & Williams, Philadelphia, 2007).

    Google Scholar 

  28. Hollander, A. P. et al. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J. Clin. Invest. 96, 2859–2869 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guilak, F., Ratcliffe, A., Lane, N., Rosenwasser, M. P. & Mow, V. C. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J. Orthop. Res. 12, 474–484 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Panula, H. E. et al. Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis. Ann. Rheum. Dis. 57, 237–245 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tchetina, E. V., Squires, G. & Poole, A. R. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J. Rheumatol. 32, 876–886 (2005).

    CAS  PubMed  Google Scholar 

  32. Saarakkala, S. et al. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthritis Cartilage 18, 73–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Temple, M. M. et al. Age- and site-associated biomechanical weakening of human articular cartilage of the femoral condyle. Osteoarthritis Cartilage 15, 1042–1052 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Temple-Wong, M. M. et al. Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle. Osteoarthritis Cartilage 17, 1469–1476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carter, D. R. et al. The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. Relat. Res. 427 (suppl.), S69–S77 (2004).

    Article  Google Scholar 

  36. Darling, E. M., Hu, J. C. & Athanasiou, K. A. Zonal and topographical differences in articular cartilage gene expression. J. Orthop. Res. 22, 1182–1187 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Youn, I., Choi, J. B., Cao, L., Setton, L. A. & Guilak, F. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthritis Cartilage 14, 889–897 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Alsalameh, S., Amin, R., Gemba, T. & Lotz, M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 50, 1522–1532 (2004).

    Article  PubMed  Google Scholar 

  39. Dowthwaite, G. P. et al. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117, 889–897 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Grogan, S. P., Miyaki, S., Asahara, H., D'Lima, D. D. & Lotz, M. K. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res. Ther. 11, R85 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Otsuki, S. et al. The effect of glycosaminoglycan loss on chondrocyte viability: a study on porcine cartilage explants. Arthritis Rheum. 58, 1076–1085 (2008).

    Article  PubMed  Google Scholar 

  42. Bae, W. C. et al. Indentation testing of human cartilage: sensitivity to articular surface degeneration. Arthritis Rheum. 48, 3382–3394 (2003).

    Article  PubMed  Google Scholar 

  43. Taniguchi, N. et al. Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc. Natl Acad. Sci. USA 106, 1181–1186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taniguchi, N. et al. Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc. Natl Acad. Sci. USA 106, 16817–16822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Terman, A., Kurz, T., Navratil, M., Arriaga, E. A. & Brunk, U. T. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid. Redox Signal. 12, 503–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morimoto, R. I. & Cuervo, A. M. Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J. Gerontol. A Biol. Sci. Med. Sci. 64A, 167–170 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  47. Fribley, A., Zhang, K. & Kaufman, R. J. Regulation of apoptosis by the unfolded protein response. Methods Mol. Biol. 559, 191–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Uchiyama, Y., Shibata, M., Koike, M., Yoshimura, K. & Sasaki, M. Autophagy—physiology and pathophysiology. Histochem. Cell Biol. 129, 407–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogata, M. et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell Biol. 26, 9220–9231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salminen, A., Kauppinen, A., Suuronen, T., Kaarniranta, K. & Ojala, J. ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J. Neuroinflammation 6, 41 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Austin, R. C. The unfolded protein response in health and disease. Antioxid. Redox Signal. 11, 2279–2287 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, D. H., Davis, R. C., Furukawa, R. & Fechheimer, M. Autophagy contributes to degradation of Hirano bodies. Autophagy 5, 44–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Ong, D. S. & Kelly, J. W. Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases. Curr. Opin. Cell Biol. 23, 231–238 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mizushima, N. Physiological functions of autophagy. Curr. Top. Microbiol. Immunol. 335, 71–84 (2009).

    CAS  PubMed  Google Scholar 

  56. Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O. & Klionsky, D. J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, L. et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. USA 103, 4952–4957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Codogno, P. & Meijer, A. J. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 (Suppl. 2), 1509–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Baehrecke, E. H. Autophagy: dual roles in life and death? Nat. Rev. Mol. Cell Biol. 6, 505–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Chan, E. Y. & Tooze, S. A. Evolution of Atg1 function and regulation. Autophagy 5, 758–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Furuya, N., Yu, J., Byfield, M., Pattingre, S. & Levine, B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1, 46–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Ohsumi, Y. & Mizushima, N. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15, 231–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Mizushima, N. & Klionsky, D. J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Stanfel, M. N., Shamieh, L. S., Kaeberlein, M. & Kennedy, B. K. The TOR pathway comes of age. Biochim. Biophys. Acta 1790, 1067–1074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bonawitz, N. D., Chatenay-Lapointe, M., Pan, Y. & Shadel, G. S. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab. 5, 265–277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Goldring, M. B. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract. Res. Clin. Rheumatol. 20, 1003–1025 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Johansen, T. & Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol. 7, 161–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Cuervo, A. M. Autophagy and aging: keeping that old broom working. Trends Genet. 24, 604–612 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carames, B., Taniguchi, N., Otsuki, S., Blanco, F. J. & Lotz, M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 62, 791–801 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cuervo, A. M. & Dice, J. F. Age-related decline in chaperone-mediated autophagy. J. Biol. Chem. 275, 31505–31513 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Martinez, A., Portero-Otin, M., Pamplona, R. & Ferrer, I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol. 20, 281–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Brunk, U. T. & Terman, A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 33, 611–619 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Raben, N. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17, 3897–3908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vellai, T., Takacs-Vellai, K., Sass, M. & Klionsky, D. J. The regulation of aging: does autophagy underlie longevity? Trends Cell Biol. 19, 487–494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cuervo, A. M. et al. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1, 131–140 (2005).

    Article  PubMed  Google Scholar 

  81. Salminen, A. & Kaarniranta, K. Regulation of the aging process by autophagy. Trends Mol. Med. 15, 217–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hadley, E. C., Lakatta, E. G., Morrison-Bogorad, M., Warner, H. R. & Hodes, R. J. The future of aging therapies. Cell 120, 557–567 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Masoro, E. J. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913–922 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Smith, G. K. et al. Lifelong diet restriction and radiographic evidence of osteoarthritis of the hip joint in dogs. J. Am. Vet. Med. Assoc. 229, 690–693 (2006).

    Article  PubMed  Google Scholar 

  85. Madeo, F., Tavernarakis, N. & Kroemer, G. Can autophagy promote longevity? Nat. Cell Biol. 12, 842–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Nadon, N. L. et al. Design of aging intervention studies: the NIA interventions testing program. Age (Dordr) 30, 187–199 (2008).

    Article  CAS  Google Scholar 

  87. Strong, R. et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7, 641–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miller, R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66A, 191–201 (2011).

    Article  CAS  Google Scholar 

  90. Sofroniadou, S. & Goldsmith, D. Mammalian target of rapamycin (mTOR) inhibitors: potential uses and a review of haematological adverse effects. Drug Saf. 34, 97–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Renna, M., Jimenez-Sanchez, M., Sarkar, S. & Rubinsztein, D. C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J. Biol. Chem. 285, 11061–11067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sage, A. T. et al. Hexosamine biosynthesis pathway flux promotes endoplasmic reticulum stress, lipid accumulation, and inflammatory gene expression in hepatic cells. Am. J. Physiol. Endocrinol. Metab. 298, E499–E511 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Matthews, J. A., Belof, J. L., Acevedo-Duncan, M. & Potter, R. L. Glucosamine-induced increase in Akt phosphorylation corresponds to increased endoplasmic reticulum stress in astroglial cells. Mol. Cell Biochem. 298, 109–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Qiu, W., Su, Q., Rutledge, A. C., Zhang, J. & Adeli, K. Glucosamine-induced endoplasmic reticulum stress attenuates apolipoprotein B100 synthesis via PERK signaling. J. Lipid Res. 50, 1814–1823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shintani, T. et al. Glucosamine induces autophagy via an mTOR-independent pathway. Biochem. Biophys. Res. Commun. 391, 1775–1779 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Poole, R. et al. Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthritis Cartilage 18 (Suppl. 3), S10–S16 (2010).

    Article  PubMed  Google Scholar 

  97. De Ceuninck, F., Sabatini, M. & Pastoureau, P. Recent progress toward biomarker identification in osteoarthritis. Drug Discov. Today 16, 443–449 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The writing of this manuscript was supported by NIH grants AG007996 and AR056026, and a grant from Cargill, Inc.

Author information

Authors and Affiliations

Authors

Contributions

B. Caramés and M. K. Lotz researched the data for the article, provided substantial contributions to discussions of the content, and contributed to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Martin K. Lotz.

Ethics declarations

Competing interests

M. K Lotz has acted as a consultant for and received grant/research support from Cargill, Inc. B. Caramés declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotz, M., Caramés, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol 7, 579–587 (2011). https://doi.org/10.1038/nrrheum.2011.109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing