Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endoplasmic reticulum aminopeptidases: biology and pathogenic potential

Abstract

Endoplasmic reticulum aminopeptidase 1 (ERAP1) and the closely related ERAP2 are involved in the final trimming of peptides within the endoplasmic reticulum for presentation by major histocompatibility complex (MHC) class I molecules. ERAP1 was found to be associated with ankylosing spondylitis (AS) in a genome-wide association study of nonsynonymous single nucleotide polymorphisms, and this association has been confirmed in several studies. An ERAP1/ERAP2 haplotype has also been reported to be associated with familial AS. ERAP1 and ERAP2 could carry out several potential roles in the pathogenesis of AS. ERAP1-deficient mice show a considerable alteration in the level and repertoire of peptides presented by MHC class I molecules. Furthermore, ERAP1 has been shown to be involved in shedding cytokine receptors. Both of these functions require further analysis to better understand the exact role of ERAP1 in AS.

Key Points

  • An association between the genes encoding endoplasmic reticulum aminopeptidase (ERAP)1 and ERAP2 and ankylosing spondylitis (AS) has been identified

  • ERAP1 and ERAP2 act in concert to trim and present peptides on major histocompatibility complex class I molecules within the endoplasmic reticulum

  • ERAP1 is also known to aid in the shedding of membrane-bound cytokine receptors

  • Preliminary data suggest that the peptide-trimming functions of ERAP1 and ERAP2 might be important in the pathogenesis of AS

  • Determining the crystallographic structure of ERAP1 should help greatly in the study of the function of this molecule

  • Large cohort studies looking at the clinical relevance of the association between ERAP1 and AS could shed more light on this novel and promising lead

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ERAP and MHC class-I peptide presentation.

Similar content being viewed by others

References

  1. Brown, M. A. et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 40, 1823–1828 (1997).

    Article  CAS  Google Scholar 

  2. Jarvinen, P. Occurrence of ankylosing spondylitis in a nationwide series of twins. Arthritis Rheum. 38, 381–383 (1995).

    Article  CAS  Google Scholar 

  3. Pedersen, O. B. et al. Ankylosing spondylitis in Danish and Norwegian twins: occurrence and the relative importance of genetic vs environmental effectors in disease causation. Scand. J. Rheumatol. 37, 120–126 (2008).

    Article  CAS  Google Scholar 

  4. Brewerton, D. A. et al. Ankylosing spondylitis and HL-A 27. Lancet 1, 904–907 (1973).

    Article  CAS  Google Scholar 

  5. Brown, M. A., Laval, S. H., Brophy, S. & Calin, A. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 59, 883–886 (2000).

    Article  CAS  Google Scholar 

  6. Laval, S. H. et al. Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci. Am. J. Hum. Genet. 68, 918–926 (2001).

    Article  CAS  Google Scholar 

  7. Wellcome Trust Case Control Consortium et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

  8. Maksymowych, W. P. et al. Association of a specific ERAP1/ARTS1 haplotype with disease susceptibility in ankylosing spondylitis. Arthritis Rheum. 60, 1317–1323 (2009).

    Article  CAS  Google Scholar 

  9. Davidson, S. I. et al. Association of ERAP1, but not IL23R, with ankylosing spondylitis in a Han Chinese population. Arthritis Rheum. 60, 3263–3268 (2009).

    Article  CAS  Google Scholar 

  10. Choi, C. B. et al. ARTS1 polymorphisms are associated with ankylosing spondylitis in Koreans. Ann. Rheum. Dis. 69, 582–584 (2010).

    Article  Google Scholar 

  11. Pimentel-Santos, F. M. et al. Association of IL23R and ERAP1 genes with ankylosing spondylitis in a Portuguese population. Clin. Exp. Rheumatol. 27, 800–806 (2009).

    CAS  PubMed  Google Scholar 

  12. Harvey, D. et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum. Mol. Genet. 18, 4204–4212 (2009).

    Article  CAS  Google Scholar 

  13. Tsui, F. W. et al. Association of an ERAP1 ERAP2 haplotype with familial ankylosing spondylitis. Ann. Rheum. Dis. 69, 733–736 (2010).

    Article  CAS  Google Scholar 

  14. Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem. 278, 32275–32283 (2003).

    Article  CAS  Google Scholar 

  15. The Ensembl website [online], (2010).

  16. Chang, S. C., Momburg, F., Bhutani, N. & Goldberg, A. L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl Acad. Sci. USA 102, 17107–17112 (2005).

    Article  CAS  Google Scholar 

  17. Evnouchidou, I. et al. The internal sequence of the peptide-substrate determines its N-terminus trimming by ERAP1. PLoS ONE 3, e3658 (2008).

    Article  Google Scholar 

  18. Neisig, A. et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J. Immunol. 154, 1273–1279 (1995).

    CAS  PubMed  Google Scholar 

  19. Blanchard, N. & Shastri, N. Coping with loss of perfection in the MHC class I peptide repertoire. Curr. Opin. Immunol. 20, 82–88 (2008).

    Article  CAS  Google Scholar 

  20. Saric, T. et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3, 1169–1176 (2002).

    Article  CAS  Google Scholar 

  21. Dixon, A. L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).

    Article  CAS  Google Scholar 

  22. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  Google Scholar 

  23. Hammer, G. E., Gonzalez, F., James, E., Nolla, H. & Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol. 8, 101–108 (2007).

    Article  CAS  Google Scholar 

  24. York, I. A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol. 3, 1177–1184 (2002).

    Article  CAS  Google Scholar 

  25. Kanaseki, T. & Shastri, N. Endoplasmic reticulum aminopeptidase associated with antigen processing regulates quality of processed peptides presented by MHC class I molecules. J. Immunol. 181, 6275–6282 (2008).

    Article  CAS  Google Scholar 

  26. Gibbs, R. A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).

    Article  CAS  Google Scholar 

  27. Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol. 6, 689–697 (2005).

    Article  CAS  Google Scholar 

  28. Haroon, N. et al. ERAP1 Q730E variants affect the HLA B27 free chain expression on monocytes of patients with ankylosing spondylitis [abstract #1448]. Arthritis Rheum. 60 (Suppl.), S541 (2009).

    Google Scholar 

  29. Turner, M. J., Delay, M. L., Bai, S., Klenk, E. & Colbert, R. A. HLA-B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: Implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum. 56, 215–223 (2007).

    Article  Google Scholar 

  30. Turner, M. J. et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J. Immunol. 175, 2438–2448 (2005).

    Article  CAS  Google Scholar 

  31. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    Article  CAS  Google Scholar 

  32. Harris, M. R. et al. Interactions of HLA-B27 with the peptide loading complex as revealed by heavy chain mutations. Int. Immunol. 13, 1275–1282 (2001).

    Article  CAS  Google Scholar 

  33. Fukazawa, T. et al. The effect of mutant beta 2-microglobulins on the conformation of HLA-B27 detected by antibody and by CTL. J. Immunol. 153, 3543–3550 (1994).

    CAS  PubMed  Google Scholar 

  34. Allen, R. L. & Trowsdale, J. Recognition of classical and heavy chain forms of HLA-B27 by leukocyte receptors. Curr. Mol. Med. 4, 59–65 (2004).

    Article  CAS  Google Scholar 

  35. Raine, T. et al. Consistent patterns of expression of HLA class I free heavy chains in healthy individuals and raised expression in spondyloarthropathy patients point to physiological and pathological roles. Rheumatology (Oxford) 45, 1338–1344 (2006).

    Article  CAS  Google Scholar 

  36. Kollnberger, S. et al. Interaction of HLA-B27 homodimers with KIR3DL1 and KIR3DL2, unlike HLA-B27 heterotrimers, is independent of the sequence of bound peptide. Eur. J. Immunol. 37, 1313–1322 (2007).

    Article  CAS  Google Scholar 

  37. Kollnberger, S. et al. HLA-B27 heavy chain homodimers are expressed in HLA-B27 transgenic rodent models of spondyloarthritis and are ligands for paired Ig-like receptors. J. Immunol. 173, 1699–1710 (2004).

    Article  CAS  Google Scholar 

  38. Kollnberger, S. et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum. 46, 2972–2982 (2002).

    Article  CAS  Google Scholar 

  39. Cui, X., Rouhani, F. N., Hawari, F. & Levine, S. J. Shedding of the type II IL-1 decoy receptor requires a multifunctional aminopeptidase, aminopeptidase regulator of TNF receptor type 1 shedding. J. Immunol. 171, 6814–6819 (2003).

    Article  CAS  Google Scholar 

  40. Cui, X., Rouhani, F. N., Hawari, F. & Levine, S. J. An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding. J. Biol. Chem. 278, 28677–28685 (2003).

    Article  CAS  Google Scholar 

  41. Cui, X. et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J. Clin. Invest. 110, 515–526 (2002).

    Article  CAS  Google Scholar 

  42. Islam, A. et al. Extracellular TNFR1 release requires the calcium-dependent formation of a nucleobindin 2-ARTS-1 complex. J. Biol. Chem. 281, 6860–6873 (2006).

    Article  CAS  Google Scholar 

  43. Adamik, B. et al. An association between RBMX, a heterogeneous nuclear ribonucleoprotein, and ARTS-1 regulates extracellular TNFR1 release. Biochem. Biophys. Res. Commun. 371, 505–509 (2008).

    Article  CAS  Google Scholar 

  44. Layh-Schmitt, G. & Colbert, R. A. The interleukin-23/interleukin-17 axis in spondyloarthritis. Curr. Opin. Rheumatol. 20, 392–397 (2008).

    Article  CAS  Google Scholar 

  45. Sims, A. M. et al. Prospective meta-analysis of interleukin 1 gene complex polymorphisms confirms associations with ankylosing spondylitis. Ann. Rheum. Dis. 67, 1305–1309 (2008).

    Article  Google Scholar 

  46. Haroon, N., Tsui, F. W. L., Chiu, B. & Inman, R. D. Serum cytokine receptors in ankylosing spondylitis: relationship to inflammatory markers and endoplasmic reticulum aminopeptidase polymorphisms. J. Rheum. (in press).

  47. Haroon, N., O'Shea, F. D., Rahman, P., Tsui, F. W. & Inman, R. D. ERAP1 R528 variants influence the radiological progression in ankylosing spondylitis [abstract #1445]. Arthritis Rheum. 60 (Suppl.), S540 (2009).

    Google Scholar 

  48. Colbert, R. A., DeLay, M. L., Layh-Schmitt, G. & Sowders, D. P. HLA-B27 misfolding and spondyloarthropathies. Adv. Exp. Med. Biol. 649, 217–234 (2009).

    Article  CAS  Google Scholar 

  49. Khare, S. D., Hansen, J., Luthra, H. S. & David, C. S. HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human beta2-microglobulin (beta2m) double transgenic mice with disrupted mouse beta2m. J. Clin. Invest. 98, 2746–2755 (1996).

    Article  CAS  Google Scholar 

  50. Tsai, W. C. et al. Free HLA class I heavy chain-carrying monocytes—a potential role in the pathogenesis of spondyloarthropathies. J. Rheumatol. 29, 966–972 (2002).

    CAS  PubMed  Google Scholar 

  51. Tanigaki, N. et al. The peptide binding specificity of HLA-B27 subtypes. Immunogenetics 40, 192–198 (1994).

    Article  CAS  Google Scholar 

  52. Fiorillo, M. T. et al. Susceptibility to ankylosing spondylitis correlates with the C-terminal residue of peptides presented by various HLA-B27 subtypes. Eur. J. Immunol. 27, 368–373 (1997).

    Article  CAS  Google Scholar 

  53. Lahesmaa, R., Skurnik, M. & Toivanen, P. Molecular mimicry: any role in the pathogenesis of spondyloarthropathies? Immunol. Res. 12, 193–208 (1993).

    Article  CAS  Google Scholar 

  54. Allen, R. L., Raine, T., Haude, A., Trowsdale, J. & Wilson, M. J. Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J. Immunol. 167, 5543–5547 (2001).

    Article  CAS  Google Scholar 

  55. Taranta, A. et al. Genetic risk factors in typical haemolytic uraemic syndrome. Nephrol. Dial. Transplant. 24, 1851–1857 (2009).

    Article  CAS  Google Scholar 

  56. Yamamoto, N. et al. Identification of 33 polymorphisms in the adipocyte-derived leucine aminopeptidase (ALAP) gene and possible association with hypertension. Hum. Mutat. 19, 251–257 (2002).

    Article  CAS  Google Scholar 

  57. Fung, E. Y. et al. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun. 10, 188–191 (2009).

    Article  CAS  Google Scholar 

  58. Johnson, M. P. et al. The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations. Hum. Genet. 126, 655–666 (2009).

    Article  CAS  Google Scholar 

  59. Saito, S., Sakai, M., Sasaki, Y., Nakashima, A. & Shiozaki, A. Inadequate tolerance induction may induce pre-eclampsia. J. Reprod. Immunol. 76, 30–39 (2007).

    Article  CAS  Google Scholar 

  60. Ponte, M. et al. Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proc. Natl Acad. Sci. USA 96, 5674–5679 (1999).

    Article  CAS  Google Scholar 

  61. Yan, W. H. et al. Possible roles of KIR2DL4 expression on uNK cells in human pregnancy. Am. J. Reprod. Immunol. 57, 233–242 (2007).

    Article  CAS  Google Scholar 

  62. Shido, F. et al. Endoplasmic reticulum aminopeptidase-1 mediates leukemia inhibitory factor-induced cell surface human leukocyte antigen-G expression in JEG-3 choriocarcinoma cells. Endocrinology 147, 1780–1788 (2006).

    Article  CAS  Google Scholar 

  63. Blanchard, N. et al. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat. Immunol. 9, 937–944 (2008).

    Article  CAS  Google Scholar 

  64. Draenert, R. et al. Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection. J. Exp. Med. 199, 905–915 (2004).

    Article  CAS  Google Scholar 

  65. Mehta, A. M. et al. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes Chromosomes Cancer 48, 410–418 (2009).

    Article  CAS  Google Scholar 

  66. Mehta, A. M., Jordanova, E. S., Kenter, G. G., Ferrone, S. & Fleuren, G. J. Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunol. Immunother. 57, 197–206 (2008).

    Article  CAS  Google Scholar 

  67. Mehta, A. M. et al. Genetic variation of antigen processing machinery components and association with cervical carcinoma. Genes Chromosomes Cancer 46, 577–586 (2007).

    Article  CAS  Google Scholar 

  68. Fruci, D. et al. Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed non-lymphoid human tissues. J. Cell Physiol. 216, 742–749 (2008).

    Article  CAS  Google Scholar 

  69. Fruci, D. et al. Expression of endoplasmic reticulum aminopeptidases in EBV-B cell lines from healthy donors and in leukemia/lymphoma, carcinoma, and melanoma cell lines. J. Immunol. 176, 4869–4879 (2006).

    Article  CAS  Google Scholar 

  70. Yamada, Y., Ando, F. & Shimokata, H. Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int. J. Mol. Med. 19, 791–801 (2007).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Inman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haroon, N., Inman, R. Endoplasmic reticulum aminopeptidases: biology and pathogenic potential. Nat Rev Rheumatol 6, 461–467 (2010). https://doi.org/10.1038/nrrheum.2010.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.85

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing