Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced MRI and staging of multiple sclerosis lesions

Key Points

  • Recent research efforts have narrowed the gap between in vivo MRI and pathology with respect to multiple sclerosis (MS) lesion development and staging

  • Demyelinated lesions in marmoset experimental autoimmune encephalomyelitis (EAE) resemble their human counterparts far better than do lesions in rodent EAE models

  • Application of parallel MRI methods in MS and marmoset EAE facilitates interpretation of data collected in both conditions

  • The perivenular topography of inflammatory demyelinating lesions might facilitate the diagnostic work-up for MS

  • Smouldering lesions and meningeal inflammation are important features of chronic inflammation that should be targeted for in vivo imaging

Abstract

Over the past few decades, MRI-based visualization of demyelinated CNS lesions has become pivotal to the diagnosis and monitoring of multiple sclerosis (MS). In this Review, we outline current efforts to correlate imaging findings with the pathology of lesion development in MS, and the pitfalls that are being encountered in this research. Multimodal imaging at high and ultra-high magnetic field strengths is yielding biologically relevant insights into the pathophysiology of blood–brain barrier dynamics and both active and chronic inflammation, as well as mechanisms of lesion healing and remyelination. Here, we parallel the results in humans with advances in imaging of a primate model of MS — experimental autoimmune encephalomyelitis (EAE) in the common marmoset — in which demyelinated lesions resemble their human counterparts far more closely than do EAE lesions in the rodent. This approach holds promise for the identification of innovative biological markers, and for next-generation clinical trials that will focus more on tissue protection and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRI and histology of the marmoset brain.
Figure 2: Perivenular topography of demyelinated MS lesions in white and grey matter.
Figure 3: MS lesions with paramagnetic rims.
Figure 4: Cortical and leptomeningeal involvement.

Similar content being viewed by others

References

  1. Filippi, M. et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 11, 349–360 (2012).

    Article  PubMed  Google Scholar 

  2. 't Hart, B. A., van Kooyk, Y., Geurts, J. J. & Gran, B. The primate autoimmune encephalomyelitis model; a bridge between mouse and man. Ann. Clin. Transl. Neurol. 2, 581–593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maggi, P. et al. The formation of inflammatory demyelinated lesions in cerebral white matter. Ann. Neurol. 76, 594–608 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Guy, J. R. et al. Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets. J. Neurosci. Methods 257, 55–63 (2016).

    Article  PubMed  Google Scholar 

  5. Ransohoff, R. M. & Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12, 623–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Filippi, M. et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 15, 292–303 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rae-Grant, A. D., Wong, C., Bernatowicz, R. & Fox, R. J. Observations on the brain vasculature in multiple sclerosis: a historical perspective. Mult. Scler. Relat. Disord. 3, 156–162 (2014).

    Article  PubMed  Google Scholar 

  11. Tan, I. L. et al. MR venography of multiple sclerosis. AJNR Am. J. Neuroradiol. 21, 1039–1042 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hammond, K. E. et al. Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron. Ann. Neurol. 64, 707–713 (2008).

    Article  PubMed  Google Scholar 

  13. Tallantyre, E. C. et al. Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 70, 2076–2078 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Sati, P., George, I. C., Shea, C. D., Gaitan, M. I. & Reich, D. S. FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins. Radiology 265, 926–932 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tallantyre, E. C. et al. Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology 76, 534–539 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kau, T. et al. The 'central vein sign': is there a place for susceptibility weighted imaging in possible multiple sclerosis? Eur. Radiol. 23, 1956–1962 (2013).

    Article  PubMed  Google Scholar 

  17. Absinta, M. et al. Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann. Neurol. 74, 669–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Absinta, M. et al. Direct MRI detection of impending plaque development in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2, e145 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gaitan, M. I., de Alwis, M. P., Sati, P., Nair, G. & Reich, D. S. Multiple sclerosis shrinks intralesional, and enlarges extralesional, brain parenchymal veins. Neurology 80, 145–151 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Müller, K. et al. Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. J. Neurol. 261, 2032–2036 (2014).

    Article  PubMed  Google Scholar 

  21. Dal-Bianco, A. et al. Veins in plaques of multiple sclerosis patients — a longitudinal magnetic resonance imaging study at 7 Tesla. Eur. Radiol. 25, 2913–2920 (2015).

    Article  PubMed  Google Scholar 

  22. George, I. C. et al. Clinical 3-tesla FLAIR* MRI improves diagnostic accuracy in multiple sclerosis. Mult. Scler. http://dx.doi.org/10.1177/1352458515624975 (2016).

  23. Lummel, N. et al. Presence of a central vein within white matter lesions on susceptibility weighted imaging: a specific finding for multiple sclerosis? Neuroradiology 53, 311–317 (2011).

    Article  PubMed  Google Scholar 

  24. Kilsdonk, I. D. et al. Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla. Eur. Radiol. 24, 841–849 (2014).

    Article  PubMed  Google Scholar 

  25. Solomon, A. J. et al. 'Central vessel sign' on 3T FLAIR* MRI for the differentiation of multiple sclerosis from migraine. Ann. Clin. Transl. Neurol. 3, 82–87 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wuerfel, J. et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult. Scler. 18, 1592–1599 (2012).

    Article  PubMed  Google Scholar 

  27. Massacesi, L. et al. Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for multiple sclerosis. Ann. Neurol. 37, 519–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Genain, C. P. & Hauser, S. L. Experimental allergic encephalomyelitis in the New World monkey Callithrix jacchus. Immunol. Rev. 183, 159–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Jagessar, S. A. et al. Autoimmunity against myelin oligodendrocyte glycoprotein is dispensable for the initiation although essential for the progression of chronic encephalomyelitis in common marmosets. J. Neuropathol. Exp. Neurol. 67, 326–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Jagessar, S. A., Dijkman, K., Dunham, J., 't Hart, B. A. & Kap, Y. S. Experimental autoimmune encephalomyelitis in marmosets. Methods Mol. Biol. 1304, 171–186 (2016).

    Article  PubMed  Google Scholar 

  31. Hart, B. A. et al. Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am. J. Pathol. 153, 649–663 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. t Hart, B. A. et al. Modelling of multiple sclerosis: lessons learned in a non-human primate. Lancet Neurol. 3, 588–597 (2004).

    Article  Google Scholar 

  33. Blezer, E. L., Bauer, J., Brok, H. P., Nicolay, K. & 't Hart, B. A. Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR Biomed. 20, 90–103 (2007).

    Article  PubMed  Google Scholar 

  34. Jordan, E. K. et al. Serial MR imaging of experimental autoimmune encephalomyelitis induced by human white matter or by chimeric myelin-basic and proteolipid protein in the common marmoset. AJNR Am. J. Neuroradiol. 20, 965–976 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Diem, R. et al. Autoimmune optic neuritis in the common marmoset monkey: comparison of visual evoked potentials with MRI and histopathology. Invest. Ophthalmol. Vis. Sci. 49, 3707–3714 (2008).

    Article  PubMed  Google Scholar 

  36. Boretius, S. et al. Monitoring of EAE onset and progression in the common marmoset monkey by sequential high-resolution 3D MRI. NMR Biomed. 19, 41–49 (2006).

    Article  PubMed  Google Scholar 

  37. Gaitan, M. I. et al. Perivenular brain lesions in a primate multiple sclerosis model at 7-tesla magnetic resonance imaging. Mult. Scler. 20, 64–71 (2014).

    Article  PubMed  Google Scholar 

  38. Henderson, A. P., Barnett, M. H., Parratt, J. D. & Prineas, J. W. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann. Neurol. 66, 739–753 (2009).

    Article  PubMed  Google Scholar 

  39. Prineas, J. W. & Parratt, J. D. Oligodendrocytes and the early multiple sclerosis lesion. Ann. Neurol. 72, 18–31 (2012).

    Article  PubMed  Google Scholar 

  40. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Singh, S. et al. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 125, 595–608 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Peferoen, L. A. et al. Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J. Neuropathol. Exp. Neurol. 74, 48–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Nikic, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Alvarez, J. I. et al. Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol. Dis. 74, 14–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Filippi, M., Rocca, M. A., Martino, G., Horsfield, M. A. & Comi, G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol. 43, 809–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Goodkin, D. E. et al. A serial study of new MS lesions and the white matter from which they arise. Neurology 51, 1689–1697 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Werring, D. J. et al. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 123, 1667–1676 (2000).

    Article  PubMed  Google Scholar 

  48. Eisele, P. et al. Reduced diffusion in a subset of acute MS lesions: a serial multiparametric MRI study. AJNR Am. J. Neuroradiol. 33, 1369–1373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tartaglia, M. C. et al. Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J. Neurol. 249, 1382–1390 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Wuerfel, J. et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 127, 111–119 (2004).

    Article  PubMed  Google Scholar 

  51. Wiggermann, V. et al. Magnetic resonance frequency shifts during acute MS lesion formation. Neurology 81, 211–218 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guttmann, C. R. et al. Multiple sclerosis lesion formation and early evolution revisited: a weekly high-resolution magnetic resonance imaging study. Mult. Scler. 22, 761–769 (2016).

    Article  PubMed  Google Scholar 

  53. Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Vos, C. M. et al. Blood–brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol. Dis. 20, 953–960 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Gay, D. & Esiri, M. Blood–brain barrier damage in acute multiple sclerosis plaques: an immunocytological study. Brain 114, 557–572 (1991).

    Article  PubMed  Google Scholar 

  56. Agrawal, S. M. et al. Extracellular matrix metalloproteinase inducer shows active perivascular cuffs in multiple sclerosis. Brain 136, 1760–1777 (2013).

    Article  PubMed  Google Scholar 

  57. Davalos, D. et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3, 1227 (2012).

    Article  PubMed  CAS  Google Scholar 

  58. Ryu, J. K. et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat. Commun. 6, 8164 (2015).

    Article  PubMed  Google Scholar 

  59. McFarland, H. F. et al. Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann. Neurol. 32, 758–766 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Frank, J. A. et al. Serial contrast-enhanced magnetic resonance imaging in patients with early relapsing–remitting multiple sclerosis: implications for treatment trials. Ann. Neurol. 36, S86–S90 (1994).

    Article  PubMed  Google Scholar 

  61. Gaitan, M. I. et al. Evolution of the blood–brain barrier in newly forming multiple sclerosis lesions. Ann. Neurol. 70, 22–29 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gaitan, M. I., Sati, P., Inati, S. J. & Reich, D. S. Initial investigation of the blood–brain barrier in MS lesions at 7 tesla. Mult. Scler. 19, 1068–1073 (2013).

    Article  PubMed  Google Scholar 

  63. Lassmann, H., Raine, C. S., Antel, J. & Prineas, J. W. Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J. Neuroimmunol. 86, 213–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. van der Valk, P. & De Groot, C. J. Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol. Appl. Neurobiol. 26, 2–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  PubMed  CAS  Google Scholar 

  67. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lassmann, H., van Horssen, J. & Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 8, 647–656 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Hametner, S. et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74, 848–861 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J. F. & Yong, V. W. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat. Rev. Neurol. 10, 459–468 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Dutta, R. et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann. Neurol. 59, 478–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Laule, C. et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult. Scler. 12, 747–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Levesque, I. R. et al. Reproducibility of quantitative magnetization-transfer imaging parameters from repeated measurements. Magn. Reson. Med. 64, 391–400 (2010).

    PubMed  Google Scholar 

  75. Sati, P. et al. Micro-compartment specific T2* relaxation in the brain. NeuroImage 77, 268–278 (2013).

    Article  PubMed  Google Scholar 

  76. Alonso-Ortiz, E., Levesque, I. R. & Pike, G. B. MRI-based myelin water imaging: a technical review. Magn. Reson. Med. 73, 70–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Yablonskiy, D. A., Luo, J., Sukstanskii, A. L., Iyer, A. & Cross, A. H. Biophysical mechanisms of MRI signal frequency contrast in multiple sclerosis. Proc. Natl Acad. Sci. USA 109, 14212–14217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mehta, V. et al. Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS ONE 8, e57573 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Chen, W. et al. Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 271, 183–192 (2014).

    Article  PubMed  Google Scholar 

  80. Shechter, R. & Schwartz, M. CNS sterile injury: just another wound healing? Trends Mol. Med. 19, 135–143 (2013).

    Article  PubMed  Google Scholar 

  81. Prineas, J. W., Barnard, R. O., Kwon, E. E., Sharer, L. R. & Cho, E. S. Multiple sclerosis: remyelination of nascent lesions. Ann. Neurol. 33, 137–151 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Raine, C. S. & Wu, E. Multiple sclerosis: remyelination in acute lesions. J. Neuropathol. Exp. Neurol. 52, 199–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    Article  PubMed  Google Scholar 

  84. Albert, M., Antel, J., Bruck, W. & Stadelmann, C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 17, 129–138 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bramow, S. et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain 133, 2983–2998 (2010).

    Article  PubMed  Google Scholar 

  86. Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).

    Article  PubMed  Google Scholar 

  87. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Goldschmidt, T., Antel, J., König, F. B., Bruck, W. & Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72, 1914–1921 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Franklin, R. J. & Gallo, V. The translational biology of remyelination: past, present, and future. Glia 62, 1905–1915 (2014).

    Article  PubMed  Google Scholar 

  90. van Walderveen, M. A. et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50, 1282–1288 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. van Waesberghe, J. H. et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann. Neurol. 46, 747–754 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, J. T. et al. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann. Neurol. 63, 254–262 (2008).

    Article  PubMed  Google Scholar 

  93. Reich, D. S. et al. Sample-size calculations for short-term proof-of-concept studies of tissue protection and repair in multiple sclerosis lesions via conventional clinical imaging. Mult. Scler. 21, 1693–1704 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lassmann, H. Review: the architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathol. Appl. Neurobiol. 37, 698–710 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pitt, D. et al. Imaging cortical lesions in multiple sclerosis with ultra-high-field magnetic resonance imaging. Arch. Neurol. 67, 812–818 (2010).

    Article  PubMed  Google Scholar 

  97. Bagnato, F. et al. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 134, 3602–3615 (2011).

    Article  PubMed  Google Scholar 

  98. Bian, W. et al. A serial in vivo 7T magnetic resonance phase imaging study of white matter lesions in multiple sclerosis. Mult. Scler. 19, 69–75 (2012).

    Article  PubMed  Google Scholar 

  99. Yao, B. et al. Chronic multiple sclerosis lesions: characterization with high-field-strength MR imaging. Radiology 262, 206–215 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hagemeier, J. et al. Iron deposition in multiple sclerosis lesions measured by susceptibility-weighted imaging filtered phase: a case control study. J. Magn. Reson. Imaging 36, 73–83 (2012).

    Article  PubMed  Google Scholar 

  101. Absinta, M. et al. Poor outcome in MS lesions with persistent 7-tesla phase rim. J. Clin. Invest. http://dx.doi.org/10.1172/JCI86198 (2016).

  102. Vellinga, M. M. et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008).

    Article  PubMed  Google Scholar 

  103. Tourdias, T. et al. Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology 264, 225–233 (2012).

    Article  PubMed  Google Scholar 

  104. Maarouf, A. et al. Ultra-small superparamagnetic iron oxide enhancement is associated with higher loss of brain tissue structure in clinically isolated syndrome. Mult. Scler. http://dx.doi.org/10.1177/1352458515607649 (2015).

  105. Dousset, V. et al. Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2-weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am. J. Neuroradiol. 20, 223–227 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Berger, C., Hiestand, P., Kindler-Baumann, D., Rudin, M. & Rausch, M. Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood–brain barrier damage. NMR Biomed. 19, 101–107 (2006).

    Article  PubMed  Google Scholar 

  107. Baeten, K. et al. Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging. J. Neuroimmunol. 195, 1–6 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Lucchinetti, C. F., Bruck, W., Rodriguez, M. & Lassmann, H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 6, 259–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Metz, I. et al. Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann. Neurol. 75, 728–738 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Popescu, B. F., Bunyan, R. F., Parisi, J. E., Ransohoff, R. M. & Lucchinetti, C. F. A case of multiple sclerosis presenting with inflammatory cortical demyelination. Neurology 76, 1705–1710 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005).

    Article  PubMed  Google Scholar 

  112. Peterson, J. W., Bo, L., Mork, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Bo, L., Vedeler, C. A., Nyland, H., Trapp, B. D. & Mork, S. J. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult. Scler. 9, 323–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Kooi, E. J., Strijbis, E. M., van der Valk, P. & Geurts, J. J. Heterogeneity of cortical lesions in multiple sclerosis: clinical and pathologic implications. Neurology 79, 1369–1376 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Chang, A. et al. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann. Neurol. 72, 918–926 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kidd, D. et al. Cortical lesions in multiple sclerosis. Brain 122, 17–26 (1999).

    Article  PubMed  Google Scholar 

  117. Fischer, M. T. et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136, 1799–1815 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  119. Magliozzi, R. et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    Article  PubMed  Google Scholar 

  121. Choi, S. R. et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135, 2925–2937 (2012).

    Article  PubMed  Google Scholar 

  122. Kuerten, S. et al. Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathol. 124, 861–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Magliozzi, R. et al. B-cell enrichment and Epstein–Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 72, 29–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Bo, L., Geurts, J. J., van der Valk, P., Polman, C. & Barkhof, F. Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis. Arch. Neurol. 64, 76–80 (2007).

    Article  PubMed  Google Scholar 

  125. Calabrese, M. et al. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 16, 147–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Geurts, J. J. et al. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am. J. Neuroradiol. 26, 572–577 (2005).

    PubMed  PubMed Central  Google Scholar 

  127. Schmierer, K. et al. High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis. Brain 133, 858–867 (2010).

    Article  PubMed  Google Scholar 

  128. Seewann, A. et al. Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology 78, 302–308 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Sethi, V. et al. Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J. Neurol. Neurosurg. Psychiatry 83, 877–882 (2012).

    Article  PubMed  Google Scholar 

  130. Mainero, C. et al. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 73, 941–948 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nielsen, A. S. et al. Contribution of cortical lesion subtypes at 7T MRI to physical and cognitive performance in MS. Neurology 81, 641–649 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mainero, C. et al. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain 138, 932–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Abdel-Fahim, R. et al. Improved detection of focal cortical lesions using 7 T magnetisation transfer imaging in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 3, 258–265 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Jonkman, L. E. et al. Ultra-high field MTR and qR2* differentiates subpial cortical lesions from normal-appearing gray matter in multiple sclerosis. Mult. Scler. http://dx.doi.org/10.1177/1352458515620499 (2015).

  135. Calabrese, M. et al. Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology 72, 1330–1336 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Calabrese, M. et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing–remitting multiple sclerosis. Arch. Neurol. 66, 1144–1150 (2009).

    Article  PubMed  Google Scholar 

  137. Roosendaal, S. D. et al. Accumulation of cortical lesions in MS: relation with cognitive impairment. Mult. Scler. 15, 708–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Calabrese, M. et al. A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis. Ann. Neurol. 67, 376–383 (2010).

    PubMed  Google Scholar 

  139. Calabrese, M. et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135, 2952–2961 (2012).

    Article  PubMed  Google Scholar 

  140. Absinta, M. et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85, 18–28 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Pomeroy, I. M., Matthews, P. M., Frank, J. A., Jordan, E. K. & Esiri, M. M. Demyelinated neocortical lesions in marmoset autoimmune encephalomyelitis mimic those in multiple sclerosis. Brain 128, 2713–2721 (2005).

    Article  PubMed  Google Scholar 

  142. Merkler, D. et al. Differential macrophage/microglia activation in neocortical EAE lesions in the marmoset monkey. Brain Pathol. 16, 117–123 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Pomeroy, I. M., Jordan, E. K., Frank, J. A., Matthews, P. M. & Esiri, M. M. Diffuse cortical atrophy in a marmoset model of multiple sclerosis. Neurosci. Lett. 437, 121–124 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Pomeroy, I. M., Jordan, E. K., Frank, J. A., Matthews, P. M. & Esiri, M. M. Focal and diffuse cortical degenerative changes in a marmoset model of multiple sclerosis. Mult. Scler. 16, 537–548 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kramann, N. et al. Increased meningeal T and plasma cell infiltration is associated with early subpial cortical demyelination in common marmosets with experimental autoimmune encephalomyelitis. Brain Pathol. 25, 276–286 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Intramural Research Program of the National Institute of Neurological Disorders and Stroke, USA. D.S.R. has received research support from Vertex Pharmaceuticals and the Myelin Repair Foundation. This funding is not a competing interest in the context of the current article.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Daniel S. Reich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (video)

Coronal 3 T FLAIR* images (combination of coregistered T2*-weighted magnitude and T2-weighted fluid-attenuation inversion recovery images) from a 33-year-old woman with relapsing–remitting multiple sclerosis. A prominent central vein can be seen in the majority of lesions. (MP4 12448 kb)

Supplementary information S2 (video)

Dynamic contrast enhancement MRI shows a centripetally enhancing lesion (red arrow) in an untreated 49-year-old woman with progressive multiple sclerosis and radiological relapses. (MP4 2009 kb)

Supplementary information S3 (video)

Dynamic contrast enhancement MRI of a new periventricular centripetally enhancing lesion in a 33-year-old man with relapsing–remitting multiple sclerosis. Over a 20 min period, contrast material progressively and completely fills the lesion. (MP4 5843 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absinta, M., Sati, P. & Reich, D. Advanced MRI and staging of multiple sclerosis lesions. Nat Rev Neurol 12, 358–368 (2016). https://doi.org/10.1038/nrneurol.2016.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing