Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era

Key Points

  • The pathogenesis of amyotrophic lateral sclerosis (ALS) is mediated by genetic variation, environmental exposure and epigenetic regulation

  • Epigenetic mechanisms might explain how gene expression and function are controlled, and how gene–gene and gene–environmental interactions are mediated

  • DNA methylation, histone remodeling, RNA editing, and microRNA (miRNA) modifications are epigenetic mechanisms that are dysregulated in ALS models and in patients

  • miRNAs modulate many physiological processes through an intricate network of fine-tuning robustness and complexity of the transcriptome and proteome

  • miRNA pathway disruptions could be a cause or consequence of altered RNA and protein metabolism, the inflammatory response, cytotoxicity and/or neuromuscular junction impairments, all of which underlie ALS pathology

  • miRNAs have great potential as novel biomarkers and therapeutic targets for ALS and other neurodegenerative diseases

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor neurons, which results in weakness and atrophy of voluntary skeletal muscles. Treatments do not modify the disease trajectory effectively, and only modestly improve survival. A complex interaction between genes, environmental exposure and impaired molecular pathways contributes to pathology in patients with ALS. Epigenetic mechanisms control the hereditary and reversible regulation of gene expression without altering the basic genetic code. Aberrant epigenetic patterns—including abnormal microRNA (miRNA) biogenesis and function, DNA modifications, histone remodeling, and RNA editing—are acquired throughout life and are influenced by environmental factors. Thus, understanding the molecular processes that lead to epigenetic dysregulation in patients with ALS might facilitate the discovery of novel therapeutic targets and biomarkers that could reduce diagnostic delay. These achievements could prove crucial for successful disease modification in patients with ALS. We review the latest findings regarding the role of miRNA modifications and other epigenetic mechanisms in ALS, and discuss their potential as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of miRNA biogenesis and function by cytoplasmic protein aggregates.
Figure 2: Dysregulation of miRNA biogenesis and function may be a cause and/or consequence of ALS pathogenesis.

Similar content being viewed by others

References

  1. Robberecht, W. & Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Hardiman, O., van den Berg, L. H. & Kiernan, M. C. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 7, 639–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Kurian, K. M., Forbes, R. B., Colville, S. & Swingler, R. J. Cause of death and clinical grading criteria in a cohort of amyotrophic lateral sclerosis cases undergoing autopsy from the Scottish Motor Neurone Disease Register. J. Neurol. Neurosurg. Psychiatry 80, 84–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell, J. D. & Borasio, G. D. Amyotrophic lateral sclerosis. Lancet 369, 2031–2041 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Al-Chalabi, A. & Hardiman, O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat. Rev. Neurol. 9, 617–628 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Traxinger, K., Kelly, C., Johnson, B. A., Lyles, R. H. & Glass, J. D. Prognosis and epidemiology of amyotrophic lateral sclerosis: Analysis of a clinic population, 1997–2011. Neurology 3, 313–320 (2013).

    PubMed  Google Scholar 

  7. Blackhall, L. J. Amyotrophic lateral sclerosis and palliative care: where we are, and the road ahead. Muscle Nerve 45, 311–318 (2012).

    Article  PubMed  Google Scholar 

  8. Chiò, A. et al. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J. Neurol. Neurosurg. Psychiatry 82, 740–746 (2011).

    Article  PubMed  Google Scholar 

  9. Vinsant, S. et al. Characterization of early pathogenesis in the SOD1G93A mouse model of ALS: part I, background and methods. Brain Behav. 3, 335–350 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Simon, N. G. et al. Quantifying disease progression in amyotrophic lateral sclerosis. Ann. Neurol. 76, 643–657 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murphy, J. M. et al. Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch. Neurol. 64, 530–534 (2007).

    Article  PubMed  Google Scholar 

  13. Ringholz, G. M. et al. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65, 586–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Dion, P. A., Daoud, H. & Rouleau, G. A. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat. Rev. Genet. 10, 769–782 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Diekstra, F. P. et al. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Ann. Neurol. 76, 120–133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matus, S., Medinas, D. B. & Hetz, C. Common ground: stem cell approaches find shared pathways underlying ALS. Cell Stem Cell 14, 697–699 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Renton, A. E., Chio, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Vucic, S., Rothstein, J. D. & Kiernan, M. C. Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci. (2014).

  19. Ahmed, A. & Wicklund, M. P. Amyotrophic lateral sclerosis: what role does environment play? Neurol. Clin. 29, 689–711 (2011).

    Article  PubMed  Google Scholar 

  20. Al-Chalabi, A. et al. Genetic and epigenetic studies of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 14 (Suppl. 1), 44–52 (2013).

    Article  PubMed  Google Scholar 

  21. Figueroa-Romero, C. et al. Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS ONE 7, e52672 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanekura, K., Suzuki, H., Aiso, S. & Matsuoka, M. ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol. Neurobiol. 39, 81–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Moloney, E. B., de Winter, F. & Verhaagen, J. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front. Neurosci. 8, 252 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Strong, M. J. et al. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol. Cell. Neurosci. 35, 320–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. He, C. Z. & Hays, A. P. Expression of peripherin in ubiquinated inclusions of amyotrophic lateral sclerosis. J. Neurol. Sci. 217, 47–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Corbo, M. & Hays, A. P. Peripherin and neurofilament protein coexist in spinal spheroids of motor neuron disease. J. Neuropathol. Exp. Neurol. 51, 531–537 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Ishtiaq, M., Campos-Melo, D., Volkening, K. & Strong, M. J. Analysis of novel NEFL mRNA targeting microRNAs in amyotrophic lateral sclerosis. PLoS ONE 9, e85653 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voigt, A. et al. TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS ONE 5, e12247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Narayanan, R. K. et al. Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 252–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Meyerowitz, J. et al. C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress. Mol. Neurodegener. 6, 57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Freibaum, B. D., Chitta, R. K., High, A. A. & Taylor, J. P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 9, 1104–1120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Yamazaki, T. et al. FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep. 2, 799–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marangi, G. & Traynor, B. J. Genetic causes of amyotrophic lateral sclerosis: New genetic analysis methodologies entailing new opportunities and challenges. Brain Res. 1607, 75–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Niikura, T., Kita, Y. & Abe, Y. SUMO3 modification accelerates the aggregation of ALS-linked SOD1 mutants. PLoS ONE 9, e101080 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Su, X. W., Broach, J. R., Connor, J. R., Gerhard, G. S. & Simmons, Z. Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve 49, 786–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Okado-Matsumoto, A. & Fridovich, I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl Acad. Sci. USA 99, 9010–9014 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Turner, B. J., Ackerley, S., Davies, K. E. & Talbot, K. Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice. Hum. Mol. Genet. 19, 815–824 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Lobsiger, C. S. et al. Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc. Natl Acad. Sci. USA 106, 4465–4470 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, J. et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Polymenidou, M. & Cleveland, D. W. Prion-like spread of protein aggregates in neurodegeneration. J. Exp. Med. 209, 889–893 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Araki, T. et al. Misfolded SOD1 forms high-density molecular complexes with synaptic molecules in mutant SOD1-linked familial amyotrophic lateral sclerosis cases. J. Neurol. Sci. 314, 92–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Toivonen, J. M. et al. MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS ONE 9, e89065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Honda, D. et al. The ALS/FTLD-related RNA-binding proteins TDP-43 and FUS have common downstream RNA targets in cortical neurons. FEBS Open Bio 4, 1–10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buratti, E. et al. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 280, 37572–37584 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, S. H., Shanware, N. P., Bowler, M. J. & Tibbetts, R. S. Amyotrophic lateral sclerosis-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to co-regulate HDAC6 mRNA. J. Biol. Chem. 285, 34097–34105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwiatkowski, T. J. Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Brown, J. A. et al. SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience. Amyotroph. Lateral Scler. 13, 217–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Lattante, S., Rouleau, G. A. & Kabashi, E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum. Mutat. 34, 812–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Groen, E. J. et al. ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum. Mol. Genet. 22, 3690–3704 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Paez-Colasante, X. et al. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons. PLoS ONE 8, e75866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Droppelmann, C. A., Campos-Melo, D., Ishtiaq, M., Volkening, K. & Strong, M. J. RNA metabolism in ALS: when normal processes become pathological. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 321–336 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Dewey, C. M. et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol. Cell. Bio. 31, 1098–1108 (2011).

    Article  CAS  Google Scholar 

  57. Liu-Yesucevitz, L. et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS ONE 5, e13250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H. & Strong, M. J. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 1305, 168–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wicks, P. et al. SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. J. Neurol. 256, 234–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Borroni, B. et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum. Mut. 30, E974–E983 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Broustal, O. et al. FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. J. Alzheimer Dis. 22, 765–769 (2010).

    CAS  Google Scholar 

  64. Xi, Z. et al. Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am. J. Hum. Genet. 92, 981–989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ash, P. E. et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, Y. J. et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol. 128, 505–524 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kwon, I. et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345, 1139–1145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morris, H. R., Waite, A. J., Williams, N. M., Neal, J. W. & Blake, D. J. Recent advances in the genetics of the ALS-FTLD complex. Curr. Neurol. Neurosci. Rep. 12, 243–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Johnson, J. O. et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 17, 664–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takanashi, K. & Yamaguchi, A. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation. Biochem. Biophys. Res. Commun. 452, 600–607 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. D'Ambrogio, A. et al. Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res. 37, 4116–4126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hirano, M. et al. Senataxin mutations and amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 223–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bannwarth, S. et al. Reply: Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain 137, e312 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Muller, K. et al. Two novel mutations in conserved codons indicate that CHCHD10 is a gene associated with motor neuron disease. Brain 137, e309 (2014).

    Article  PubMed  Google Scholar 

  78. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Gellera, C. et al. Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 9, 33–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Giordana, M. T. et al. Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol. Sci. 32, 9–16 (2011).

    Article  PubMed  Google Scholar 

  81. Wu, C. H. et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Al-Chalabi, A. et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J. Neurol. Neurosurg. Psychiatry 81, 1324–1326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Al-Chalabi, A. et al. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol. 13, 1108–1113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Conradi, S., Ronnevi, L. O., Nise, G. & Vesterberg, O. Abnormal distribution of lead in amyotrophic lateral sclerosis—reestimation of lead in the cerebrospinal fluid. J. Neurol. Sci. 48, 413–418 (1980).

    Article  CAS  PubMed  Google Scholar 

  86. Conradi, S., Ronnevi, L. O. & Vesterberg, O. Lead concentration in skeletal muscle in amyotrophic lateral sclerosis patients and control subjects. J. Neurol. Neurosurg. Psychiatry 41, 1001–1004 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Conradi, S., Ronnevi, L. O. & Vesterberg, O. Increased plasma levels of lead in patients with amyotrophic lateral sclerosis compared with control subjects as determined by flameless atomic absorption spectrophotometry. J. Neurol. Neurosurg. Psychiatry 41, 389–393 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fang, F. et al. Association between blood lead and the risk of amyotrophic lateral sclerosis. Am. J. Epidemiol. 171, 1126–1133 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Petkau, A., Sawatzky, A., Hillier, C. R. & Hoogstraten, J. Lead content of neuromuscular tissue in amyotrophic lateral sclerosis: case report and other considerations. Br. J. Ind. Med. 31, 275–287 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, M. D., Gomes, J., Cashman, N. R., Little, J. & Krewski, D. A meta-analysis of observational studies of the association between chronic occupational exposure to lead and amyotrophic lateral sclerosis. J. Occup. Environ. Med. 56, 1235–1242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Callaghan, B., Feldman, D., Gruis, K. & Feldman, E. The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener. Dis. 8, 1–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Perl, D. P., Gajdusek, D. C., Garruto, R. M., Yanagihara, R. T. & Gibbs, C. J. Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science 217, 1053–1055 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. Kihira, T., Yoshida, S., Yase, Y., Ono, S. & Kondo, T. Chronic low-Ca/Mg high-Al diet induces neuronal loss. Neuropathology 22, 171–179 (2002).

    Article  PubMed  Google Scholar 

  94. Giagheddu, M. et al. Epidemiologic study of amyotrophic lateral sclerosis in Sardinia, Italy. Acta Neurol. Scand. 68, 394–404 (1983).

    Article  CAS  PubMed  Google Scholar 

  95. Chio, A., Meineri, P., Tribolo, A. & Schiffer, D. Risk factors in motor neuron disease: a case-control study. Neuroepidemiology 10, 174–184 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Granieri, E. et al. Motor neuron disease in the province of Ferrara, Italy, in 1964–1982 Neurology 38, 1604–1608 (1988).

    Article  CAS  PubMed  Google Scholar 

  97. Yu, Y. et al. Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in Michigan. PLoS ONE 9, e101186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Desplats, P. et al. Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson's disease. Mol. Neurodegener. 7, 49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kong, M. et al. 5′-Aza-dC sensitizes paraquat toxic effects on PC12 cell. Neurosci. Lett. 524, 35–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Nelson, L. M., McGuire, V., Longstreth, W. T. Jr & Matkin, C. Population-based case–control study of amyotrophic lateral sclerosis in western Washington State. I. Cigarette smoking and alcohol consumption. Am. J. Epidemiol. 151, 156–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, H. et al. Smoking and risk of amyotrophic lateral sclerosis: a pooled analysis of 5 prospective cohorts. Arch. Neurol. 68, 207–213 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. de Jong, S. W. et al. Smoking, alcohol consumption, and the risk of amyotrophic lateral sclerosis: a population-based study. Am. J. Epidemiol. 176, 233–239 (2012).

    Article  PubMed  Google Scholar 

  103. Alonso, A., Logroscino, G. & Hernan, M. A. Smoking and the risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 81, 1249–1252 (2010).

    Article  PubMed  Google Scholar 

  104. Alonso, A., Logroscino, G., Jick, S. S. & Hernan, M. A. Association of smoking with amyotrophic lateral sclerosis risk and survival in men and women: a prospective study. BMC Neurol. 10, 6 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Horner, R. D. et al. Occurrence of amyotrophic lateral sclerosis among Gulf War veterans. Neurology 61, 742–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Qureshi, I. A. & Mehler, M. F. Epigenetic mechanisms governing the process of neurodegeneration. Mol. Aspects Med. 34, 875–882 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Staszewski, O. & Prinz, M. Glial epigenetics in neuroinflammation and neurodegeneration. Cell Tissue Res. 356, 609–616 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Chestnut, B. A. et al. Epigenetic regulation of motor neuron cell death through DNA methylation. J. Neurosci. 31, 16619–16636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Choy, M. K. et al. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics 11, 519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Urdinguio, R. G., Sanchez-Mut, J. V. & Esteller, M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8, 1056–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, P. Y., Feng, S., Joo, J. W., Jacobsen, S. E. & Pellegrini, M. A comparative analysis of DNA methylation across human embryonic stem cell lines. Genome Bio. 12, R62 (2011).

    Article  CAS  Google Scholar 

  113. Gavin, D. P., Chase, K. A. & Sharma, R. P. Active DNA demethylation in post-mitotic neurons: a reason for optimism. Neuropharmacology 75, 233–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Laurent, L. et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20, 320–331 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Feng, J., Fouse, S. & Fan, G. Epigenetic regulation of neural gene expression and neuronal function. Pediatric Res. 61, 58R–63R (2007).

    Article  CAS  Google Scholar 

  116. Tremolizzo, L. et al. Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 98–105 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Morahan, J. M., Yu, B., Trent, R. J. & Pamphlett, R. A genome-wide analysis of brain DNA methylation identifies new candidate genes for sporadic amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 10, 418–429 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Tibshirani, M. et al. Cytoplasmic sequestration of FUS/TLS associated with ALS alters histone marks through loss of nuclear protein arginine methyltransferase 1. Hum. Mol. Genet. 24, 773–786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xi, Z. et al. Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. Hum. Mol. Genet. 23, 5630–5637 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Belzil, V. V. et al. Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res. 1584, 15–21 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, E. Y. et al. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol. 128, 525–541 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dion, V., Lin, Y., Hubert, L. Jr, Waterland, R. A. & Wilson, J. H. Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum. Mol. Genet. 17, 1306–1317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jowaed, A., Schmitt, I., Kaut, O. & Wullner, U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. J. Neurosci. 30, 6355–6359 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fuso, A., Nicolia, V., Cavallaro, R. A. & Scarpa, S. DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer's disease models. J. Nutr. Biochem. 22, 242–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Lagali, P. S. & Picketts, D. J. Matters of life and death: the role of chromatin remodeling proteins in retinal neuron survival. J. Ocular Bio. 4, 111–120 (2011).

    Google Scholar 

  126. Lazo-Gomez, R., Ramirez-Jarquin, U. N., Tovar, Y. R. & Tapia, R. Histone deacetylases and their role in motor neuron degeneration. Front. Cell. Neurosci. 7, 243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Bio. 6, 838–849 (2005).

    Article  CAS  Google Scholar 

  128. Bardai, F. H. & D'Mello, S. R. Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J. Neurosci. 31, 1746–1751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Janssen, C. et al. Differential histone deacetylase mRNA expression patterns in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 69, 573–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Valle, C. et al. Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death Dis. 5, e1296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Teyssou, E. et al. Genetic analysis of SS18L1 in French amyotrophic lateral sclerosis. Neurobiol. Aging 35, 1213.e19–1213.e12 (2014).

    Article  CAS  Google Scholar 

  132. Simpson, C. L. et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet. 18, 472–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Kwak, S., Hideyama, T., Yamashita, T. & Aizawa, H. AMPA receptor-mediated neuronal death in sporadic ALS. Neuropathology 30, 182–188 (2010).

    Article  PubMed  Google Scholar 

  134. Hideyama, T. et al. Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol. Dis. 45, 1121–1128 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Kawahara, Y. et al. Glutamate receptors: RNA editing and death of motor neurons. Nature 427, 801 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Yamashita, T. & Kwak, S. The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients. Brain Res. 1584, 28–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Yamashita, T. et al. Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous AAV9-ADAR2 delivery to motor neurons. EMBO Mol. Med. 5, 1710–1719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. University of Manchester. miRBase [online], (2014).

  145. Ponomarev, E. D., Veremeyko, T., Barteneva, N., Krichevsky, A. M. & Weiner, H. L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med. 17, 64–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Engels, B. M. & Hutvagner, G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25, 6163–6169 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Lau, P. & de Strooper, B. Dysregulated microRNAs in neurodegenerative disorders. Semin. Cell Dev. Bio. 21, 768–773 (2010).

    Article  CAS  Google Scholar 

  148. Mondanizadeh, M. et al. MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J. Cell. Biochem. (2015).

  149. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Bio. 12, 735–739 (2002).

    Article  CAS  Google Scholar 

  150. Coolen, M., Katz, S. & Bally-Cuif, L. miR-9: a versatile regulator of neurogenesis. Front. Cell. Neurosci. 7, 220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Bio. 11, 228–234 (2009).

    Article  CAS  Google Scholar 

  153. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Devel. 17, 3011–3016 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Pillai, R. S., Artus, C. G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang, R. et al. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). J. Neuroimmunol. 159, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Koval, E. D. et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum. Mol. Genet. 22, 4127–4135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Miyoshi, K., Miyoshi, T. & Siomi, H. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol. Genet. Genomics 284, 95–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila Cell 130, 89–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Diederichs, S. & Haber, D. A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Haramati, S. et al. miRNA malfunction causes spinal motor neuron disease. Proc. Natl Acad. Sci. USA 107, 13111–13116 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Tan, L. & Yu, J. T. Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol. Neurobio. http://dx.doi.org/10.1007/s12035-014-8803-9.

  167. Kawahara, Y. & Mieda-Sato, A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA 109, 3347–3352 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Ruegger, S. & Grosshans, H. MicroRNA turnover: when, how, and why. Trends Biochem. Sci. 37, 436–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Freischmidt, A., Muller, K., Ludolph, A. C. & Weishaupt, J. H. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 1, 42 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. De Felice, B. et al. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 15, 243–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Morel, L. et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J. Biol. Chem. 288, 7105–7116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Russell, A. P. et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol. Dis. 49, 107–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Williams, A. H. et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549–1554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Campos-Melo, D., Droppelmann, C. A., He, Z., Volkening, K. & Strong, M. J. Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Mol. Brain 6, 26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Butovsky, O. et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J. Clin. Invest. 122, 3063–3087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Parisi, C. et al. Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death Dis. 4, e959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jobe, E. M., McQuate, A. L. & Zhao, X. Crosstalk among epigenetic pathways regulates neurogenesis. Front. Neurosci. 6, 59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Goodall, E. F., Heath, P. R., Bandmann, O., Kirby, J. & Shaw, P. J. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front. Cell. Neurosci. 7, 178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rossi, J. J. A novel nuclear miRNA mediated modulation of a non-coding antisense RNA and its cognate sense coding mRNA. EMBO J. 30, 4340–4341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bruneteau, G. et al. Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. Brain 136, 2359–2368 (2013).

    Article  PubMed  Google Scholar 

  181. Dini Modigliani, S., Morlando, M., Errichelli, L., Sabatelli, M. & Bozzoni, I. An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA-FUS regulatory circuitry. Nat. Commun. 5, 4335 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Kabashi, E. et al. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLoS Genet. 7, e1002214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gascon, E. & Gao, F. B. The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders. J. Neurogenet. 28, 30–40 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jiao, J., Herl, L. D., Farese, R. V. & Gao, F. B. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS ONE 5, e10551 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Buratti, E. et al. Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J. 277, 2268–2281 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. King, I. N. et al. The RNA-binding protein TDP-43 selectively disrupts microRNA-1/206 incorporation into the RNA-induced silencing complex. J. Biol. Chem. 289, 14263–14271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bensimon, G., Lacomblez, L. & Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 330, 585–591 (1994).

    Article  CAS  PubMed  Google Scholar 

  188. Miller, T. M. et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 12, 435–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl Acad. Sci. USA 110, E4530–E4539 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Bader, A. G., Brown, D. & Winkler, M. The promise of microRNA replacement therapy. Cancer Res. 70, 7027–7030 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Corbett, G. T., Roy, A. & Pahan, K. Sodium phenylbutyrate enhances astrocytic neurotrophin synthesis via protein kinase C (PKC)-mediated activation of cAMP-response element-binding protein (CREB): implications for Alzheimer disease therapy. J. Biol. Chem. 288, 8299–8312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Del Signore, S. J. et al. Combined riluzole and sodium phenylbutyrate therapy in transgenic amyotrophic lateral sclerosis mice. Amyotroph. Lateral Scler. 10, 85–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Cudkowicz, M. E. et al. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph. Lateral Scler. 10, 99–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Ho, A. S., Turcan, S. & Chan, T. A. Epigenetic therapy: use of agents targeting deacetylation and methylation in cancer management. Onco Targets Ther. 6, 223–232 (2013).

    PubMed  PubMed Central  Google Scholar 

  196. Veerappan, C. S., Sleiman, S. & Coppola, G. Epigenetics of Alzheimer's disease and frontotemporal dementia. Neurotherapeutics 10, 709–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang, Z. et al. Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PloS ONE 8, e76055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kye, M. J. & Goncalves Ido, C. The role of miRNA in motor neuron disease. Front. Cell. Neurosci. 8, 15 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Waddington, C. H. Preliminary notes on the development of the wings in normal and mutant strains of Drosophila. Proc. Natl Acad. Sci. USA 25, 299–307 (1939).

    Article  CAS  PubMed  Google Scholar 

  200. Riggs A. D., Martienssen, R. A. & Russo, V. E. In Epigenetic mechanisms of gene regulation (Eds Russo, V. E. et al.) 1–4 (Cold Spring Harbor Laboratory Press, 1996).

    Google Scholar 

  201. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wong, A. H., Gottesman, I. I. & Petronis, A. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum. Mol. Genet. 14 (Suppl. 1), R11–R18 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding support during the preparation of this Review was provided by the Program for Neurology Research & Discovery, the A. Alfred Taubman Medical Research Institute, the Agency for Toxic Substances and Disease Registry (contract # 200-2013-56,856 to E.L.F. and S.G.), and the National Institutes of Health (R01 NS077982 to E.L.F.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would also like to thank Dr Dana Carter for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.P.-C. and C.F.-R. researched data and wrote the article. X.P.-C., S.A.S. and E.L.F. made substantial contributions to the discussion of content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Eva L. Feldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paez-Colasante, X., Figueroa-Romero, C., Sakowski, S. et al. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol 11, 266–279 (2015). https://doi.org/10.1038/nrneurol.2015.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing