Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Neurology—the next 10 years

Subjects

Abstract

Since the launch of our journal as Nature Clinical Practice Neurology in 2005, we have seen remarkable progress in many areas of neurology research, but what does the future hold? Will advances in basic research be translated into effective disease-modifying therapies, and will personalized medicine finally become a reality? For this special Viewpoint article, we invited a panel of Advisory Board members and other journal contributors to outline their research priorities and predictions in neurology for the next 10 years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baron R., Förster M. & Binder A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol. 11, 999–1005 (2012).

    Article  Google Scholar 

  2. Demant, D. T. et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 155, 2263–2273 (2014).

    Article  CAS  Google Scholar 

  3. Mainka T. et al. Presence of hyperalgesia predicts analgesic efficacy of topically applied capsaicin 8% in patients with peripheral neuropathic pain. Eur. J. Pain. http://dx.doi.org/10.1002/ejp.703.

  4. Jacobs, S. E. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database of Systematic Reviews, Issue 1. Art. No. CD003311. http://dx.doi.org/10.1002/14651858.CD003311.pub3.

  5. Benders, M. J. et al. Feasibility and safety of erythropoietin for neuroprotection after perinatal arterial ischemic stroke. J. Pediatr. 164, 481–486e2 (2014).

    Article  CAS  Google Scholar 

  6. Donega, V., van Velthoven, C. T., Nijboer, C. H., Kavelaars, A. & Heijnen, C. J. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. J. Cereb. Blood Flow Metab. 33, 625–634 (2013).

    Article  Google Scholar 

  7. Phinney, D. G. & Isakova, I. A. Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Res. 1573, 92–107 (2014).

    Article  CAS  Google Scholar 

  8. McMichael, G. et al. Rare copy number variation in cerebral palsy. Eur. J. Hum. Genet. 22, 40–45 (2014).

    Article  CAS  Google Scholar 

  9. Oskoui, M. et al. Clinically relevant copy number variations detected in cerebral palsy. Nat Commun 6, 7949 (2015).

    Article  CAS  Google Scholar 

  10. Epi4K Consortium & Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

  11. Ceyhan-Birsoy, O. et al. Whole exome sequencing reveals DYSF, FKTN, and ISPD mutations in congenital muscular dystrophy without brain or eye involvement. J. Neuromuscul. Dis. 2, 87–92 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Soden, S. E. et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci. Transl. Med. 6, 265ra168 (2014).

    Article  Google Scholar 

  13. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  CAS  Google Scholar 

  14. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    Article  CAS  Google Scholar 

  15. Frisoni, G. B., Fox, N. C., Jack, C. R. Jr & Scheltens, P., Thompson, P. M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6, 67–77 (2010).

    Article  Google Scholar 

  16. Johnson, K. A. et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement. 9, E1–E16 (2013).

    Article  Google Scholar 

  17. Liu-Seifert, H. et al. Start analyses of up to 3.5 years in the phase 3 solanezumab EXPEDITION program in mild Alzheimer's disease [poster P07.108]. Presented at the Alzheimer's Association International Conference 2015.

  18. Sevigny, J. et al. Aducanumab (BIIB037), an anti-amyloid beta monoclonal antibody, in patients with prodromal or mild Alzheimer's disease: interim results of a randomized, double-blind, placebo-controlled, phase 1b study. Presented in Emerging Science Session 001 at the Alzheimer's Association International Conference 2015.

  19. Sperling, R. A. et al. The A4 study: stopping AD before symptoms begin? Sci. Transl. Med. 19, 228fs13 (2014).

    Article  Google Scholar 

  20. Thambisetty, M. et al. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch.Gen. Psychiatry. 67, 739–748 (2010).

    Article  Google Scholar 

  21. Mapstone, M. et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20, 415–418 (2014).

    Article  CAS  Google Scholar 

  22. Ray, S. et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat. Med. 13, 1359–1362 (2007).

    Article  CAS  Google Scholar 

  23. Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385, 2255–2263 (2015).

    Article  Google Scholar 

  24. Lakka, T. A. et al. Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction. N. Engl. J. Med. 330, 1549–1554 (1994).

    Article  CAS  Google Scholar 

  25. The Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498 (2015).

  26. Gajjar, A., Pfister, S. M., Taylor, M. D. & Gilbertson, R. J. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin. Cancer Res. 20, 5630–5640 (2014).

    Article  CAS  Google Scholar 

  27. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    Article  CAS  Google Scholar 

  28. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Article  Google Scholar 

  29. Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR–Cas9. J Clin Invest. 124, 4154–4161 (2014).

    Article  CAS  Google Scholar 

  30. Steinbeck, J. A. & Studer, L. Moving stem cells to the clinic: potential and limitations for brain repair. Neuron 86, 187–206 (2015).

    Article  CAS  Google Scholar 

  31. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  32. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  Google Scholar 

  33. Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011).

    Article  CAS  Google Scholar 

  34. GeMCRIS®[online], (2015).

  35. Tam, R. Y., Fuehrmann, T., Mitrousis, N. & Shoichet, M. S. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology 39, 169–188 (2014).

    Article  CAS  Google Scholar 

  36. Srikanth, M. & Kessler, J. A. Nanotechnology in the development of novel CNS therapeutics Nat. Rev. Neurol. 8, 307–318 (2012).

    Article  CAS  Google Scholar 

  37. Haussecker, D. & Kay, M. A. RNA interference. Drugging RNAi. Science 347, 1069–1070 (2015).

    Article  Google Scholar 

  38. Pitkänen, A. & Lukasiuk, K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 10, 173–186 (2011).

    Article  Google Scholar 

  39. Vezzani, A. Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis? Expert Opin. Drug Saf. 14, 583–592 (2015).

    Article  CAS  Google Scholar 

  40. Perucca, E., French, J. & Bialer, M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol. 6, 793–804 (2007).

    Article  CAS  Google Scholar 

  41. Kwan, P. et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51, 1069–1077 (2010).

    Article  CAS  Google Scholar 

  42. Pitkänen, A. & Engel, J. Jr. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 11, 231–241 (2014).

    Article  Google Scholar 

  43. Vezzani, A. & Friedman, A. Brain inflammation as a biomarker in epilepsy. Biomark. Med. 5, 607–614 (2011).

    Article  CAS  Google Scholar 

  44. Brooks-Kayal, A. R. et al. Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 54 (Suppl. 4), 44–60 (2013).

    Article  Google Scholar 

  45. Simonato M. et al. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol. 13, 949–960 (2014).

    Article  Google Scholar 

  46. Grone, B. P. & Baraban, S. C. Animal models in epilepsy research: legacies and new directions. Nat. Neurosci. 18, 339–343 (2015).

    Article  CAS  Google Scholar 

  47. Parent, J. M. & Anderson, S. A. Reprogramming patient-derived cells to study the epilepsies. Nat. Neurosci. 18, 360–366 (2015).

    Article  CAS  Google Scholar 

  48. Ritter, L. M. et al. WONOEP appraisal: optogenetic tools to suppress seizures and explore the mechanisms of epileptogenesis. Epilepsia 55, 1693–702 (2014).

    Article  Google Scholar 

  49. Gadhoumi, K., Lina, J. M., Mormann, F. & Gotman, J. Seizure prediction for therapeutic devices: a review. J. Neurosci. Methods http://dx.doi.org/10.1016/j.jneumeth.2015.06.010.

  50. Ludvig, N. et al. Evolution and prospects for intracranial pharmacotherapy for refractory epilepsies: the subdural hybrid neuroprosthesis. Epilepsy Res. Treat. 2010, 725696 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Shultz, S. R., O'Brien, T. J., Stefanidou, M. & Kuzniecky, R. I. Neuroimaging the epileptogenic process. Neurotherapeutics 11, 347–357 (2014).

    Article  Google Scholar 

  52. Rossignol, E. et al. WONOEP appraisal: new genetic approaches to study epilepsy. Epilepsia 55, 1170–1186 (2014).

    Article  Google Scholar 

  53. Loeb, J. A. Identifying targets for preventing epilepsy using systems biology. Neurosci. Lett. 497, 205–212 (2011).

    Article  CAS  Google Scholar 

  54. Steinlein, O. K. Mechanisms underlying epilepsies associated with sodium channel mutations. Prog. Brain Res. 213, 97–111 (2014).

    Article  Google Scholar 

  55. Catterall, W. A. Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu. Rev. Pharmacol. Toxicol. 54, 317–338 (2014).

    Article  CAS  Google Scholar 

  56. Kahlig, K. M. et al. Divergent sodium channel defects in familial hemiplegic migraine. Proc. Natl Acad. Sci. USA 105, 9799–9804 (2008).

    Article  CAS  Google Scholar 

  57. Veeramah, K. R. et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am. J. Hum. Genet. 90, 502–510 (2012).

    Article  CAS  Google Scholar 

  58. Faber, C. G. et al. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71, 26–39 (2012).

    Article  CAS  Google Scholar 

  59. Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

    Article  CAS  Google Scholar 

  60. Zuliani, V., Rapalli, A., Patel, M. K. & Rivara, M. Sodium channel blockers: a patent review (2010–2014). Expert Opin. Ther. Pat. 25, 279–290 (2015).

    Article  CAS  Google Scholar 

  61. Yang, Y. et al. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel. Nat. Commun. 3, 1186 (2012).

    Article  Google Scholar 

  62. Black, J. A. et al. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc. Natl Acad. Sci. USA 97, 11598–11602 (2000).

    Article  CAS  Google Scholar 

  63. Shields, S. D. et al. A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis. Ann. Neurol. 71, 186–194 (2012).

    Article  Google Scholar 

  64. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005).

    Article  CAS  Google Scholar 

  65. Dalmau, J. et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 61, 25–36 (2007).

    Article  CAS  Google Scholar 

  66. Jarius, S. et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat. Clin. Pract. Neurol. 4, 202–214 (2008).

    Article  CAS  Google Scholar 

  67. Jarius, S. & Wildemann, B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat. Rev. Neurol. 6, 383–392 (2010).

    Article  CAS  Google Scholar 

  68. Jarius, S. & Wildemann, B. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1, anti-CARP VIII. J. Neuroinflammation 12, 166 (2015).

    Article  CAS  Google Scholar 

  69. Jarius, S. & Wildemann, B. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC. J. Neuroinflammation 12, 167 (2015).

    Article  CAS  Google Scholar 

  70. Jarius, S. & Wildemann, B. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J. Neuroinflammation 12, 168 (2015).

    Article  CAS  Google Scholar 

  71. Reindl, M., Di Pauli, F., Rostasy, K. & Berger, T. The spectrum of MOG autoantibody-associated demyelinating diseases. Nat. Rev. Neurol. 9, 455–461 (2013).

    Article  CAS  Google Scholar 

  72. Jarius, S. & Wildemann, B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol. 23, 661–83 (2013).

    Article  CAS  Google Scholar 

  73. Kalia, L. V., & Lang, A. E. Parkinson's disease. Lancet 386, 896–912 (2015).

    Article  CAS  Google Scholar 

  74. Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).

    Article  CAS  Google Scholar 

  75. Pollock, A., Baer, G., Campbell, P., Choo, P. L., Forster, A., Morris, J., Pomeroy, V. M. & Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD001920. http://dx.doi.org/10.1002/14651858.CD001920.pub3.

  76. Prabhakaran, S., Ruff, I., & Bernstein, R. A. Acute stroke intervention. A systematic review. JAMA 313, 1451–1462 (2015).

    Article  CAS  Google Scholar 

  77. Bettens, K., Sleegers, K., & Van Broeckhoven, C. Genetic insights in Alzheimer's disease. Lancet Neurol. 12, 92–104 (2013).

    Article  CAS  Google Scholar 

  78. Weller, M. et al. Glioma. Nat. Rev. Dis. Primers 1, 15017 (2015). http://dx.doi.org/10.1038/nrdp.2015.17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ralf Baron, Donna M. Ferriero, Giovanni B. Frisoni, Chetan Bettegowda, Ziya L. Gokaslan, John A. Kessler, Annamaria Vezzani, Stephen G. Waxman, Sven Jarius, Brigitte Wildemann or Michael Weller.

Ethics declarations

Competing interests

R.B. has received research support from Pfizer, Genzyme, Grünenthal and Mundipharma. He is a member of the IMI Europain collaboration, which has the following industry members: Astra Zeneca, Pfizer, Esteve, UCB-Pharma, Sanofi Aventis, Grünenthal, Eli Lilly and Boehringer Ingelheim. He has received speaking fees from Pfizer, Genzyme, Grünenthal, Mundipharma, Sanofi Pasteur, Medtronic, Eisai, Lilly, Boehringer Ingelheim, Astellas, Desitin, Teva Pharma, Bayer Schering, MSD and bioCSL. He has consulted for Pfizer, Genzyme, Grünenthal, Mundipharma, Allergan, Sanofi Pasteur, Medtronic, Eisai, Lilly, Boehringer Ingelheim, Astellas, Novartis, Bristol–Myers Squibb, Biogen Idec, Astra Zeneca, Merck, Abbvie, Daiichi Sankyo, Glenmark Pharmaceuticals and bioCSL. B.W. receives research support from Merck Serono. M.W. has received research grants from Acceleron, Actelion, Alpinia Institute, Bayer, Isarna, MSD, Merck & Co, Novocure, PIQUR and Roche, and honoraria for lectures, advisory board participation or consulting from Celldex, Immunocellular Therapeutics, Isarna, Magforce, MSD, Merck & Co., Northwest Biotherapeutics, Novocure, Pfizer, Roche and Teva. D.M.F., G.B.F., C.B., Z.L.G., J.A.K., A.V., S.G.W. and S.J. declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baron, R., Ferriero, D., Frisoni, G. et al. Neurology—the next 10 years. Nat Rev Neurol 11, 658–664 (2015). https://doi.org/10.1038/nrneurol.2015.196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing