Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The vascular neural network—a new paradigm in stroke pathophysiology

Abstract

The concept of the neurovascular unit as the key brain component affected by stroke is controversial, because current definitions of this entity neglect mechanisms that control perfusion and reperfusion of arteries and arterioles upstream of the cerebral microcirculation. Indeed, although definitions vary, many researchers consider the neurovascular unit to be restricted to endothelial cells, neurons and glia within millimetres of the cerebral capillary microcirculation. This Perspectives article highlights the roles of vascular smooth muscle, endothelial cells and perivascular innervation of cerebral arteries in the initiation and progression of, and recovery from, ischaemic stroke. The concept of the vascular neural network—which includes cerebral arteries, arterioles, and downstream neuronal and glial cell types and structures—is introduced as the fundamental component affected by stroke pathophysiology. The authors also propose that the vascular neural network should be considered the main target for future therapeutic intervention after cerebrovascular insult.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The neurovascular unit as a component of the vascular neural network.
Figure 2: The evolving concept of the neurovascular unit.
Figure 3: Immunostained section of a cerebral artery showing the range of cell types present.

Similar content being viewed by others

References

  1. Lo, E. H., Dalkara, T. & Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4, 399–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Ginsberg, M. D. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55, 363–389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. del Zoppo, G. J. The neurovascular unit in the setting of stroke. J. Intern. Med. 267, 156–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lo, E. H., Broderick, J. P. & Moskowitz, M. A. tPA and proteolysis in the neurovascular unit. Stroke 35, 354–356 (2004).

    Article  PubMed  Google Scholar 

  5. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Cohen, Z., Bonvento, G., Lacombe, P. & Hamel, E. Serotonin in the regulation of brain microcirculation. Prog. Neurobiol. 50, 335–362 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Grotta, J. C. et al. Report of the Stroke Progress Review Group. National Institute of Neurological Disorders and Stroke [online], (2002).

    Google Scholar 

  8. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, R. M. Morphology of cerebral arteries. Pharmacol. Ther. 66, 149–173 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Alexander, M. R. & Owens, G. K. Epigenetic control of smooth muscle cell differentiation and phenotypic switchingin vascular development and disease. Annu. Rev. Physiol. 74, 13–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Croll, S. D. & Wiegand, S. J. Vascular growth factors in cerebral ischemia. Mol. Neurobiol. 23, 121–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hamel, E. Perivascular nerves and the regulation of cerebrovascular tone. J. Appl. Physiol. 100, 1059–1064 (2006).

    Article  PubMed  Google Scholar 

  13. Alabadi, J. A. et al. Changes in the adrenergic mechanisms of cerebral arteries after subarachnoid hemorrhage in goats. Neurosurgery 34, 1027–1033; discussion 1033–1034 (1994).

    CAS  PubMed  Google Scholar 

  14. Diansan, S., Shifen, Z., Zhen, G., Heming, W. & Xiangrui, W. Resection of the nerves bundle from the sphenopalatine ganglia tend to increase the infarction volume following middle cerebral artery occlusion. Neurol. Sci. 31, 431–435 (2010).

    Article  PubMed  Google Scholar 

  15. Bevan, R. D., Tsuru, H. & Bevan, J. A. Cerebral artery mass in the rabbit is reduced by chronic sympathetic denervation. Stroke 14, 393–396 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Mulligan-Kehoe, M. J. The vasa vasorum in diseased and nondiseased arteries. Am. J. Physiol. Heart Circ. Physiol. 298, H295–H305 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Zervas, N. T., Liszczak, T. M., Mayberg, M. R. & Black, P. M. Cerebrospinal fluid may nourish cerebral vessels through pathways in the adventitia that may be analogous to systemic vasa vasorum. J. Neurosurg. 56, 475–481 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Shuaib, A., Butcher, K., Mohammad, A. A., Saqqur, M. & Liebeskind, D. S. Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol. 10, 909–921 (2011).

    Article  PubMed  Google Scholar 

  19. Kampoli, A. M. et al. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr. Pharm. Des 17, 4147–4158 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Manolio, T. A., Olson, J. & Longstreth, W. T. Hypertension and cognitive function: pathophysiologic effects of hypertension on the brain. Curr. Hypertens. Rep. 5, 255–261 (2003).

    Article  PubMed  Google Scholar 

  21. Manjila, S. et al. Evidence-based review of primary and secondary ischemic stroke prevention in adults: a neurosurgical perspective. Neurosurg. Focus 30, E1 (2011).

    Article  PubMed  Google Scholar 

  22. Behrouz, R., Malek, A. R. & Torbey, M. T. Small vessel cerebrovascular disease: the past, present, and future. Stroke Res. Treat. 2012, 839151 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Balami, J. S. & Buchan, A. M. Complications of intracerebral haemorrhage. Lancet Neurol. 11, 101–118 (2012).

    Article  PubMed  Google Scholar 

  24. Ayata, C. CADASIL: experimental insights from animal models. Stroke 41, S129–S134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. et al. Glioma-induced remodeling of the neurovascular unit. Brain Res. 1288, 125–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuklina, E. V., Tong, X., George, M. G. & Bansil, P. Epidemiology and prevention of stroke: a worldwide perspective. Expert Rev. Neurother. 12, 199–208 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rajamani, K. & Chaturvedi, S. Stroke prevention—surgical and interventional approaches to carotid stenosis. Neurotherapeutics 8, 503–514 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. O'Dell, K. M., Igawa, D. & Hsin, J. New oral anticoagulants for atrial fibrillation: a review of clinical trials. Clin. Ther. 34, 894–901 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Rose, M. J. Aneurysmal subarachnoid hemorrhage: an update on the medical complications and treatments strategies seen in these patients. Curr. Opin. Anaesthesiol. 24, 500–507 (2011).

    Article  PubMed  Google Scholar 

  30. Hussain, M. S. et al. Mechanical thrombectomy for acute stroke with the alligator retrieval device. Stroke 40, 3784–3788 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by grants to J. H. Zhang (NIH NS43338), J. Badaut (NIH HD061946), J. Tang (NIH NS060936) and W. J. Pearce (NIH NS076945 and HD031226).

Author information

Authors and Affiliations

Authors

Contributions

J. H. Zhang, J. Badaut and W. J. Pearce wrote the article. J. H. Zhang, J. Badaut, J. Tang and W. J. Pearce researched the data for the article. J. H. Zhang, J. Badaut, J. Tang, A. Obenaus, R. Hartman and W. J. Pearce provided substantial contributions to discussion of the content and reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to John H. Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Badaut, J., Tang, J. et al. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol 8, 711–716 (2012). https://doi.org/10.1038/nrneurol.2012.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing