Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Translational stem cell therapy for amyotrophic lateral sclerosis

Abstract

Effective treatments are urgently needed for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of motor neurons. In 2009, the FDA approved the first phase I safety trial of direct intraspinal transplantation of neural stem cells into patients with ALS, which is currently in progress. Stem cell technologies represent a promising approach for treating ALS, but several issues must be addressed when translating promising experimental ALS therapies to patients. This article highlights the key research that supports the use of stem cells as a therapy for ALS, and discusses the rationale behind and approach to the phase I trial. Completion of the trial could pave the way for continued advances in stem cell therapy for ALS and other neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accurate anatomical targeting of stem cell delivery.
Figure 2: Spinal cord stabilization and injection systems for intraspinal stem cell transplantation.

Similar content being viewed by others

References

  1. Borasio, G. & Miller, R. Clinical characteristics and management of ALS. Semin. Neurosci. 21, 155–166 (2001).

    CAS  Google Scholar 

  2. Miller, R. H. The promise of stem cells for neural repair. Brain Res. 1091, 258–264 (2006).

    Article  CAS  Google Scholar 

  3. Rothstein, J. D. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann. Neurol. 65 (Suppl. 1), S3–S9 (2009).

    Article  CAS  Google Scholar 

  4. Ilieva, H., Polymenidou, M. & Cleveland, D. W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).

    Article  CAS  Google Scholar 

  5. Bonner, J. F., Blesch, A., Neuhuber, B. & Fischer, I. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J. Neurosci. Res. 88, 1182–1192 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Silani, V., Calzarossa, C., Cova, L. & Ticozzi, N. Stem cells in amyotrophic lateral sclerosis: motor neuron protection or replacement? CNS Neurol. Disord. Drug Targets 9, 314–324 (2010).

    Article  CAS  Google Scholar 

  7. Xu, L., Ryugo, D. K., Pongstaporn, T., Johe, K. & Koliatsos, V. E. Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J. Comp. Neurol. 514, 297–309 (2009).

    Article  CAS  Google Scholar 

  8. Yan, J. et al. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med. 4, e39 (2007).

    Article  Google Scholar 

  9. Boucherie, C., Schafer, S., Lavand'homme, P., Maloteaux, J. M. & Hermans, E. Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 87, 2034–2046 (2009).

    Article  CAS  Google Scholar 

  10. Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  Google Scholar 

  11. Lepore, A. C. et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci. 11, 1294–301 (2008).

    Article  CAS  Google Scholar 

  12. Fischer, L. R. & Glass, J. D. Axonal degeneration in motor neuron disease. Neurodegener. Dis. 4, 431–442 (2007).

    Article  Google Scholar 

  13. Sakowski, S. A. et al. Neuroprotection using gene therapy to induce vascular endothelial growth factor-A expression. Gene Ther. 16, 1292–1299 (2009).

    Article  CAS  Google Scholar 

  14. Sakowski, S. A., Schuyler, A. D. & Feldman, E. L. Insulin-like growth factor-I for the treatment of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 10, 63–73 (2009).

    Article  CAS  Google Scholar 

  15. Sorenson, E. J. et al. Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology 71, 1770–1775 (2008).

    Article  CAS  Google Scholar 

  16. Suzuki, M. et al. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS ONE 2, e689 (2007).

    Article  Google Scholar 

  17. Park, S. et al. Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Exp. Mol. Med. 41, 487–500 (2009).

    Article  CAS  Google Scholar 

  18. Suzuki, M. et al. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol. Ther. 16, 2002–2010 (2008).

    Article  CAS  Google Scholar 

  19. Xu, L. et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 82, 865–875 (2006).

    Article  Google Scholar 

  20. Yan, J. et al. Combined immunosuppressive agents or CD4 antibodies prolong survival of human neural stem cell grafts and improve disease outcomes in amyotrophic lateral sclerosis transgenic mice. Stem Cells 24, 1976–1985 (2006).

    Article  CAS  Google Scholar 

  21. Xu, L., Shen, P., Hazel, T., Johe, K. & Koliatsos, V. E. Dual transplantation of human neural stem cells into cervical and lumbar cord ameliorates motor neuron disease in SOD1 transgenic rats. Neurosci. Lett. 494, 222–226 (2011).

    Article  CAS  Google Scholar 

  22. Lunn, J. S., Hefferan, M. P., Marsala, M. & Feldman, E. L. Stem cells: comprehensive treatments for amyotrophic lateral sclerosis in conjunction with growth factor delivery. Growth Factors 27, 133–140 (2009).

    Article  CAS  Google Scholar 

  23. Lunn, J. S. et al. Stem cell technology for the study and treatment of motor neuron diseases. Regen. Med. 6, 201–213 (2011).

    Article  Google Scholar 

  24. Tetzlaff, W. et al. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 28, 1611–1682 (2011).

    Article  Google Scholar 

  25. Mazzini, L. et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp. Neurol. 223, 229–237 (2010).

    Article  CAS  Google Scholar 

  26. Chen, L. et al. Short-term outcome of olfactory ensheathing cells transplantation for treatment of amyotrophic lateral sclerosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21, 961–966 (2007).

    PubMed  Google Scholar 

  27. Deda, H. et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy 11, 18–25 (2009).

    Article  CAS  Google Scholar 

  28. Raore, B. et al. Cervical multilevel intraspinal stem cell therapy: assessment of surgical risks in Gottingen minipigs. Spine (Phila Pa 1976) 36, E164–E171 (2011).

    Article  Google Scholar 

  29. Riley, J. P., Raore, B., Taub, J. S., Federici, T. & Boulis, N. M. Platform and cannula design improvements for spinal cord therapeutics delivery. Neurosurgery http://dx.doi.org/10.1227/NEU.0b013e3182195680.

  30. Usvald, D. et al. Analysis of dosing regimen and reproducibility of intraspinal grafting of human spinal stem cells in immunosuppressed minipigs. Cell Transplant. 19, 1103–1122 (2010).

    Article  Google Scholar 

  31. Hefferan, M. P., Johe, K., Feldman, E. L., Lunn, J. S. & Marsala, M. Optimization of immunosuppressive therapy for spinal grafting of human spinal stem cells in a rat model of ALS. Cell Transplant. http://dx.doi.org/10.3727/096368910X564553.

  32. Guest, J., Benavides, F., Padgett, K., Mendez, E. & Tovar, D. Technical aspects of spinal cord injections for cell transplantation. Clinical and translational considerations. Brain Res. Bull. 84, 267–279 (2011).

    Article  Google Scholar 

  33. Bretzner, F., Gilbert, F., Baylis, F. & Brownstone, R. M. Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell 8, 468–475 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Marsala, M. Hefferan, J. Rile, B. Raore and J. Taub for their technical assistance with the preclinical studies. Preclinical studies were funded in part by the A. Alfred Taubman Medical Research Institute, the ALS Association and Neuralstem. N. Boulis invented the stem cell delivery device used in the phase I trial. The phase I trial is funded by Neuralstem, and we acknowledge the valuable input of K. Johe and the Data Safety Monitoring Board of the trial. We are grateful to the Emory ALS Center, patients and families for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva L. Feldman.

Ethics declarations

Competing interests

N. M. Boulis invented the device utilized in the trial for the safe and accurate injection of stem cells into the human spinal cord. He received an inventor fee and retains rights to royalty payments on distribution of the device. Exclusive licensure for this technology has been purchased by NeuralStem. N. M. Boulis, T. Federici and J. D. Glass received funding from NeuralStem for the phase I trial. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulis, N., Federici, T., Glass, J. et al. Translational stem cell therapy for amyotrophic lateral sclerosis. Nat Rev Neurol 8, 172–176 (2012). https://doi.org/10.1038/nrneurol.2011.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing