Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Birth weight, malnutrition and kidney-associated outcomes—a global concern

Key Points

  • Low birth weight, prematurity, and small size for gestational age are associated with reduced nephron numbers and an increased risk of hypertension and kidney disease in later life

  • High birth weight and gestational exposure to maternal diabetes or obesity are important factors associated with an increased risk of hypertension and kidney disease in later life

  • Maternal nutrition before and during pregnancy impacts birth weight and risk of premature delivery; maternal nutrient deficiencies can affect the development of the fetal kidneys

  • Postnatal nutrition, acute kidney injury, and clinical events can further impact nephrogenesis soon after premature delivery

  • A rapid increase in weight and/or obesity during childhood or adolescence can be associated with elevated blood pressure and an increased risk of renal disease progression, independent of birth weight

  • Micronutrient supplementation during pregnancy can reduce the risk of low birth weight and prematurity; the long-term impact on the risk of hypertension and kidney disease in these offspring remains unknown

Abstract

An adverse intrauterine environment is associated with an increased risk of elevated blood pressure and kidney disease in later life. Many studies have focused on low birth weight, prematurity and growth restriction as surrogate markers of an adverse intrauterine environment; however, high birth weight, exposure to maternal diabetes and rapid growth during early childhood are also emerging as developmental risk factors for chronic diseases. Altered programming of nephron number is an important link between exposure to developmental stressors and subsequent risk of hypertension and kidney disease. Maternal, fetal, and childhood nutrition are crucial contributors to these programming effects. Resource-poor countries experience the sequential burdens of fetal and childhood undernutrition and subsequent overnutrition, which synergistically act to augment the effects of developmental programming; this observation might explain in part the disproportionate burden of chronic disease in these regions. Numerous nutritional interventions have been effective in reducing the short-term risk of low birth weight and prematurity. Understanding the potential long-term benefits of such interventions is crucial to inform policy decisions to interrupt the developmental programming cycle and stem the growing epidemics of hypertension and kidney disease worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of SGA, preterm births and LBW infants by United Nations Millennium Development Goal regions in 2010.

Similar content being viewed by others

References

  1. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systemayic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

    Article  PubMed  Google Scholar 

  2. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  3. Couser, W. G., Remuzzi, G., Mendis, S. & Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 80, 1258–1270 (2011).

    Article  PubMed  Google Scholar 

  4. McMillen, I. C. & Robinson, J. S. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85, 571–633 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Barker, D. J. Developmental origins of adult health and disease. J. Epidemiol. Community Health 58, 114–115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barker, D. J. et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36, 62–67 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Whincup, P. H. et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300, 2886–2897 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. White, S. L. et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am. J. Kidney Dis. 54, 248–261 (2009).

    Article  PubMed  Google Scholar 

  9. Zetterstrom, K., Lindeberg, S., Haglund, B., Magnuson, A. & Hanson, U. Being born small for gestational age increases the risk of severe pre-eclampsia. BJOG 114, 319–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Nelson, R. G., Morgenstern, H. & Bennett, P. H. Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes 47, 1489–1493 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y. et al. The associations of high birth weight with blood pressure and hypertension in later life: a systematic review and meta-analysis. Hypertens. Res. 36, 725–735 (2013).

    Article  PubMed  Google Scholar 

  12. Hanson, M. & Gluckman, P. Developmental origins of noncommunicable disease: population and public health implications. Am. J. Clin. Nutr. 94, 1754S–1758S (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luyckx, V. A. et al. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382, 273–283 (2013).

    Article  PubMed  Google Scholar 

  15. Uauy, R., Kain, J. & Corvalan, C. How can the Developmental Origins of Health and Disease (DOHaD) hypothesis contribute to improving health in developing countries? Am. J. Clin. Nutr. 94, 1759S–1764S (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Yajnik, C. S. Transmission of obesity-adiposity and related disorders from the mother to the baby. Ann. Nutr. Metab. 64 (Suppl. 1), 8–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Adair, L. S. et al. Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: findings from five birth cohort studies. Lancet 382, 525–534 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).

    Article  PubMed  Google Scholar 

  19. Balbus, J. M. et al. Early-life prevention of non-communicable diseases. Lancet 381, 3–4 (2013).

    Article  PubMed  Google Scholar 

  20. Bhutta, Z. A. et al. Can available interventions end preventable deaths in mothers, newborn babies, and stillbirths, and at what cost? Lancet 384, 347–370 (2014).

    Article  PubMed  Google Scholar 

  21. Bhutta, Z. A. et al. What works? Interventions for maternal and child undernutrition and survival. Lancet 371, 417–440 (2008).

    Article  PubMed  Google Scholar 

  22. Lee, A. C. C. et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health 1, e26–e36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mikolajczyk, R. T. et al. A global reference for fetal-weight and birthweight percentiles. Lancet 377, 1855–1861 (2011).

    Article  PubMed  Google Scholar 

  24. Schreuder, M. F., Langemeijer, M. E., Bokenkamp, A., Delemarre-Van de Waal, H. A. & Van Wijk, J. A. Hypertension and microalbuminuria in children with congenital solitary kidneys. J. Paediatr. Child. Health 44, 363–368 (2008).

    Article  PubMed  Google Scholar 

  25. Abou Jaoude, P. et al. Congenital versus acquired solitary kidney: is the difference relevant? Nephrol. Dial. Transplant. 26, 2188–2194 (2011).

    Article  PubMed  Google Scholar 

  26. Brenner, B. M., Garcia, D. L. & Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1, 335–347 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Puelles, V. G. et al. Glomerular number and size variability and risk for kidney disease. Curr. Opin. Nephrol. Hypertens. 20, 7–15 (2011).

    Article  PubMed  Google Scholar 

  28. Sutherland, M. R. et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J. Am. Soc. Nephrol. 22, 1365–1374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions. 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mjoen, G. et al. Long-term risks for kidney donors. Kidney Int. 86, 162–167 (2014).

    Article  PubMed  Google Scholar 

  31. Muzaale, A. D. et al. Risk of end-stage renal disease following live kidney donation. JAMA 311, 579–586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berglund, D. et al. Low birthweight and risk of albuminuria in living kidney donors. Clin. Transplant. 28, 361–367 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rogers, N. M., Lawton, P. D. & Jose, M. D. Indigenous Australians and living kidney donation. N. Engl. J. Med. 361, 1513–1516 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Gibney, E. M., Parikh, C. R. & Garg, A. X. Age, gender, race, and associations with kidney failure following living kidney donation. Transplant. Proc. 40, 1337–1340 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Storsley, L. J. et al. Long-term medical outcomes among Aboriginal living kidney donors. Transplantation 90, 401–406 (2010).

    Article  PubMed  Google Scholar 

  36. Nyengaard, J. R. Number and dimensions of rat glomerular capillaries in normal development and after nephrectomy. Kidney Int. 43, 1049–1057 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Singh, R. R. et al. Development of cardiovascular disease due to renal insufficiency in male sheep following fetal unilateral nephrectomy. J. Hypertens. 27, 386–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Baum, M. Role of the kidney in the prenatal and early postnatal programming of hypertension. Am. J. Physiol. Renal Physiol. 298, F235–F247 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Kett, M. M. & Denton, K. M. Renal programming: cause for concern? Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R791–R803 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Luyckx, V. A. & Brenner, B. M. The clinical importance of nephron mass. J. Am. Soc. Nephrol. 21, 898–910 (2010).

    Article  PubMed  Google Scholar 

  41. Stelloh, C. et al. Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuria. Transl. Res. 159, 80–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Hughson, M., Farris, A. B., Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: The relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).

    Article  PubMed  Google Scholar 

  43. Zhang, Z. et al. A common RET variant is associated with reduced newborn kidney size and function. J. Am. Soc. Nephrol. 19, 2027–2034 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nyengaard, J. R. & Bendtsen, T. F. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat. Rec. 232, 194–201 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Rakow, A. et al. Renal volume and function in school-age children born preterm or small for gestational age. Pediatr. Nephrol. 23, 1309–1315 (2008).

    Article  PubMed  Google Scholar 

  46. Kandasamy, Y., Smith, R., Wright, I. M. & Lumbers, E. R. Relationships between glomerular filtration rate and kidney volume in low-birth-weight neonates. J. Nephrol. 26, 894–898 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Bakker, H. et al. Fetal and infant growth patterns and kidney function at school age. J. Am. Soc. Nephrol. (2014).

  48. Hoy, W. E. et al. The natural history of renal disease in Australian Aborigines. Part 2. Albuminuria predicts natural death and renal failure. Kidney Int. 60, 249–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lemley, K. V. A basis for accelerated progression of diabetic nephropathy in Pima Indians. Kidney Int. Suppl. S38–S42 (2003).

    Article  Google Scholar 

  50. Hoy, W. E., Hughson, M. D., Bertram, J. F., Douglas-Denton, R. & Amann, K. Nephron number, hypertension, renal disease, and renal failure. J. Am. Soc. Nephrol. 16, 2557–2564 (2005).

    Article  PubMed  Google Scholar 

  51. Rodriguez, M. M. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 7, 17–25 (2004).

    Article  PubMed  Google Scholar 

  52. Kalhan, S. C. & Wilson-Costello, D. Prematurity and programming: contribution of neonatal Intensive Care Unit interventions. J. Dev. Orig. Health Dis. 4, 121–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hinchliffe, S. A., Lynch, M. R., Sargent, P. H., Howard, C. V. & Van Velzen, D. The effect of intrauterine growth retardation on the development of renal nephrons. Br. J. Obstet. Gynaecol. 99, 296–301 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. de Jong, F., Monuteaux, M. C., van Elburg, R. M., Gillman, M. W. & Belfort, M. B. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 59, 226–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Mu, M. et al. Birth weight and subsequent blood pressure: a meta-analysis. Arch. Cardiovasc. Dis. 105, 99–113 (2012).

    Article  PubMed  Google Scholar 

  56. Keijzer-Veen, M. G., Dulger, A., Dekker, F. W., Nauta, J. & van der Heijden, B. J. Very preterm birth is a risk factor for increased systolic blood pressure at a young adult age. Pediatr. Nephrol. 25, 509–516 (2010).

    Article  PubMed  Google Scholar 

  57. Dalziel, S. R., Parag, V., Rodgers, A. & Harding, J. E. Cardiovascular risk factors at age 30 following pre-term birth. Int. J. Epidemiol. 36, 907–915 (2007).

    Article  PubMed  Google Scholar 

  58. Spence, D., Stewart, M. C., Alderdice, F. A., Patterson, C. C. & Halliday, H. L. Intra-uterine growth restriction and increased risk of hypertension in adult life: a follow-up study of 50-year-olds. Public Health 126, 561–565 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Bergvall, N. et al. Genetic and shared environmental factors do not confound the association between birth weight and hypertension: a study among Swedish twins. Circulation 115, 2931–2938 (2007).

    Article  PubMed  Google Scholar 

  60. Aceti, A. et al. The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis. Diabetologia 55, 3114–3127 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Davis, E. F. et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics (2012).

  62. Simonetti, G. D. et al. Salt sensitivity of children with low birth weight. Hypertension 52, 625–630 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. de Boer, M. P. et al. Birth weight relates to salt sensitivity of blood pressure in healthy adults. Hypertension 51, 928–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Koyanagi, A. et al. Macrosomia in 23 developing countries: an analysis of a multicountry, facility-based, cross-sectional survey. Lancet 381, 476–483 (2013).

    Article  PubMed  Google Scholar 

  65. Keller, G., Zimmer, G., Mall, G., Ritz, E. & Amann, K. Nephron number in patients with primary hypertension. N. Engl. J. Med. 348, 101–108 (2003).

    Article  PubMed  Google Scholar 

  66. Hoy, W. E. et al. Nephron number, glomerular volume, renal disease and hypertension. Curr. Opin. Nephrol. Hypertens. 17, 258–265 (2008).

    Article  PubMed  Google Scholar 

  67. Hughson, M. D., Douglas-Denton, R., Bertram, J. F. & Hoy, W. E. Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int. 69, 671–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Schreuder, M. F. et al. Impact of gestational age and birth weight on amikacin clearance on day 1 of life. Clin. J. Am. Soc. Nephrol. 4, 1774–1778 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bacchetta, J. et al. Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney Int. 76, 445–452 (2009).

    Article  PubMed  Google Scholar 

  70. Keijzer-Veen, M. G. et al. Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J. Am. Soc. Nephrol. 16, 2762–2768 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Cassidy-Bushrow, A. E. et al. Race-specific relationship of birth weight and renal function among healthy young children. Pediatr. Nephrol. 27, 1317–1323 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Abi Khalil, C. et al. Fetal exposure to maternal type 1 diabetes is associated with renal dysfunction at adult age. Diabetes 59, 2631–2636 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Nelson, R. G., Morgenstern, H. & Bennett, P. H. Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus. Am. J. Epidemiol. 148, 650–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Carmody, J. B. & Charlton, J. R. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics 131, 1168–1179 (2013).

    Article  PubMed  Google Scholar 

  75. Rhone, E. T., Carmody, J. B., Swanson, J. R. & Charlton, J. R. Nephrotoxic medication exposure in very low birth weight infants. J. Matern. Fetal Neonatal Med. (2013).

  76. Hsu, C. W., Yamamoto, K. T., Henry, R. K., De Roos, A. J. & Flynn, J. T. Prenatal risk factors for childhood CKD. J. Am. Soc. Nephrol. 25, 2105–2111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lackland, D. T., Bendall, H. E., Osmond, C., Egan, B. M. & Barker, D. J. Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch. Intern. Med. 160, 1472–1476 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Li, S. et al. Low birth weight is associated with chronic kidney disease only in men. Kidney Int. 73, 637–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Vikse, B. E., Irgens, L. M., Leivestad, T., Hallan, S. & Iversen, B. M. Low birth weight increases risk for end-stage renal disease. J. Am. Soc. Nephrol. 19, 151–157 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jackson, A. A., Dunn, R. L., Marchand, M. C. & Langley-Evans, S. C. Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. Clin. Sci. (Lond.) 103, 633–639 (2002).

    Article  CAS  Google Scholar 

  81. Makrakis, J., Zimanyi, M. A. & Black, M. J. Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr. Nephrol. 22, 1861–1867 (2007).

    Article  PubMed  Google Scholar 

  82. Wlodek, M. E. et al. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J. Am. Soc. Nephrol. 18, 1688–1696 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Godfrey, K. M. et al. Maternal nutritional status in pregnancy and blood pressure in childhood. Br. J. Obstet. Gynaecol. 101, 398–403 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Hult, M. et al. Hypertension, diabetes and overweight: looming legacies of the Biafran famine. PLoS ONE 5, e13582 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Painter, R. C. et al. Microalbuminuria in adults after prenatal exposure to the dutch famine. J. Am. Soc. Nephrol. 16, 189–194 (2005).

    Article  PubMed  Google Scholar 

  86. Stanner, S. A. et al. Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ 315, 1342–1348 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stein, A. D., Zybert, P. A., van der Pal-de Bruin, K. & Lumey, L. H. Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch Famine. Eur. J. Epidemiol. 21, 759–765 (2006).

    Article  PubMed  Google Scholar 

  88. Bhutta, Z. A. et al. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet 382, 452–477 (2013).

    Article  PubMed  Google Scholar 

  89. Lisle, S. J. et al. Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br. J. Nutr. 90, 33–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Drake, K. A., Sauerbry, M. J., Blohowiak, S. E., Repyak, K. S. & Kling, P. J. Iron deficiency and renal development in the newborn rat. Pediatr. Res. 66, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Tomat, A. L. et al. Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R543–R549 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Altobelli, G., Bogdarina, I. G., Stupka, E., Clark, A. J. & Langley-Evans, S. Genome-Wide Methylation and Gene Expression Changes in Newborn Rats following Maternal Protein Restriction and Reversal by Folic Acid. PLoS ONE 8, e82989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vaidya, A. et al. Effects of antenatal multiple micronutrient supplementation on children's weight and size at 2 years of age in Nepal: follow-up of a double-blind randomised controlled trial. Lancet 371, 492–499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brion, M. J., Leary, S. D., Smith, G. D., McArdle, H. J. & Ness, A. R. Maternal anemia, iron intake in pregnancy, and offspring blood pressure in the Avon Longitudinal Study of Parents and Children. Am. J. Clin. Nutr. 88, 1126–1133 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Hawkesworth, S. et al. Combined food and micronutrient supplements during pregnancy have limited impact on child blood pressure and kidney function in rural Bangladesh. J. Nutr. 143, 728–734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stewart, C. P. et al. Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J. Nutr. 139, 1575–1581 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Merlet-Benichou, C., Vilar, J., Lelievre-Pegorier, M. & Gilbert, T. Role of retinoids in renal development: pathophysiological implication. Curr. Opin. Nephrol. Hypertens. 8, 39–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Goodyer, P. et al. Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr. Nephrol. 22, 209–214 (2007).

    Article  PubMed  Google Scholar 

  99. El-Khashab, E. K., Hamdy, A. M., Maher, K. M., Fouad, M. A. & Abbas, G. Z. Effect of maternal vitamin A deficiency during pregnancy on neonatal kidney size. J. Perinat. Med. 41, 199–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Sutherland, M. R., Gubhaju, L., Yoder, B. A., Stahlman, M. T. & Black, M. J. The effects of postnatal retinoic acid administration on nephron endowment in the preterm baboon kidney. Pediatr. Res. 65, 397–402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Thorne-Lyman, A. L. & Fawzi, W. W. Vitamin A and carotenoids during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Paediatr. Perinat. Epidemiol. 26 (Suppl. 1), 36–54 (2012).

    Article  PubMed  Google Scholar 

  102. Christian, P. & Stewart, C. P. Maternal micronutrient deficiency, fetal development, and the risk of chronic disease. J. Nutr. 140, 437–445 (2010).

    Article  CAS  Google Scholar 

  103. Lee, L. M. et al. A paradoxical teratogenic mechanism for retinoic acid. Proc. Natl Acad. Sci. USA 109, 13668–13673 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Cresswell, J. A., Campbell, O. M., De Silva, M. J. & Filippi, V. Effect of maternal obesity on neonatal death in sub-Saharan Africa: multivariable analysis of 27 national datasets. Lancet 380, 1325–1330 (2012).

    Article  PubMed  Google Scholar 

  105. McDonald, S. D., Han, Z., Mulla, S., Beyene, J. & Knowledge Synthesis Group. Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: systematic review and meta-analyses. BMJ 341, c3428 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yu, Z. et al. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS ONE 8, e61627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Torloni, M. R. et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis. Obes. Rev. 10, 194–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Cnattingius, S., Villamor, E., Lagerros, Y. T., Wikstrom, A. K. & Granath, F. High birth weight and obesity—a vicious circle across generations. Int. J. Obes. (Lond.) (2011).

  109. Filler, G. et al. Big mother or small baby: which predicts hypertension? J. Clin. Hypertens. (Greenwich) 13, 35–41 (2011).

    Article  Google Scholar 

  110. Abalos, E. et al. Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis of the World Health Organization Multicountry Survey on Maternal and Newborn Health. BJOG 121 (Suppl. 1), 14–24 (2014).

    Article  PubMed  Google Scholar 

  111. Bilano, V. L., Ota, E., Ganchimeg, T., Mori, R. & Souza, J. P. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis. PLoS ONE 9, e91198 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Boivin, A. et al. Pregnancy complications among women born preterm. CMAJ 184, 1777–1784 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Manalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58, 770–773 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Kanguru, L., Bezawada, N., Hussein, J. & Bell, J. The burden of diabetes mellitus during pregnancy in low- and middle-income countries: a systematic review. Glob. Health Action 7, 23987 (2014).

    Article  PubMed  Google Scholar 

  115. Amri, K., Freund, N., Vilar, J., Merlet-Benichou, C. & Lelievre-Pegorier, M. Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes 48, 2240–2245 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Tran, S. et al. Maternal diabetes modulates renal morphogenesis in offspring. J. Am. Soc. Nephrol. 19, 943–952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Seghieri, G. et al. Relationship between gestational diabetes mellitus and low maternal birth weight. Diabetes Care 25, 1761–1765 (2002).

    Article  PubMed  Google Scholar 

  118. Vidal, A. C. et al. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring. Int. J. Obes. (Lond.) 37, 907–913 (2013).

    Article  CAS  Google Scholar 

  119. Gilbert, T., Lelievre-Pegorier, M. & Merlet-Benichou, C. Immediate and long-term renal effects of fetal exposure to gentamicin. Pediatr. Nephrol. 4, 445–450 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Nathanson, S., Moreau, E., Merlet-Benichou, C. & Gilbert, T. In utero and in vitro exposure to beta-lactams impair kidney development in the rat. J. Am. Soc. Nephrol. 11, 874–884 (2000).

    CAS  PubMed  Google Scholar 

  121. Merlet-Benichou, C. Influence of fetal environment on kidney development. Int. J. Dev. Biol. 43, 453–456 (1999).

    CAS  PubMed  Google Scholar 

  122. Tendron-Franzin, A. et al. Long-term effects of in utero exposure to cyclosporin A on renal function in the rabbit. J. Am. Soc. Nephrol. 15, 2687–2693 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. McKay, D. B. & Josephson, M. A. Pregnancy in recipients of solid organs—effects on mother and child. N. Engl. J. Med. 354, 1281–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Komhoff, M. et al. Cyclooxygenase-2-selective inhibitors impair glomerulogenesis and renal cortical development. Kidney Int. 57, 414–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Kent, A. L. et al. Indomethacin, ibuprofen and gentamicin administered during late stages of glomerulogenesis do not reduce glomerular number at 14 days of age in the neonatal rat. Pediatr. Nephrol. 24, 1143–1149 (2009).

    Article  PubMed  Google Scholar 

  126. Langley-Evans, S. C. et al. Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta 17, 169–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Dalziel, S. R. et al. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet 365, 1856–1862 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Nykjaer, C. et al. Maternal alcohol intake prior to and during pregnancy and risk of adverse birth outcomes: evidence from a British cohort. J. Epidemiol. Community Health 68, 542–549 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gray, S. P. et al. Repeated ethanol exposure during late gestation decreases nephron endowment in fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R568–R574 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Gray, S. P., Denton, K. M., Cullen-McEwen, L., Bertram, J. F. & Moritz, K. M. Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J. Am. Soc. Nephrol. 21, 1891–1902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Taal, H. R. et al. Maternal smoking during pregnancy and kidney volume in the offspring: the Generation R Study. Pediatr. Nephrol. 26, 1275–1283 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jagadapillai, R. et al. Developmental cigarette smoke exposure: kidney proteome profile alterations in low birth weight pups. Toxicology 299, 80–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Chevalier, R. L. Chronic partial ureteral obstruction and the developing kidney. Pediatr. Radiol. 38 (Suppl. 1), S35–S40 (2008).

    Article  PubMed  Google Scholar 

  134. Chevalier, R. L., Thornhill, B. A., Chang, A. Y., Cachat, F. & Lackey, A. Recovery from release of ureteral obstruction in the rat: relationship to nephrogenesis. Kidney Int. 61, 2033–2043 (2002).

    Article  PubMed  Google Scholar 

  135. Chevalier, R. L., Thornhill, B. A. & Chang, A. Y. Unilateral ureteral obstruction in neonatal rats leads to renal insufficiency in adulthood. Kidney Int. 58, 1987–1995 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Ismaili, K. et al. Results of systematic screening for minor degrees of fetal renal pelvis dilatation in an unselected population. Am. J. Obstet. Gynecol. 188, 242–246 (2003).

    Article  PubMed  Google Scholar 

  137. Ibrahim, A. G., Aliyu, S. & Ali, N. Bilateral pelvi-ureteric junction obstruction: our experience in a developing country. Niger. J. Clin. Pract. 17, 267–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Ocheke, I. E., Antwi, S., Gajjar, P., McCulloch, M. I. & Nourse, P. Pelvi-ureteric junction obstruction at Red Cross Children's Hospital, Cape Town: a six year review. Arab J. Nephrol. Transplant. 7, 33–36 (2014).

    PubMed  Google Scholar 

  139. Christian, P. et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. Int. J. Epidemiol. 42, 1340–1355 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rossing, P. et al. Short stature and diabetic nephropathy. BMJ 310, 296–297 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sichieri, R., Siqueira, K. S., Pereira, R. A. & Ascherio, A. Short stature and hypertension in the city of Rio de Janeiro, Brazil. Public Health Nutr. 3, 77–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Tennant, I. A. et al. Impaired cardiovascular structure and function in adult survivors of severe acute malnutrition. Hypertension 64, 664–671 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Zhao, Y., Wang, S. F., Mu, M. & Sheng, J. Birth weight and overweight/obesity in adults: a meta-analysis. Eur. J. Pediatr. (2012).

  144. Skelton, J. A., Irby, M. B., Grzywacz, J. G. & Miller, G. Etiologies of obesity in children: nature and nurture. Pediatr. Clin. North Am. 58, 1333–1354, ix (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Richardson, L. J., Hussey, J. M. & Strutz, K. L. Origins of disparities in cardiovascular disease: birth weight, body mass index, and young adult systolic blood pressure in the national longitudinal study of adolescent health. Ann. Epidemiol. 21, 598–607 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Law, C. M. et al. Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105, 1088–1092 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Hemachandra, A. H., Howards, P. P., Furth, S. L. & Klebanoff, M. A. Birth weight, postnatal growth, and risk for high blood pressure at 7 years of age: results from the Collaborative Perinatal Project. Pediatrics 119, e1264–e1270 (2007).

    Article  PubMed  Google Scholar 

  148. Jain, V. & Singhal, A. Catch up growth in low birth weight infants: striking a healthy balance. Rev. Endocr. Metab. Disord. 13, 141–147 (2012).

    Article  PubMed  Google Scholar 

  149. Andersen, L. G. et al. Birth weight, childhood body mass index and risk of coronary heart disease in adults: combined historical cohort studies. PLoS ONE 5, e14126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Barker, D. J., Osmond, C., Forsen, T. J., Kajantie, E. & Eriksson, J. G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 353, 1802–1809 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Fall, C. H. et al. Adult metabolic syndrome and impaired glucose tolerance are associated with different patterns of BMI gain during infancy: Data from the New Delhi Birth Cohort. Diabetes Care 31, 2349–2356 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Silverwood, R. J. et al. Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. Kidney Int. 84, 1262–1270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kwinta, P. et al. Assessment of long-term renal complications in extremely low birth weight children. Pediatr. Nephrol. 26, 1095–1103 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Boubred, F. et al. Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am. J. Physiol. Renal Physiol. 293, F1944–F1949 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Abitbol, C. L. et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr. Nephrol. 18, 887–893 (2003).

    Article  PubMed  Google Scholar 

  156. Abitbol, C. L. et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatr. Nephrol. 24, 1363–1370 (2009).

    Article  PubMed  Google Scholar 

  157. Yim, H. E. & Yoo, K. H. Early life obesity and chronic kidney disease in later life. Pediatr. Nephrol. (2014).

  158. Moritz, K. M. et al. Review: Sex specific programming: a critical role for the renal renin-angiotensin system. Placenta 31 (Suppl.), S40–S46 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Laaksonen, D. E. et al. Cardiorespiratory fitness and vigorous leisure-time physical activity modify the association of small size at birth with the metabolic syndrome. Diabetes Care 26, 2156–2164 (2003).

    Article  PubMed  Google Scholar 

  160. Huxley, R. R., Shiell, A. W. & Law, C. M. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J. Hypertens. 18, 815–831 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Webb, A. L. et al. Maternal and childhood nutrition and later blood pressure levels in young Guatemalan adults. Int. J. Epidemiol. 34, 898–904 (2005).

    Article  PubMed  Google Scholar 

  162. Kinra, S. et al. Effect of integration of supplemental nutrition with public health programmes in pregnancy and early childhood on cardiovascular risk in rural Indian adolescents: long term follow-up of Hyderabad nutrition trial. BMJ 337, a605 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hawkesworth, S., Prentice, A. M., Fulford, A. J. & Moore, S. E. Maternal protein-energy supplementation does not affect adolescent blood pressure in The Gambia. Int. J. Epidemiol. 38, 119–127 (2009).

    Article  PubMed  Google Scholar 

  164. Stewart, C. P. et al. Maternal supplementation with vitamin A or beta-carotene and cardiovascular risk factors among pre-adolescent children in rural Nepal. J. Dev. Origins Health Dis. 1, 262–270 (2010).

    Article  CAS  Google Scholar 

  165. Bergel, E. & Barros, A. J. Effect of maternal calcium intake during pregnancy on children's blood pressure: a systematic review of the literature. BMC Pediatr. 7, 15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hawkesworth, S. et al. Effect of maternal calcium supplementation on offspring blood pressure in 5- to 10-y-old rural Gambian children. Am. J. Clin. Nutr. 92, 741–747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Abitbol, C. L. & Rodriguez, M. M. The long-term renal and cardiovascular consequences of prematurity. Nat. Rev. Nephrol. 8, 265–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Abou-Jaoude, P. et al. What about the renal function during childhood of children born from dialysed mothers? Nephrol. Dial. Transplant. 27, 2365–2369 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Blumenshine, P., Egerter, S., Barclay, C. J., Cubbin, C. & Braveman, P. A. Socioeconomic disparities in adverse birth outcomes: a systematic review. Am. J. Prev. Med. 39, 263–272 (2010).

    Article  PubMed  Google Scholar 

  170. Ganchimeg, T. et al. Pregnancy and childbirth outcomes among adolescent mothers: a World Health Organization multicountry study. BJOG 121 (Suppl. 1), 40–48 (2014).

    Article  PubMed  Google Scholar 

  171. Gavin, A. R., Thompson, E., Rue, T. & Guo, Y. Maternal early life risk factors for offspring birth weight: findings from the add health study. Prev. Sci. 13, 162–172 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kinabo, J. Seasonal variation of birth weight distribution in Morogoro, Tanzania. East Afr. Med. J. 70, 752–755 (1993).

    CAS  PubMed  Google Scholar 

  173. Lawoyin, T. O. & Oyediran, A. B. A prospective study on some factors which influence the delivery of low birth weight babies in a developing country. Afr. J. Med. Med. Sci. 21, 33–39 (1992).

    CAS  PubMed  Google Scholar 

  174. Mansour, H. & Rees, D. I. Armed conflict and birth weight: Evidence from the al-Aqsa Intifada. J. Dev. Economics 99, 190–199 (2012).

    Article  Google Scholar 

  175. Morken, N. H., Travlos, G. S., Wilson, R. E., Eggesbo, M. & Longnecker, M. P. Maternal glomerular filtration rate in pregnancy and fetal size. PLoS ONE 9, e101897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ota, E. et al. Risk factors and adverse perinatal outcomes among term and preterm infants born small-for-gestational-age: secondary analyses of the WHO multi-country survey on maternal and newborn health. PLoS ONE 9, e105155 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rao, S., Kanade, A. N., Yajnik, C. S. & Fall, C. H. Seasonality in maternal intake and activity influence offspring's birth size among rural Indian mothers—Pune Maternal Nutrition Study. Int. J. Epidemiol. 38, 1094–1103 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Walker, P. G., Ter Kuile, F. O., Garske, T., Menendez, C. & Ghani, A. C. Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: a modelling study. Lancet Glob. Health 2, e460–e467 (2014).

    Article  PubMed  Google Scholar 

  179. WHO. Meeting of Advisory Group on Maternal Nutrition and Low Birth Weight, Geneva. World Health Organization (2002).

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.A.L. researched the data for the article, contributed substantially to the discussion of content and wrote the article. V.A.L. and B.M.B. contributed equally to the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Valerie A. Luyckx.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Global prevalence of micronutrient deficiencies associated with low birth weight. (PDF 329 kb)

Supplementary Figure 2

Incidence of gestational hypertension by WHO geographical region. (PDF 307 kb)

Supplementary Table 1

Clinical associations with nephron number and kidney size. (PDF 72 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luyckx, V., Brenner, B. Birth weight, malnutrition and kidney-associated outcomes—a global concern. Nat Rev Nephrol 11, 135–149 (2015). https://doi.org/10.1038/nrneph.2014.251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing