Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging erythropoiesis-stimulating agents

Abstract

The stimulation of erythropoiesis is a rapidly evolving area of research, with mechanistic insights often developing rapidly into therapeutic agents. A broad range of erythropoiesis-stimulating agents are currently in clinical use and many more under development are likely to enter the marketplace in the near future. To date, much of the investigative activity in this field has targeted activation of the erythropoietin receptor and factors that modulate hypoxia-related pathways of erythropoietin production within cells. This Review discusses newer erythropoiesis-stimulating agents currently under assessment for the treatment of anemia in patients with chronic kidney disease. Such agents include proteins and peptides that activate erythropoietin receptors, non-protein agents, and strategies with targets other than erythropoietin receptors.

Key Points

  • Considerable advances have been made in our understanding of the mechanisms that link oxygen sensing and erythropoiesis

  • Knowledge of the biology of erythropoietin production and the function of the erythropoietin receptor is critical for understanding and developing new therapeutic agents for anemia

  • Most novel erythropoiesis-stimulating agents (ESAs) involve stimulation of the erythropoietin receptor; post-translational modifications of the erythropoietin protein can affect the duration of action of ESAs

  • Chemically synthesized peptides that act on the erythropoietin receptor are also in clinical development

  • Non-peptide agents that directly or indirectly stimulate the erythropoietin gene (EPO) have the potential to become oral ESAs in the future

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Erythropoiesis, and interventions that might increase this process.

Similar content being viewed by others

References

  1. Fisher, J. W. Erythropoietin: physiologic and pharmacologic aspects. Proc. Soc. Exp. Biol. Med. 16, 358–369 (1997).

    Article  Google Scholar 

  2. Adamson, J. W. Erythropoietin: in vitro and in vivo studies of the regulation of erythropoiesis. Schweiz Med. Wochenschr. 118, 1501–1506 (1988).

    CAS  PubMed  Google Scholar 

  3. Jelkmann, W. Erythropoietin: structure, control of production, and function. Physiol. Rev. 72, 449–489 (1992).

    Article  CAS  Google Scholar 

  4. Salmonson, T., Danielson, B. G. & Wikström, B. The pharmacokinetics of recombinant human erythropoietin after intravenous and subcutaneous administration to healthy subjects. Br. J. Clin. Pharmacol. 29, 709–713 (1990).

    Article  CAS  Google Scholar 

  5. Jelkmann, W. Control of erythropoietin gene expression and its use in medicine. Methods Enzymol. 435, 179–197 (2007).

    Article  CAS  Google Scholar 

  6. Wang, G. L. & Semenza, G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl Acad. Sci. USA 90, 4304–4308 (1993).

    Article  CAS  Google Scholar 

  7. Semenza, G. L. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107, 1–3 (2001).

    Article  CAS  Google Scholar 

  8. Zhu, H. & Bunn, H. F. Signal transduction: how do cells sense oxygen? Science 292, 449–451 (2001).

    Article  CAS  Google Scholar 

  9. Prchal, J. T. Delivery on demand a new era of gene therapy? N. Engl. J. Med. 348, 1282–1283 (2003).

    Article  Google Scholar 

  10. Bruegge, K., Jelkmann, W. & Metzen, E. Hydroxylation of hypoxia-inducible transcription factors and chemical compounds targeting the HIF-alpha hydroxylases. Curr. Med. Chem. 14, 1853–1862 (2007).

    Article  CAS  Google Scholar 

  11. Nakano, Y. et al. Oral administration of K-11706 inhibits GATA binding activity, enhances hypoxia-inducible factor 1 binding activity, and restores indicators in an in vivo mouse model of anemia of chronic disease. Blood 104, 4300–4307 (2004).

    Article  CAS  Google Scholar 

  12. Sasaki, H., Bothner, B., Dell, A. & Fukuda, M. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J. Biol. Chem. 262, 12059–12076 (1987).

    CAS  PubMed  Google Scholar 

  13. Takeuchi, M. & Kobata, A. Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 4, 337–346 (1991).

    Article  Google Scholar 

  14. Rush, R. S. et al. Microheterogeneity of erythropoietin carbohydrate structure. Anal. Chem. 67, 1442–1452 (1995).

    Article  CAS  Google Scholar 

  15. Egrie, J. C. & Browne, J. K. Development and characterization of darbepoetin alfa. Oncology (Williston Park) 16 (Suppl. 11), 13–22 (2002).

    Google Scholar 

  16. Higuchi, M. et al. Role of sugar chains in the expression of the biological activity of human erythropoietin. J. Biol. Chem. 267, 7703–7709 (1992).

    CAS  PubMed  Google Scholar 

  17. Digicaylioglu, M. et al. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc. Natl Acad. Sci. USA 92, 3717–3720 (1995).

    Article  CAS  Google Scholar 

  18. Juul, S. E., Yachnis, A. T. & Christensen, R. D. Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum. Dev. 52, 235–249 (1998).

    Article  CAS  Google Scholar 

  19. Anagnostou, A. et al. Erythropoietin receptor mRNA expression in human endothelial cells. Proc. Natl Acad. Sci. USA 91, 3974–3978 (1994).

    Article  CAS  Google Scholar 

  20. Rossert, J. & Eckardt, K. U. Erythropoietin receptors: their role beyond erythropoiesis. Nephrol. Dial. Transplant. 20, 1025–1028 (2005).

    Article  CAS  Google Scholar 

  21. Lacombe, C. & Mayeux, P. The molecular biology of erythropoietin. Nephrol. Dial. Transplant. 14, (Suppl. 2), 22–28 (1999).

    Article  CAS  Google Scholar 

  22. Ratajczak, J. et al. Biological significance of MAPK, AKT and JAK-STAT protein activation by various erythropoietic factors in normal human early erythroid cells. Br. J. Haematol. 115, 195–204 (2001).

    Article  CAS  Google Scholar 

  23. Silva, M. et al. Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J. Biol. Chem. 274, 22165–22169 (1999).

    Article  CAS  Google Scholar 

  24. Kashii, Y. et al. A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 96, 941–949 (2000).

    CAS  PubMed  Google Scholar 

  25. Yang, C. W. et al. Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J. 17, 1754–1755 (2003).

    Article  CAS  Google Scholar 

  26. Locatelli, F. et al. Novel erythropoiesis stimulating protein for treatment of anemia in chronic renal insufficiency. Kidney Int. 60, 741–747 (2001).

    Article  CAS  Google Scholar 

  27. Nissenson, A. R. et al. Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am. J. Kidney Dis. 40, 110–118 (2002).

    Article  CAS  Google Scholar 

  28. Vanrenterhem, Y. et al. Randomized trial of darbepoetin alfa for treatment of renal anemia at a reduced dose frequency compared with rHuEPO in dialysis patients. Kidney Int. 62, 2167–2175 (2002).

    Article  Google Scholar 

  29. Warady, B. A. et al. Darbepoetin alfa for the treatment of anemia in pediatric patients with chronic kidney disease. Pediatr. Nephrol. 21, 1144–1152 (2006).

    Article  Google Scholar 

  30. Levin, N. W. et al. Intravenous methoxy polyethylene glycol-epoetin beta for haemoglobin control in patients with chronic kidney disease who are on dialysis: a randomized non-inferiority trial (MAXIMA). Lancet 370, 1415–1421 (2007).

    Article  CAS  Google Scholar 

  31. Klinger, M. et al. Efficacy of intravenous methoxy polyethylene glycol-epoetin beta administered every 2 weeks compared with epoetin administered 3 times weekly in patients treated by hemodialysis or peritoneal dialysis: a randomized trial. Am. J. Kidney. Dis. 50, 989–1000 (2007).

    Article  CAS  Google Scholar 

  32. Sulowicz, W. et al. Once-monthly subcutaneous C. E. R. A. maintains stable hemoglobin control in patients with chronic kidney disease on dialysis and converted directly from epoetin one to three times weekly. Clin. J. Am. Soc. Nephrol. 2, 637–646 (2007).

    Article  CAS  Google Scholar 

  33. Canaud, B. et al. Intravenous C. E. R. A. maintains stable haemoglobin levels in patients on dialysis previously treated with darbepoetin alfa: results from STRIATA, a randomized phase III study. Nephrol. Dial. Transplant. 23, 3654–3661 (2008).

    Article  CAS  Google Scholar 

  34. Macdougall, I. C. et al. C. E. R. A. corrects anemia in patients with chronic kidney disease not on dialysis: results of a randomized clinical trial. Clin. J. Am. Soc. Nephrol. 3, 337–347 (2008).

    Article  Google Scholar 

  35. Spinowitz, B. et al. C. E. R. A. maintains stable control of hemoglobin in patients with chronic kidney disease on dialysis when administered once every two weeks. Am. J. Nephrol. 28, 280–289 (2008).

    Article  CAS  Google Scholar 

  36. European Public Assessment Report (EPAR) and Summary of Product Characteristics Epoetin Alfa Hexal [online], (2009).

  37. Schellekens, H. The first biosimilar epoetin: but how similar is it? Clin. J. Am. Soc. Nephrol. 3, 174–178 (2008).

    Article  Google Scholar 

  38. Jounga, J., Robertson, J. S, Griffiths, E. & Knezevica, I. ; on behalf of the WHO Informal Consultation Group. Meeting Report: WHO Informal Consultation on Regulatory Evaluation of Therapeutic Biological Medicinal Products [online], (2009).

    Google Scholar 

  39. Haag-Weber. M., Vetter, A., Thyroff-Friesinger, U. & INJ-Study Group. Therapeutic equivalence, long-term efficacy and safety of HX575 in the treatment of anemia in chronic renal failure patients receiving hemodialysis. Clin. Nephrol. 72, 380–390 (2009).

    CAS  PubMed  Google Scholar 

  40. Casadevall, N. et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346, 469–475 (2002).

    Article  CAS  Google Scholar 

  41. Peces, R., de la Torre, M., Alcazar, R. & Urra, J. M. Antibodies against recombinant human erythropoietin in a patient with erythropoietin-resistant anemia. N. Engl. J. Med. 335, 523–524 (1996).

    Article  CAS  Google Scholar 

  42. Gershon, S. K., Luksenburg, H., Coté, T. R. & Braun, M. M. Pure red-cell aplasia and recombinant erythropoietin. N. Engl. J. Med. 346, 1584–1585 (2002).

    Article  Google Scholar 

  43. Bennett, C. L. et al. Pure red-cell aplasia and epoetin therapy. N. Engl. J. Med. 351, 1403–1408 (2004).

    Article  CAS  Google Scholar 

  44. Deicher, R. & Hörl, W. H. Differentiating factors between erythropoiesis-stimulating agents: a guide to selection for anaemia of chronic kidney disease. Drugs 64, 499–509 (2004).

    Article  CAS  Google Scholar 

  45. Llop, E. et al. Structural analysis of the glycosylation of gene-activated erythropoietin (epoetin delta, Dynepo). Anal. Biochem. 383, 243–254 (2008).

    Article  CAS  Google Scholar 

  46. Spinowitz, B. S. & Pratt, R. D. Epoetin delta is effective for the management of anaemia associated with chronic kidney disease. Curr. Med. Res. Opin. 22, 2507–2513 (2006).

    Article  Google Scholar 

  47. Martin, K. J. The first human cell line-derived erythropoietin, epoetin-delta (Dynepo), in the management of anemia in patients with chronic kidney disease. Clin. Nephrol. 68, 26–31 (2007).

    Article  CAS  Google Scholar 

  48. Martin, K. J. & Epoetin Delta 3001 Study Group. Epoetin delta in the management of renal anaemia: results of a 6-month study. Nephrol. Dial. Transplant. 22, 3052–3054 (2007).

    Article  CAS  Google Scholar 

  49. Kwan, J. T., Pratt, R. D. & Epoetin Delta Study Group. Epoetin delta, erythropoietin produced in a human cell line, in the management of anaemia in predialysis chronic kidney disease patients. Curr. Med. Res. Opin. 23, 307–311 (2007).

    Article  CAS  Google Scholar 

  50. Spinowitz, B. S., Pratt, R. D. & Epoetin Delta 2002 Study Group. Epoetin delta is effective for the management of anaemia associated with chronic kidney disease. Curr. Med. Res. Opin. 22, 2507–2513 (2006).

    Article  Google Scholar 

  51. European Medicines Agency. Public Statement on Dynepo (Epoetin Delta) [online], (2009).

  52. Sikole, A., Spasovski, G., Zafirov, D. & Polenakovic, M. Epoetin omega for treatment of anemia in maintenance hemodialysis patients. Clin. Nephrol. 57, 237–245 (2002).

    CAS  PubMed  Google Scholar 

  53. Acharya, V. N., Sinha, D. K., Almeida, A. F. & Pathare, A. V. Effect of low dose recombinant human omega erythropoietin (rHuEPO) on anaemia in patients on hemodialysis. J. Assoc. Physicians India 43, 539–542 (1995).

    CAS  PubMed  Google Scholar 

  54. Bren, A. et al. A comparison between epoetin omega and epoetin alfa in the correction of anemia in hemodialysis patients: a prospective, controlled crossover study. Artif. Organs 26, 91–97 (2002).

    Article  CAS  Google Scholar 

  55. Milutinović, S., Plavljanić, E. & Trkulja, V. Comparison of two epoetin brands in anemic hemodialysis patients: results of two efficacy trials and a single-dose pharmacokinetic study. Fundam. Clin. Pharmacol. 20, 493–502 (2006).

    Article  Google Scholar 

  56. Egrie, J. C. & Browne, J. K. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br. J. Cancer 84 (Suppl. 1), 3–10 (2001).

    Article  CAS  Google Scholar 

  57. Macdougall, I. C. et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J. Am. Soc. Nephrol. 10, 2392–2395 (1999).

    CAS  PubMed  Google Scholar 

  58. Padhi, D. et al. An extended terminal half-life for darbepoetin alfa: results from a single-dose pharmacokinetic study in patients with chronic kidney disease not receiving dialysis. Clin. Pharmacokinet. 45, 503–510 (2006).

    Article  CAS  Google Scholar 

  59. McKoy, J. M. et al. Epoetin-associated pure red cell aplasia: past, present, and future considerations. Transfusion 48, 1754–1762 (2008).

    Article  Google Scholar 

  60. Roger, S. D. et al. A randomised, cross-over study comparing injection site pain with subcutaneous epoetin beta and subcutaneous darbepoetin alfa in patients with chronic kidney disease. Curr. Med. Res. Opin. 24, 2181–2187 (2008).

    Article  CAS  Google Scholar 

  61. Macdougall, I. C. CERA (Continuous Erythropoietin Receptor Activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr. Hematol. Rep. 6, 436–440 (2005).

    Google Scholar 

  62. Macdougall, I. C. et al. Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (C. E. R. A.) in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 1, 1211–1215 (2006).

    Article  CAS  Google Scholar 

  63. McKoy, J. M. et al. Epoetin-associated pure red cell aplasia: past, present, and future considerations. Transfusion 48, 1754–1762 (2008).

    Article  Google Scholar 

  64. Bouman-Thio, E. et al. A phase I, single and fractionated, ascending-dose study evaluating the safety, pharmacokinetics, pharmacodynamics, and immunogenicity of an erythropoietin mimetic antibody fusion protein (CNTO 528) in healthy male subjects. J. Clin. Pharmacol. 48, 1197–1207 (2008).

    Article  CAS  Google Scholar 

  65. Wrighton, N. C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458–464 (1996).

    Article  CAS  Google Scholar 

  66. Stead, R. B. Evaluation of the safety and pharmacodynamics of Hematide, a novel erythropoietic agent, in a phase 1, double-blind, placebo-controlled, dose-escalation study in healthy volunteers. Blood 108, 1830–1834 (2006).

    Article  CAS  Google Scholar 

  67. Woodburn, K. W. et al. Hematide is immunologically distinct from erythropoietin and corrects anemia induced by antierythropoietin antibodies in a rat pure red cell aplasia model. Exp. Hematol. 35, 1201–1208 (2007).

    Article  CAS  Google Scholar 

  68. Macdougall, I. C. et al. A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N. Engl. J. Med. 361, 1848–1855 (2009).

    Article  CAS  Google Scholar 

  69. Macdougall, I. C. Novel erythropoiesis-stimulating agents: a new era in anemia management. Clin. J. Am. Soc. Nephrol. 3, 200–207 (2008).

    Article  CAS  Google Scholar 

  70. Binley, K. et al. Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy. Blood 100, 2406–2413 (2002).

    Article  CAS  Google Scholar 

  71. Clinical Trials. Safety and Efficacy of Sustained Erythropoietin Therapy [online], (2009).

  72. Unger, E. F., Thompson, A. M., Blank, M. J. & Temple, R. Erythropoiesis-stimulating agents—time for a reevaluation. N. Engl. J. Med. 362, 189–192 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares associations with the following companies: Affymax, Amgen, Ortho Biotech and Roche (consulting fees).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, R. Emerging erythropoiesis-stimulating agents. Nat Rev Nephrol 6, 218–223 (2010). https://doi.org/10.1038/nrneph.2010.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing