Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease

Abstract

Chronic kidney disease (CKD) is characterized by irreversible pathological processes that result in the development of end-stage renal disease (ESRD). Accumulating evidence has emphasized the important role of chronic hypoxia in the tubulointerstitium in the final common pathway that leads to development of ESRD. The causes of chronic hypoxia in the tubulointerstitium are multifactorial and include mechanisms such as hemodynamic changes and disturbed oxygen metabolism of resident kidney cells. Epidemiological studies have revealed an association between CKD and systemically hypoxic conditions, such as chronic obstructive pulmonary disease and sleep apnea syndrome. In addition to tubulointerstitial hypoxia, glomerular hypoxia can occur and is a crucial factor in the development of glomerular disorders. Chemical compounds, polarographic sensors, and radiographical methods can be used to detect hypoxia. Therapeutic approaches that target chronic hypoxia in the kidney should be effective against a broad range of kidney diseases. Amelioration of hypoxia is one mechanism of inhibiting the renin–angiotensin system, the current gold standard of CKD therapy. Future therapeutic approaches include protection of the vascular endothelium and appropriate activation of hypoxia-inducible factor, a key transcription factor involved in adaptive responses against hypoxia.

Key Points

  • Tubulointerstitial hypoxia is a final step that is common to the development of end-stage renal disease (ESRD) in a variety of kidney diseases

  • A number of mechanisms are involved in the development of tubulointerstitial hypoxia

  • Chronic hypoxia mediates the progression of kidney injury even from the early stages of disease

  • Chronic hypoxia and tubulointerstitial injury form a vicious cycle that leads to ESRD

  • The development of tools to detect hypoxia in the human kidney is a matter of high priority

  • Therapeutic approaches that target hypoxia should be effective in a variety of kidney diseases

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tolerance of the kidney to hypoxia.
Figure 2: Vasculature of the kidney.
Figure 3: The arterial-to-venous oxygen shunt.
Figure 4: Mechanism of chronic hypoxia in the kidney.
Figure 5: HIF–HRE interactions.
Figure 6: The vicious cycle that leads to end-stage renal disease.
Figure 7: Demonstration of hypoxia of the kidney in hypoxia-sensing transgenic animals.
Figure 8: Graph showing the high prevalence of CKD among patients with sleep apnea.

Similar content being viewed by others

References

  1. Brenner, B. M., Meyer, T. W. & Hostetter, T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307, 652–659 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Bazzi, C. et al. Urinary excretion of IgG and α1-microglobulin predicts clinical course better than extent of proteinuria in membranous nephropathy. Am. J. Kidney Dis. 38, 240–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Bazzi, C. et al. Urinary N-acetyl-β-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol. Dial. Transplant. 17, 1890–1896 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Miyata, M., Eckardt, K. U. & Nangaku, M. (Eds) Studies on Renal Disorders: Oxidative Stress in Applied Basic Research and Clinical Practice 1st edn (Springer, Heidelberg, Germany, in press).

  5. Leach, R. M. & Treacher, D. F. Oxygen transport—2. Tissue hypoxia. BMJ 317, 1370–1373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levy, M. N. & Sauceda, G. Diffusion of oxygen from arterial to venous segments of renal capillaries. Am. J. Physiol. 196, 1336–1339 (1959).

    Article  CAS  PubMed  Google Scholar 

  7. Schurek, H. J., Jost, U., Baumgärtl, H., Bertram, H. & Heckmann, U. Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am. J. Physiol. 259, F910–F915 (1990).

    CAS  PubMed  Google Scholar 

  8. Welch, W. J., Baumgärtl, H., Lübbers, D. & Wilcox, C. S. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int. 59, 230–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Evans, R. G., Gardiner, B. S., Smith, D. W. & O'Connor, P. M. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am. J. Physiol. Renal Physiol. 295, F1259–F1270 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Brezis, M., Rosen, S., Silva, P. & Epstein, F. H. Renal ischemia: a new perspective. Kidney Int. 26, 375–383 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Welch, W. J. Intrarenal oxygen and hypertension. Clin. Exp. Pharmacol. Physiol. 33, 1002–1005 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Johannes, T., Mik, E. G., Nohé, B., Unertl, K. E. & Ince, C. Acute decrease in renal microvascular pO2 during acute normovolemic hemodilution. Am. J. Physiol. Renal Physiol. 292, F796–F803 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Fine, L. G., Bandyopadhay, D. & Norman, J. T. Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int. 75 (Suppl.), S22–S26 (2000).

    Article  CAS  Google Scholar 

  14. Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Eckardt, K. U. et al. Role of hypoxia in the pathogenesis of renal disease. Kidney Int. Suppl. 99, S46–S51 (2005).

    Article  CAS  Google Scholar 

  16. Kang, D. H. et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol. 13, 806–816 (2002).

    Article  PubMed  Google Scholar 

  17. Eckardt, K. U., Rosenberger, C., Jürgensen, J. S. & Wiesener, M. S. Role of hypoxia in the pathogenesis of renal disease. Blood Purif. 21, 253–257 (2003).

    Article  PubMed  Google Scholar 

  18. Heyman, S. N., Khamaisi, M., Rosen, S. & Rosenberger, C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am. J. Nephrol. 28, 998–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Epstein, F. H. Oxygen and renal metabolism. Kidney Int. 51, 381–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Heyman, S. N., Rosenberger, C. & Rosen, S. Experimental ischemia-reperfusion: biases and myths-the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int. 77, 9–16 (2010).

    Article  PubMed  Google Scholar 

  21. Norman, J. T., Clark, I. M. & Garcia, P. L. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int. 58, 2351–2366 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Rabelink, T. J., Wijewickrama, D. C. & de Koning, E. J. Peritubular endothelium: the Achilles heel of the kidney? Kidney Int. 72, 926–930 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Yuan, H. T., Li, X. Z., Pitera, J. E., Long, D. A. & Woolf, A. S. Peritubular capillary loss after mouse acute nephrotoxicity correlates with down-regulation of vascular endothelial growth factor-A and hypoxia-inducible factor-1 α. Am. J. Pathol. 163, 2289–2301 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kairaitis, L. K., Wang, Y., Gassmann, M., Tay, Y. C. & Harris, D. C. HIF-1α expression follows microvascular loss in advanced murine adriamycin nephrosis. Am. J. Physiol. Renal Physiol. 288, F198–F206 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ohashi, R. et al. Peritubular capillary regression during the progression of experimental obstructive nephropathy. J. Am. Soc. Nephrol. 13, 1795–1805 (2002).

    Article  PubMed  Google Scholar 

  26. Ohashi, R., Kitamura, H. & Yamanaka, N. Peritubular capillary injury during the progression of experimental glomerulonephritis in rats. J. Am. Soc. Nephrol. 11, 47–56 (2000).

    CAS  PubMed  Google Scholar 

  27. Kang, D. H. et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J. Am. Soc. Nephrol. 12, 1434–1447 (2001).

    CAS  PubMed  Google Scholar 

  28. Basile, D. P., Donohoe, D., Roethe, K. & Osborn, J. L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Renal Physiol. 281, F887–F899 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Basile, D. P., Donohoe, D. L., Roethe, K. & Mattson, D. L. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Am. J. Physiol. Renal Physiol. 284, F338–F348 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Norman, J. T. & Fine, L. G. Intrarenal oxygenation in chronic renal failure. Clin. Exp. Pharmacol. Physiol. 33, 989–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Matsumoto, M. et al. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J. Am. Soc. Nephrol. 15, 1574–1581 (2004).

    Article  PubMed  Google Scholar 

  32. Körner, A., Eklöf, A. C., Celsi, G. & Aperia, A. Increased renal metabolism in diabetes. Mechanism and functional implications. Diabetes 43, 629–633 (1994).

    Article  PubMed  Google Scholar 

  33. Secin, F. P. Importance and limits of ischemia in renal partial surgery: experimental and clinical research. Adv. Urol. 102461 (2008).

  34. Katavetin, P. et al. High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J. Am. Soc. Nephrol. 17, 1405–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Banday, A. A. & Lokhandwala, M. F. Oxidative stress-induced renal angiotensin AT1 receptor upregulation causes increased stimulation of sodium transporters and hypertension. Am. J. Physiol. Renal Physiol. 295, F698–F706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friederich, M., Fasching, A., Hansell, P., Nordquist, L. & Palm, F. Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells. Biochim. Biophys. Acta 1777, 935–940 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Palm, F., Cederberg, J., Hansell, P., Liss, P. & Carlsson, P. O. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46, 1153–1160 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Welch, W. J., Blau, J., Xie, H., Chabrashvili, T. & Wilcox, C. S. Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 288, H22–H28 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Adler, S., Huang, H., Wolin, M. S. & Kaminski, P. M. Oxidant stress leads to impaired regulation of renal cortical oxygen consumption by nitric oxide in the aging kidney. J. Am. Soc. Nephrol. 15, 52–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Iseki, K., Ikemiya, Y., Iseki, C. & Takishita, S. Haematocrit and the risk of developing end-stage renal disease. Nephrol. Dial. Transplant. 18, 899–905 (2003).

    Article  PubMed  Google Scholar 

  41. Mohanram, A. et al. Anemia and end-stage renal disease in patients with type 2 diabetes and nephropathy. Kidney Int. 66, 1131–1138 (2004).

    Article  PubMed  Google Scholar 

  42. Drüeke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    Article  PubMed  Google Scholar 

  43. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Pfeffer, M. A. et al. Trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    Article  PubMed  Google Scholar 

  45. Evans, R. G. et al. Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits. Am. J. Physiol. Renal Physiol. 298, F1235–F1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Nangaku, M. & Eckardt, K. U. Hypoxia and the HIF system in kidney disease. J. Mol. Med. 85, 1325–1330 (2007).

    Article  PubMed  Google Scholar 

  47. Gunaratnam, L. & Bonventre, J. V. HIF in kidney disease and development. J. Am. Soc. Nephrol. 20, 1877–1887 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Miyata, T. & de Strihou, C. Y. Diabetic nephropathy: a disorder of oxygen metabolism? Nat. Rev. Nephrol. 6, 83–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka, T. & Nangaku, M. The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1α in progression of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 43–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Inagi, R. Endoplasmic reticulum stress as a progression factor for kidney injury. Curr. Opin. Pharmacol. 10, 156–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Manotham, K. et al. A biological role of HIF-1 in the renal medulla. Kidney Int. 67, 1428–1439 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Haase, V. H. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 76, 492–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kimura, K. et al. Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis. Am. J. Physiol. Renal Physiol. 295, F1023–F1029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Higgins, D. F. et al. Hypoxic induction of Ctgf is directly mediated by Hif-1. Am. J. Physiol. Renal Physiol. 287, F1223–F1232 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Kroening, S., Neubauer, E., Wessel, J., Wiesener, M. & Goppelt-Struebe, M. Hypoxia interferes with connective tissue growth factor (CTGF) gene expression in human proximal tubular cell lines. Nephrol. Dial. Transplant. 24, 3319–3325 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Kroening, S., Neubauer, E., Wullich, B., Aten J. & Goppelt-Struebe, M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am. J. Physiol. Renal Physiol. 298, F796–F806 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Ding, M. et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat. Med. 12, 1081–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Neusser, M. A. et al. Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am. J. Pathol. 176, 594–607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manotham, K. et al. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int. 65, 871–880 (2004).

    Article  PubMed  Google Scholar 

  60. Tanaka, T. et al. Hypoxia induces apoptosis in SV40-immortalized rat proximal tubular cells through the mitochondrial pathways, devoid of HIF1-mediated upregulation of Bax. Biochem. Biophys. Res. Commun. 309, 222–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Tanaka, T. et al. Hypoxia-induced apoptosis in cultured glomerular endothelial cells: involvement of mitochondrial pathways. Kidney Int. 64, 2020–2032 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Khan, S., Cleveland, R. P., Koch, C. J. & Schelling, J. R. Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. Lab. Invest. 79, 1089–1099 (1999).

    CAS  PubMed  Google Scholar 

  63. Norman, J. T., Orphanides, C., Garcia, P. & Fine, L. G. Hypoxia-induced changes in extracellular matrix metabolism in renal cells. Exp. Nephrol. 7, 463–469 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Norman, J. T., Clark, I. M. & Garcia, P. L. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int. 58, 2351–2366 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Zeisberg, M., Strutz, F. & Müller, G. A. Role of fibroblast activation in inducing interstitial fibrosis. J. Nephrol. 13 (Suppl. 3), S111–S120 (2000).

    PubMed  Google Scholar 

  66. Juillard, L. et al. Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int. 65, 944–950 (2004).

    Article  PubMed  Google Scholar 

  67. Fang, Y., Sullivan, R. & Graham, C. H. Confluence-dependent resistance to doxorubicin in human MDA-MB-231 breast carcinoma cells requires hypoxia-inducible factor-1 activity. Exp. Cell Res. 313, 867–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Tanaka, T. et al. Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J. Gerontol. A Biol. Sci. Med. Sci. 61, 795–805 (2006).

    Article  PubMed  Google Scholar 

  69. Norman, J. T., Stidwill, R., Singer, M. & Fine, L. G. Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol. 94, 39–46 (2003).

    Article  Google Scholar 

  70. Ries, M. et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J. Magn. Reson. Imaging 17, 104–113 (2003).

    Article  PubMed  Google Scholar 

  71. Palm, F., Buerk, D. G., Carlsson, P. O., Hansell, P. & Liss, P. Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygen and microcirculation. Diabetes 54, 3282–3287 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Dos Santos, E. A., Li, L. P., Ji, L. & Prasad, P. V. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest. Radiol. 42, 157–162 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rosenberger, C. et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 73, 34–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Bernhardt, W. M. et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830–842 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tanaka, T., Miyata, T., Inagi, R., Fujita, T. & Nangaku, M. Hypoxia in renal disease with proteinuria and/or glomerular hypertension. Am. J. Pathol. 165, 1979–1992 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Manotham, K. et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J. Am. Soc. Nephrol. 15, 1277–1288 (2004).

    Article  PubMed  Google Scholar 

  77. Tanaka, T. et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 85, 1292–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Cachat, F. et al. Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss. Kidney Int. 63, 564–575 (2003).

    Article  PubMed  Google Scholar 

  79. Zhang, G., Palmer, G. M., Dewhirst, M. W. & Fraser, C. L. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 8, 747–751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Safran, M. et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc. Natl Acad. Sci. USA 103, 105–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Vaidya, V. S., Ramirez, V., Ichimura, T., Bobadilla, N. A. & Bonventre, J. V. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol. Renal Physiol. 290, F517–F529 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Mishra, J. et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 14, 2534–2543 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Rajendran, J. G. et al. Tumor hypoxia imaging with [F-18]fluoromisonidazole positron emission tomography in head and neck cancer. Clin. Cancer Res. 12, 5435–5441 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao, D., Jiang, L., Hahn, E. W. & Mason, R. P. Comparison of 1H blood oxygen level-dependent (BOLD) and 19F MRI to investigate tumor oxygenation. Magn. Reson. Med. 62, 357–364 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, L. P., Halter, S. & Prasad, P. V. Blood oxygen level-dependent MR imaging of the kidneys. Magn. Reson. Imaging Clin. N. Am. 16, 613–625 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bohle, A., von Gise, H., Mackensen-Haen, S. & Stark-Jakob, B. The obliteration of the postglomerular capillaries and its influence upon the function of both glomeruli and tubuli. Functional interpretation of morphologic findings. Klin. Wochenschr. 59, 1043–1051 (1981).

    Article  CAS  PubMed  Google Scholar 

  87. Choi, Y. J. et al. Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: altered expression of vascular endothelial growth factor. Hum. Pathol. 31, 1491–1497 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Lindenmeyer, M. T. et al. Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. J. Am. Soc. Nephrol. 18, 1765–1776 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Kaukinen, A., Lautenschlager, I., Helin, H., Karikoski, R. & Jalanko, H. Peritubular capillaries are rarefied in congenital nephrotic syndrome of the Finnish type. Kidney Int. 75, 1099–1108 (2009).

    Article  PubMed  Google Scholar 

  90. Eardley, K. S. et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int. 74, 495–504 (2008).

    Article  PubMed  Google Scholar 

  91. Rudnicki, M. et al. Hypoxia response and VEGF-A expression in human proximal tubular epithelial cells in stable and progressive renal disease. Lab. Invest. 89, 337–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Schachinger, H., Klarhöfer, M., Linder, L., Drewe, J. & Scheffler, K. Angiotensin II decreases the renal MRI blood oxygenation level-dependent signal. Hypertension 47, 1062–1066 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Manotham, K. et al. Intrarenal hypoxia in CKD patients, a BOLD-MRI study [abstract]. J. Am. Soc. Nephrol. 17, 164A (2006).

    Google Scholar 

  94. Gloviczki, M. L. et al. Progressive loss of cortical volume and renal blood flow (RBF) during medical therapy in atherosclerotic renal artery stenosis (ARAS) [abstract F-PO1698]. J. Am. Soc. Nephrol. 20, 503A (2009).

    Google Scholar 

  95. Luks, A. M., Johnson, R. J. & Swenson, E. R. Chronic kidney disease at high altitude. J. Am. Soc. Nephrol. 19, 2262–2271 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Winkelmayer, W. C., Liu, J. & Brookhart, M. A. Altitude and all-cause mortality in incident dialysis patients. JAMA 301, 508–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Bratel, T., Ljungman, S., Runold, M. & Stenvinkel, P. Renal function in hypoxaemic chronic obstructive pulmonary disease: effects of long-term oxygen treatment. Respir. Med. 97, 308–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Gestel, Y. R. et al. Association between chronic obstructive pulmonary disease and chronic kidney disease in vascular surgery patients. Nephrol. Dial. Transplant. 24, 2763–2767 (2009).

    Article  PubMed  Google Scholar 

  99. Fleischmann, G., Fillafer, G., Matterer, H., Skrabal, F. & Kotanko, P. Prevalence of chronic kidney disease in patients with suspected sleep apnoea. Nephrol. Dial. Transplant. 25, 181–186 (2010).

    Article  PubMed  Google Scholar 

  100. Canales, M. T. et al. Reduced renal function and sleep-disordered breathing in community-dwelling elderly men. Sleep Med. 9, 637–645 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Canales, M. T. et al. Renal function and sleep-disordered breathing in older men. Nephrol. Dial. Transplant. 23, 3908–3914 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Agrawal, V. et al. Albuminuria and renal function in obese adults evaluated for obstructive sleep apnea. Nephron Clin. Pract. 113, c140–c147 (2009).

    Article  PubMed  Google Scholar 

  103. Iseki, K., Tohyama, K., Matsumoto, T. & Nakamura, H. High prevalence of chronic kidney disease among patients with sleep related breathing disorder (SRBD). Hypertens. Res. 31, 249–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Nangaku, M. et al. In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrol. Dial. Transplant. 20, 2661–2669 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Welch, W. J., Baumgärtl, H., Lübbers, D. & Wilcox, C. S. Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int. 63, 202–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Deng, A. et al. Regulation of oxygen utilization by angiotensin II in chronic kidney disease. Kidney Int. 75, 197–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Watanabe, M. et al. Amelioration of diabetic nephropathy in OLETF rats by prostaglandin I2 analog, beraprost sodium. Am. J. Nephrol. 30, 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Yamashita, T. et al. Beraprost sodium, prostacyclin analogue, attenuates glomerular hyperfiltration and glomerular macrophage infiltration by modulating ecNOS expression in diabetic rats. Diabetes Res. Clin. Pract. 57, 149–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Fujita, T. et al. PGl2 analogue mitigates the progression rate of renal dysfunction improving renal blood flow without glomerular hyperfiltration in patients with chronic renal insufficiency. Prostaglandins Leukot. Essent. Fatty Acids 65, 223–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Sun, D., Feng, J. M., Zhao, Y. L., Jin, T. & Wang, L. N. Effects of prostaglandin E1 on the progression of aristolochic acid nephropathy. Chin. Med. Sci. J. 20, 67–69 (2005).

    CAS  PubMed  Google Scholar 

  111. Taji, Y., Kuwahara, T., Shikata, S. & Morimoto, T. Meta-analysis of antiplatelet therapy for IgA nephropathy. Clin. Exp. Nephrol. 10, 268–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Zimmerman, S. W., Moorthy, A. V., Dreher, W. H., Friedman, A. & Varanasi, U. Prospective trial of warfarin and dipyridamole in patients with membranoproliferative glomerulonephritis. Am. J. Med. 75, 920–927 (1983).

    Article  CAS  PubMed  Google Scholar 

  113. Nolin, L. & Courteau, M. Management of IgA nephropathy: Evidence-based recommendations. Kidney Int. 55 (Suppl.), S56–S62 (1999).

    Article  Google Scholar 

  114. Woo, K. T., Lee, G. S. & Pall, A. A. Dipyridamole and low-dose warfarin without cyclophosphamide in the management of IgA nephropathy. Kidney Int. 57, 348–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Heyman, S. N., Rosen, S., Epstein, F. H., Spokes, K. & Brezis, M. L. Loop diuretics reduce hypoxic damage to proximal tubules of the isolated perfused rat kidney. Kidney Int. 45, 981–985 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Epstein, F. H. & Prasad, P. Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int. 57, 2080–2083 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Oppermann, M., Hansen, P. B., Castrop, H. & Schnermann, J. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice. Am. J. Physiol. Renal Physiol. 293, F279–F287 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Nangaku, M. & Fujita, T. Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertens. Res. 31, 175–184 (2008).

    Article  PubMed  Google Scholar 

  119. Izuhara, Y. et al. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J. Am. Soc. Nephrol. 16, 3631–3641 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Nanayakkara, P. W. et al. Effect of a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on carotid intima-media thickness, endothelial function, and renal function in patients with mild to moderate chronic kidney disease: results from the Anti-Oxidant Therapy in Chronic Renal Insufficiency (ATIC) Study. Arch. Intern. Med. 167, 1262–1270 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Kang, D. H., Hughes, J., Mazzali, M., Schreiner, G. F. & Johnson, R. J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol. 12, 1448–1457 (2001).

    CAS  PubMed  Google Scholar 

  122. Kang, D. H., Nakagawa, T., Feng, L. & Johnson, R. J. Nitric oxide modulates vascular disease in the remnant kidney model. Am. J. Pathol. 161, 239–248 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, Y. G. et al. Vascular endothelial growth factor accelerates renal recovery in experimental thrombotic microangiopathy. Kidney Int. 58, 2390–2399 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Suga, S. et al. Vascular endothelial growth factor (VEGF121) protects rats from renal infarction in thrombotic microangiopathy. Kidney Int. 60, 1297–1308 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Eto, N. et al. Protection of endothelial cells by dextran sulfate in rats of thrombotic microangiopathy. J. Am. Soc. Nephrol. 16, 2997–3005 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Gardner, H. F. The use of cobaltous chloride in the anemia associates with chronic renal disease. J. Lab. Clin. Med. 41, 56–64 (1953).

    CAS  PubMed  Google Scholar 

  127. Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).

    Article  PubMed  Google Scholar 

  128. Tanaka, T. et al. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int. 68, 2714–2725 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Tanaka, T. et al. Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol. 289, F1123–F1133 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Tanaka, T. & Nangaku, M. Drug discovery for overcoming chronic kidney disease (CKD): prolyl-hydroxylase inhibitors to activate hypoxia-inducible factor (HIF) as a novel therapeutic approach in CKD. J. Pharmacol. Sci. 109, 24–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Ortiz-Barahona, A., Villar, D., Pescador, N., Amigo, J. & Del Peso, L. Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Res. 38, 2332–2345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284, 16767–16775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xia, X. et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl Acad. Sci. USA 106, 4260–4265 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mimura, I. et al. Genome-wide analysis of hypoxic inducible factor 1 binding sites in human endothelial cells under hypoxia [abstract F-FC187]. J. Am. Soc. Nephrol. 20, 44A (2009).

    Google Scholar 

  135. Rubinstein, I. et al. Hyperbaric oxygen treatment improves GFR in rats with ischaemia/reperfusion renal injury: a possible role for the antioxidant/oxidant balance in the ischaemic kidney. Nephrol. Dial. Transplant. 24, 428–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Sonmez, A. et al. Hyperbaric oxygen treatment augments the efficacy of cilazapril and simvastatin regimens in an experimental nephrotic syndrome model. Clin. Exp. Nephrol. 12, 110–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Yilmaz, M. I. et al. Hyperbaric oxygen treatment augments the efficacy of a losartan regime in an experimental nephrotic syndrome model. Nephron Exp. Nephrol. 104, e15–e22 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Rogers, N. M. & Coates, P. T. Calcific uraemic arteriolopathy: an update. Curr. Opin. Nephrol. Hypertens. 17, 629–634 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Studies described in this Review were supported by Grants-in-Aids for Scientific Research from the Japan Society for the Promotion of Science (2139,036) to M. Nangaku. We appreciate the invaluable advice from members of our group and our collaborators, particularly R. Inagi, T. Miyata and T. Tanaka. We thank A. Jo from our laboratory for drawing the original for Figure 5. Initial drafts of this manuscript were edited by G. Harris from Digital Medical Communications, Japan; this editorial assistance was funded by a government grant to M. Nangaku.

Author information

Authors and Affiliations

Authors

Contributions

I. Mimura and M. Nangaku contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Masaomi Nangaku.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mimura, I., Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 6, 667–678 (2010). https://doi.org/10.1038/nrneph.2010.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing