Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis

Key Points

  • The sprouting and elongation of axons and dendrites forms the basis of correct neuronal connectivity and brain function. The initial sprouting of a neurite is a three step process — the original round shape of the cell is broken down to make a bud, the bud is transformed into a neurite, then the neurite is transformed into an axon or dendrite.

  • The basic engine that generates the force required for neurite extension is thought to be the actin cytoskeleton, although membrane addition and microtubules are also important for the maintenance of the elongated neurite, its polarity and its speed of growth.

  • The morphology and orientation of early neurites reflect the nature of the molecules in the surrounding environment. This review focuses on the integrin–laminin complex to illustrate the role of the external world in the initiation of neuronal differentiation.

  • Integrin receptor activation produces a membrane change that results in neurite protrusion, indicating that the making of a neurite might be determined by the presence of discrete microdomains or 'hot spots' on the plasma membrane.

  • An early sign of the contact between the neuronal membrane and an extracellular ligand is a change in membrane appearance, from an even surface to one that is ornamented with veils (lamellipodia) and spikes (filopodia). This is preceded by the formation of thin membrane tethers that are mobilized from internal membrane stores. Localized addition of new membrane through the exocytotic pathway might account for the stabilization of lamellipodia and filopodia into real neurites.

  • Neurite protrusion requires the actin cytoskeleton, and high or low actin turnover seem to form the basis of neurite outgrowth or quiescence, respectively. Studies in fibroblasts and budding yeast have shown that actin-based motility is regulated by the Rho family of GTPases, and there is strong evidence that a similar mechanism operates in neurons.

  • Stimulation of certain receptors causes Rho proteins to undergo changes in activity, which lead to the formation of multimolecular complexes that can induce actin remodelling and cell movement. These complexes contain not only the Rhos and their regulatory proteins, but also actin-binding molecules and scaffold proteins, including the formins.

  • The microtubule cytoskeleton is another postulated target of Rho GTPases, and protrusion of microtubules into newly formed neurites seems to be required to sustain their development and elongation.

  • Mutations that affect neurite extension cause neurological diseases in humans that range from varying degrees of mental retardation to severe heterotopias. Understanding the secrets behind the conversion of a spherical neuronal-precursor cell into a fully differentiated neuron might lead to better approaches to treat these disorders.

Abstract

The sprouting of neurites, which will later become axons and dendrites, is an important event in early neuronal differentiation. Studies in living neurons indicate that neuritogenesis begins immediately after neuronal commitment, with the activation of membrane receptors by extracellular cues. These receptors activate intracellular cascades that trigger changes in the actin cytoskeleton, which promote the initial breakdown of symmetry. Then, through the regulation of gene transcription, and of microtubule and membrane dynamics, the newly formed neurite becomes stabilized. A key challenge is to define the molecular machinery that regulates the actin cytoskeleton during initial neurite sprouting. We propose that analysing the molecules involved in actin-dependent mechanisms in non-neuronal systems, such as budding yeast and migrating fibroblasts, could help to uncover the secrets of neuritogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initial steps of neurite formation.
Figure 2: Formation or activation of membrane microdomains.
Figure 3: Simplified view of the action of Rho proteins in fibroblasts and neurons.
Figure 4: Role of actin-related proteins in neurite formation and extension.

Similar content being viewed by others

References

  1. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    CAS  PubMed  Google Scholar 

  2. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Rev. Mol. Cell Biol. 2, 793–805 (2001).

    CAS  Google Scholar 

  3. Lambert de Rouvroit, C. & Goffinet, A. M. Neuronal migration. Mech. Dev. 105, 47–56 (2001).

    CAS  PubMed  Google Scholar 

  4. de Curtis, I. Cell migration: GAPs between membrane traffic and the cytoskeleton. EMBO Rep. 2, 277–281 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zheng, J. et al. Tensile regulation of axonal elongation and initiation. J. Neurosci. 11, 1117–1125 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zakharenko, S. & Popov, S. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143, 1077–1086 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J., Ishiara, A. & Jacobson, K. How do cells move along surfaces? Trends Cell Biol. 3, 366–370 (1993).

    CAS  PubMed  Google Scholar 

  8. Bray, D. The dynamics of growing axons. Membrane biophysics. Curr. Biol. 6, 241–243 (1996).

    CAS  PubMed  Google Scholar 

  9. Bray, D. & Chapman, K. Analysis of microspike movements on the neuronal growth cone. J Neurosci. 5, 3204–3213 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sheetz, M. P., Wayne, D. B. & Pearlman, A. L. Extension of filopodia by motor-dependent actin assembly. Cell Motil. Cytoskeleton 22, 160–169 (1992).

    CAS  PubMed  Google Scholar 

  11. Isbister, C. M. & O'Connor, T. P. Filopodial adhesion does not predict growth cone steering events in vivo. J. Neurosci. 19, 2589–2600 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Puelles, L. & Privat, A. Do oculomotor neuroblasts migrate across the midline in the retal rat brain? Anat. Embryol. (Berl.) 150, 187–206 (1977).

    CAS  Google Scholar 

  13. Shoukimas, G. M. & Hinds, J. W. The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J. Comp. Neurol. 179, 795–830 (1978).

    CAS  PubMed  Google Scholar 

  14. Bourrat, F. & Sotelo, C. Migratory pathways and neuritic differentiation of inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab technique. Brain Res. 467, 19–37 (1988).

    CAS  PubMed  Google Scholar 

  15. Rakic, P. Principles of neural cell migration. Experientia 46, 882–891 (1990).

    CAS  PubMed  Google Scholar 

  16. Rakic, P. Neuron–glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J. Comp. Neurol. 141, 283–312 (1971).

    CAS  PubMed  Google Scholar 

  17. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

    CAS  PubMed  Google Scholar 

  18. Rakic, P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J. 54, 25–40 (1978).

    PubMed  Google Scholar 

  19. Edmondson, J. C. & Hatten, M. E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci. 7, 1928–1934 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hatten, M. E. The role of migration in central nervous system neuronal development. Curr. Opin. Neurobiol. 3, 38–44 (1993).

    CAS  PubMed  Google Scholar 

  21. Gao, W. Q. & Hatten, M. E. Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development 120, 1059–1070 (1994).

    CAS  PubMed  Google Scholar 

  22. Hatten, M. E. Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539 (1999).References 15–22 , together with reference 41 , provide a comprehensive outlook on neuronal migration, from morphological analysis to diseases that result from migration defects.

    CAS  PubMed  Google Scholar 

  23. Nadarajah, B. & Parnavelas, J. G. Gap junction-mediated communication in the developing and adult cerebral cortex. Novartis Found. Symp. 219, 157–170 (1999).

    CAS  PubMed  Google Scholar 

  24. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    CAS  PubMed  Google Scholar 

  25. Denaxa, M., Chan, C. H., Schachner, M., Parnavelas, J. G. & Karagogeos, D. The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128, 4635–4644 (2001).

    CAS  PubMed  Google Scholar 

  26. Kaethner, R. J. & Stuermer, C. A. Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish. J. Neurobiol. 32, 627–639 (1997).

    CAS  PubMed  Google Scholar 

  27. Dingwell, K. S., Holt, C. E. & Harris, W. A. The multiple decisions made by growth cones of RGCs as they navigate from the retina to the tectum in Xenopus embryos. J. Neurobiol. 44, 246–259 (2000).

    CAS  PubMed  Google Scholar 

  28. Brittis, P. A., Meiri, K., Dent, E. & Silver, J. The earliest patterns of neuronal differentiation and migration in the mammalian central nervous system. Exp. Neurol. 134, 1–12 (1995).References 26–28 make an important contribution to our understanding of neurite formation and navigation in living specimens.

    CAS  PubMed  Google Scholar 

  29. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    CAS  PubMed  Google Scholar 

  30. Goslin, K. & Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507–1516 (1989).

    CAS  PubMed  Google Scholar 

  31. Mason, C. A. & Wang, L. C. Growth cone form is behavior-specific and, consequently, position-specific along the retinal axon pathway. J. Neurosci. 17, 1086–1100 (1997).Together with reference 29 , this paper provides a thorough description of neuronal polarity development and growth cone behaviour in different types of neuronal systems both in vivo and in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rauvala, H. & Peng, H. B. HB-GAM (heparin-binding growth-associated molecule) and heparin-type glycans in the development and plasticity of neuron-target contacts. Prog. Neurobiol. 52, 127–144 (1997).

    CAS  PubMed  Google Scholar 

  33. Joester, A. & Faissner, A. The structure and function of tenascins in the nervous system. Matrix Biol. 20, 13–22 (2001).

    CAS  PubMed  Google Scholar 

  34. Brose, K. & Tessier-Lavigne, M. Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol. 10, 95–102 (2000).

    CAS  PubMed  Google Scholar 

  35. Tucker, K. L., Meyer, M. & Barde, Y. A. Neurotrophins are required for nerve growth during development. Nature Neurosci. 4, 29–37 (2001).

    CAS  PubMed  Google Scholar 

  36. Labelle, C. & Leclerc, N. Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons. Brain Res. Dev. Brain Res. 123, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  37. Mendell, L. M., Munson, J. B. & Arvanian, V. L. Neurotrophins and synaptic plasticity in the mammalian spinal cord. J. Physiol. (Lond.) 533, 91–97 (2001).

    CAS  Google Scholar 

  38. Hu, S. & Reichardt, L. F. From membrane to cytoskeleton: enabling a connection. Neuron 22, 419–422 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lilienbaum, A., Reszka, A. A., Horwitz, A. F. & Holt, C. E. Chimeric integrins expressed in retinal ganglion cells impair process outgrowth in vivo. Mol. Cell. Neurosci. 6, 139–152 (1995).

    CAS  PubMed  Google Scholar 

  40. Baum, P. D. & Garriga, G. Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19, 51–62 (1997).In references 39 and 40 , the importance of integrins in neuritogenesis is studied in two different biological systems.

    CAS  PubMed  Google Scholar 

  41. Gleeson, J. G. & Walsh, C. A. Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci. 23, 352–359 (2000).

    CAS  PubMed  Google Scholar 

  42. Gomez, T. M., Robles, E., Poo, M. & Spitzer, N. C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001).

    CAS  PubMed  Google Scholar 

  43. Spitzer, N. C. Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. J. Physiol. (Paris) 96, 73–80 (2002).

    CAS  Google Scholar 

  44. Chang, S. & De Camilli, P. Glutamate regulates actin-based motility in axonal filopodia. Nature Neurosci. 4, 787–793 (2001).

    CAS  PubMed  Google Scholar 

  45. Lautermilch, N. J. & Spitzer, N. C. Regulation of calcineurin by growth cone calcium waves controls neurite extension. J. Neurosci. 20, 315–325 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Burkin, D. J., Kim, J. E., Gu, M. & Kaufman, S. J. Laminin and α7β1 integrin regulate agrin-induced clustering of acetylcholine receptors. J. Cell Sci. 113, 2877–2886 (2000).

    CAS  PubMed  Google Scholar 

  47. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999).

    CAS  PubMed  Google Scholar 

  48. Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol. 10, 274–280 (2000).

    CAS  PubMed  Google Scholar 

  49. Harris, B. Z. & Lim, W. A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219–3231 (2001).

    CAS  PubMed  Google Scholar 

  50. Cayouette, M., Whitmore, A. V., Jeffery, G. & Raff, M. Asymmetric segregation of Numb in retinal development and the influence of the pigmented epithelium. J. Neurosci. 21, 5643–5651 (2001).This work, together with that of reference 47 , paved the way for studying whether or not mammalian neurons are 'primed' for the site of sprouting before migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Condeelis, J. Life at the leading edge: the formation of cell protrusions. Annu. Rev. Cell Biol. 9, 411–444 (1993).

    CAS  PubMed  Google Scholar 

  52. Pantaloni, D., Le Clainche, C. & Carlier, M. F. Mechanism of actin-based motility. Science 292, 1502–1506 (2001).

    CAS  PubMed  Google Scholar 

  53. Raucher, D. & Sheetz, M. P. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J. Cell Biol. 148, 127–136 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Raucher, D. & Sheetz, M. P. Characteristics of a membrane reservoir buffering membrane tension. Biophys. J. 77, 1992–2002 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Morris, C. E. & Homann, U. Cell surface area regulation and membrane tension. J. Membr. Biol. 179, 79–102 (2001).References 53–55 provide experimental evidence for how membrane tension can regulate surface deformation in neurons and thus influence neuritogenesis.

    CAS  PubMed  Google Scholar 

  56. Holt, C. E. A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip. J. Neurosci. 9, 3123–3145 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang, B. L. Protein trafficking mechanisms associated with neurite outgrowth and polarized sorting in neurons. J. Neurochem. 79, 923–930 (2001).

    CAS  PubMed  Google Scholar 

  58. Mattson, M. P. Establishment and plasticity of neuronal polarity. J. Neurosci. Res. 57, 577–589 (1999).

    CAS  PubMed  Google Scholar 

  59. Futerman, A. H. & Banker, G. A. The economics of neurite outgrowth — the addition of new membrane to growing axons. Trends Neurosci. 19, 144–149 (1996).

    CAS  PubMed  Google Scholar 

  60. Bradke, F. & Dotti, C. G. Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175–1186 (1997).

    CAS  PubMed  Google Scholar 

  61. Smith, S. J. Neuronal cytomechanics: the actin-based motility of growth cones. Science 242, 708–715 (1988).

    CAS  PubMed  Google Scholar 

  62. Pollard, T. D. Reflections on a quarter century of research on contractile systems. Trends Biochem. Sci. 25, 607–611 (2000).

    CAS  PubMed  Google Scholar 

  63. Herring, T. L., Cohan, C. S., Welnhofer, E. A., Mills, L. R. & Morris, C. E. F-actin at newly invaginated membrane in neurons: implications for surface area regulation. J. Membr. Biol. 171, 151–169 (1999).

    CAS  PubMed  Google Scholar 

  64. Goldberg, D. J. & Burmeister, D. W. Looking into growth cones. Trends Neurosci. 12, 503–506 (1989).

    CAS  PubMed  Google Scholar 

  65. Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994).

    CAS  PubMed  Google Scholar 

  66. Bridgman, P. C. & Dailey, M. E. The organization of myosin and actin in rapid frozen nerve growth cones. J. Cell Biol. 108, 95–109 (1989).

    CAS  PubMed  Google Scholar 

  67. Letourneau, P. C. Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J. Cell Biol. 97, 963–973 (1983).

    CAS  PubMed  Google Scholar 

  68. Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107, 1505–1516 (1988).

    CAS  PubMed  Google Scholar 

  69. Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999).

    CAS  PubMed  Google Scholar 

  70. Ruthel, G. & Banker, G. Role of moving growth cone-like 'wave' structures in the outgrowth of cultured hippocampal axons and dendrites. J. Neurobiol. 39, 97–106 (1999).

    CAS  PubMed  Google Scholar 

  71. Ruthel, G. & Hollenbeck, P. J. Growth cones are not required for initial establishment of polarity or differential axon branch growth in cultured hippocampal neurons. J. Neurosci. 20, 2266–2274 (2000).Together, references 68–71 provide experimental evidence for how actin dynamics are involved in growth cone motility and process formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    CAS  PubMed  Google Scholar 

  73. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    CAS  PubMed  Google Scholar 

  74. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    CAS  PubMed  Google Scholar 

  75. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    CAS  PubMed  Google Scholar 

  76. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    CAS  PubMed  Google Scholar 

  77. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Olson, M. F., Pasteris, N. G., Gorski, J. L. & Hall, A. Faciogenital dysplasia protein (FGD1) and Vav, two related proteins required for normal embryonic development, are upstream regulators of Rho GTPases. Curr. Biol. 6, 1628–1633 (1996).

    CAS  PubMed  Google Scholar 

  79. Michiels, F. et al. Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and c-Jun NH2-terminal kinase activation. J. Cell Biol. 137, 387–398 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Michelitch, M. & Chant, J. A mechanism of Bud1p GTPase action suggested by mutational analysis and immunolocalization. Curr. Biol. 6, 446–454 (1996).

    CAS  PubMed  Google Scholar 

  81. Park, H. O., Chant, J. & Herskowitz, I. BUD2 encodes a GTPase-activating protein for Bud1/Rsr1 necessary for proper bud-site selection in yeast. Nature 365, 269–274 (1993).

    CAS  PubMed  Google Scholar 

  82. Johnson, D. I. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54–105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schmidt, A. & Hall, M. N. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 305–338 (1998).

    CAS  PubMed  Google Scholar 

  84. Tanaka, K. & Takai, Y. Control of reorganization of the actin cytoskeleton by Rho family small GTP-binding proteins in yeast. Curr. Opin. Cell Biol. 10, 112–116 (1998).

    CAS  PubMed  Google Scholar 

  85. Jalink, K., Eichholtz, T., Postma, F. R., van Corven, E. J. & Moolenaar, W. H. Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ. 4, 247–255 (1993).

    CAS  PubMed  Google Scholar 

  86. Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801–10 (1994).

    CAS  PubMed  Google Scholar 

  87. Nishiki, T. et al. ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite outgrowth and acetylcholine esterase in cultured PC-12 cells. Biochem. Biophys. Res. Commun. 167, 265–272 (1990).

    CAS  PubMed  Google Scholar 

  88. Aktories, K. Rho proteins: targets for bacterial toxins. Trends Microbiol. 5, 282–288 (1997).

    CAS  PubMed  Google Scholar 

  89. Ottlinger, M. E. & Lin, S. Clostridium difficile toxin B induces reorganization of actin, vinculin, and talin in cultured cells. Exp. Cell Res. 174, 215–229 (1988).

    CAS  PubMed  Google Scholar 

  90. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    CAS  PubMed  Google Scholar 

  91. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000).Together with references 72 and 73 , this paper offers comprehensive revisions on the role and regulation of Rho GTPases in a wide spectrum of biological systems.

    CAS  Google Scholar 

  92. Kuhn, T. B., Brown, M. D. & Bamburg, J. R. Rac1-dependent actin filament organization in growth cones is necessary for β1-integrin-mediated advance but not for growth on poly-d-lysine. J. Neurobiol. 37, 524–540 (1998).

    CAS  PubMed  Google Scholar 

  93. Kaufmann, N., Wills, Z. P. & Van Vactor, D. Drosophila Rac1 controls motor axon guidance. Development 125, 453–461 (1998).

    CAS  PubMed  Google Scholar 

  94. Ruchhoeft, M. L., Ohnuma, S., McNeill, L., Holt, C. E. & Harris, W. A. The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J. Neurosci. 19, 8454–8463 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 (1997).

    CAS  PubMed  Google Scholar 

  96. Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    CAS  PubMed  Google Scholar 

  97. Li, Z., Van Aelst, L. & Cline, H. T. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nature Neurosci. 3, 217–225 (2000).

    CAS  PubMed  Google Scholar 

  98. Nakayama, A. Y., Harms, M. B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R. & Wong, R. O. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024–5036 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348 (1999).

    CAS  PubMed  Google Scholar 

  101. Wasserman, S. FH proteins as cytoskeletal organizers. Trends Cell Biol. 8, 111–115 (1998).

    CAS  PubMed  Google Scholar 

  102. Frazier, J. A. & Field, C. M. Actin cytoskeleton: are FH proteins local organizers? Curr. Biol. 7, R414–R417 (1997).

    CAS  PubMed  Google Scholar 

  103. Sheu, Y. J., Santos, B., Fortin, N., Costigan, C. & Snyder, M. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Cell. Biol. 18, 4053–4069 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fujiwara, T. et al. Rho1p–Bni1p–Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1221–1233 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Imamura, H. et al. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16, 2745–2755 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. J. Cell Sci. 113, 571–585 (2000).

    CAS  PubMed  Google Scholar 

  107. Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 32–41 (2002).

    CAS  PubMed  Google Scholar 

  108. Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol. 4, 42–50 (2002).Articles 107 and 108 are recent influential contributions on the role of formins in bud formation; they highlight the potential involvement of this group of proteins in the budding of other biological spheres (for example, neurons).

    CAS  PubMed  Google Scholar 

  109. Borisy, G. G. & Svitkina, T. M. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12, 104–112 (2000).

    CAS  PubMed  Google Scholar 

  110. Cooper, J. A. & Schafer, D. A. Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 12, 97–103 (2000).

    CAS  PubMed  Google Scholar 

  111. Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F. & Lindberg, U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115, 465–483 (1977).

    CAS  PubMed  Google Scholar 

  112. Di Nardo, A., Gareus, R., Kwiatkowski, D. & Witke, W. Alternative splicing of the mouse profilin II gene generates functionally different profilin isoforms. J. Cell Sci. 113, 3795–3803 (2000).

    CAS  PubMed  Google Scholar 

  113. Hu, E., Chen, Z., Fredrickson, T. & Zhu, Y. Molecular cloning and characterization of profilin-3: a novel cytoskeleton-associated gene expressed in rat kidney and testes. Exp. Nephrol. 9, 265–274 (2001).

    CAS  PubMed  Google Scholar 

  114. Haarer, B. K. et al. Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J. Cell Biol. 110, 105–114 (1990).

    CAS  PubMed  Google Scholar 

  115. Buss, F., Temm-Grove, C., Henning, S. & Jockusch, B. M. Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments. Cell Motil. Cytoskeleton 22, 51–61 (1992).

    CAS  PubMed  Google Scholar 

  116. Suetsugu, S., Miki, H. & Takenawa, T. Distinct roles of profilin in cell morphological changes: microspikes, membrane ruffles, stress fibers, and cytokinesis. FEBS Lett. 457, 470–474 (1999).References 115 and 116 describe the localization and role of profilin in different actin-driven morphological events in fibroblasts.

    CAS  PubMed  Google Scholar 

  117. Maciver, S. K. How ADF/cofilin depolymerizes actin filaments. Curr. Opin. Cell Biol. 10, 140–144 (1998).

    CAS  PubMed  Google Scholar 

  118. Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391 (1994).

    CAS  PubMed  Google Scholar 

  119. Moon, A. L., Janmey, P. A., Louie, K. A. & Drubin, D. G. Cofilin is an essential component of the yeast cortical cytoskeleton. J. Cell Biol. 120, 421–435 (1993).

    CAS  PubMed  Google Scholar 

  120. Lappalainen, P. & Drubin, D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82 (1997).

    CAS  PubMed  Google Scholar 

  121. Yonezawa, N. et al. Distribution among tissues and intracellular localization of cofilin, a 21kDa actin-binding protein. Cell Struct. Funct. 12, 443–452 (1987).

    CAS  PubMed  Google Scholar 

  122. Higgs, H. N. & Pollard, T. D. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70, 649–676 (2001).

    CAS  PubMed  Google Scholar 

  123. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Higgs, H. N. & Pollard, T. D. Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J. Biol. Chem. 274, 32531–32534 (1999).

    CAS  PubMed  Google Scholar 

  125. Lechler, T., Shevchenko, A. & Li, R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J. Cell Biol. 148, 363–373 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J. & Munn, A. L. The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr. Biol. 8, 959–962 (1998).

    CAS  PubMed  Google Scholar 

  127. Winter, D., Podtelejnikov, A. V., Mann, M. & Li, R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr. Biol. 7, 519–529 (1997).

    CAS  PubMed  Google Scholar 

  128. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    CAS  PubMed  Google Scholar 

  129. Castrillon, D. H. & Wasserman, S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367–3377 (1994).

    CAS  PubMed  Google Scholar 

  130. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999).

    CAS  PubMed  Google Scholar 

  132. Krebs, A., Rothkegel, M., Klar, M. & Jockusch, B. M. Characterization of functional domains of mDia1, a link between the small GTPase Rho and the actin cytoskeleton. J. Cell Sci. 114, 3663–3672 (2001).

    CAS  PubMed  Google Scholar 

  133. Verheyen, E. M. & Cooley, L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120, 717–728 (1994).

    CAS  PubMed  Google Scholar 

  134. Wills, Z., Marr, L., Zinn, K., Goodman, C. S. & Van Vactor, D. Profilin and the Abl tyrosine kinase are required for motor axon outgrowth in the Drosophila embryo. Neuron 22, 291–299 (1999).

    CAS  PubMed  Google Scholar 

  135. Lambrechts, A. et al. Profilin II is alternatively spliced, resulting in profilin isoforms that are differentially expressed and have distinct biochemical properties. Mol. Cell. Biol. 20, 8209–8219 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bito, H. et al. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26, 431–441 (2000).This work implicates RhoA and ROCK in neurite initiation, and indicates that RhoA inhibition favours such an event.

    CAS  PubMed  Google Scholar 

  137. Jasper, H. et al. The genomic response of the Drosophila embryo to JNK signaling. Dev. Cell 1, 579–586 (2001).

    CAS  PubMed  Google Scholar 

  138. Smith, C. L. Cytoskeletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro. J. Neurosci. 14, 384–398 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Smith, C. L. The initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules. J. Cell Biol. 127, 1407–1418 (1994).

    CAS  PubMed  Google Scholar 

  140. Tang, D. & Goldberg, D. J. Bundling of microtubules in the growth cone induced by laminin. Mol. Cell. Neurosci. 15, 303–313 (2000).

    CAS  PubMed  Google Scholar 

  141. Ahmad, F. J. et al. Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nature Cell Biol. 2, 276–280 (2000).

    CAS  PubMed  Google Scholar 

  142. Zhou, F. Q., Waterman-Storer, C. M. & Cohan, C. S. Focal loss of actin bundles causes microtubule redistribution and growth cone turning. J. Cell Biol. 157, 839–849 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999).

    CAS  PubMed  Google Scholar 

  144. Wittmann, T. & Waterman-Storer, C. M. Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795–3803 (2001).An important revision in which the interaction between actin and microtubules is highlighted in the context of the role of Rho GTPases in regulating the microtubule cytoskeleton during cell migration.

    CAS  PubMed  Google Scholar 

  145. Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Diaz, H., Lorenzo, A., Carrer, H. F. & Caceres, A. Time lapse study of neurite growth in hypothalamic dissociated neurons in culture: sex differences and estrogen effects. J. Neurosci. Res. 33, 266–281 (1992).

    CAS  PubMed  Google Scholar 

  147. Ferreira, A. & Caceres, A. The expression of acetylated microtubules during axonal and dendritic growth in cerebellar macroneurons which develop in vitro. Brain Res. Dev. Brain Res. 49, 205–213 (1989).

    CAS  PubMed  Google Scholar 

  148. He, Z., Wang, K. C., Koprivica, V., Ming, G. & Song, H. J. Knowing how to navigate: mechanisms of semaphorin signaling in the nervous system. Sci STKE 2002, RE1 (2002).

    PubMed  Google Scholar 

  149. Liu, B. P. & Strittmatter, S. M. Semaphorin-mediated axonal guidance via Rho-related G proteins. Curr. Opin. Cell Biol. 13, 619–626 (2001).

    CAS  PubMed  Google Scholar 

  150. Wilkinson, D. G. Multiple roles of EPH receptors and ephrins in neural development. Nature Rev. Neurosci. 2, 155–164 (2001).

    CAS  Google Scholar 

  151. Klein, R. Excitatory Eph receptors and adhesive ephrin ligands. Curr. Opin. Cell Biol. 13, 196–203 (2001).

    CAS  PubMed  Google Scholar 

  152. Esch, T., Lemmon, V. & Banker, G. Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J. Neurosci. 19, 6417–6426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lein, P., Johnson, M., Guo, X., Rueger, D. & Higgins, D. Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15, 597–605 (1995).

    CAS  PubMed  Google Scholar 

  154. Lafont, F. & Prochiantz, A. Region-specific neuroastroglial interactions in neuronal morphogenesis and polarity: from homeogenic induction to cellular cytomechanics. Perspect. Dev. Neurobiol. 2, 259–268 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of the laboratory for their contribution to this work through helpful suggestions and insightful comments on the manuscript. J.S.S. is supported by an FCT/PRAXIS XXI scholarship (Portuguese Ministry of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Dotti.

Related links

Related links

DATABASES

FlyBase

Bazooka

Cappuccino

Chickadee

Diaphanous

Inscuteable

Numb

Prospero

LocusLink

α-actinin

ADF

Arp2

Arp3

Cdc42

cofilin

collagen

FGF2

FGF7

filamin

gelsolin

HB-GAM

IGF

laminin

mDia

Mena

neurotrophins

profilin

Rac1

RhoA

ROCK

Slit

tenascins

TGF-β

thymosin-β4

VASP

VEGF

WASP

<i>Saccharomyces</i> Genome Database

Bee1p

Bem1p

Bni1p

Bnr1p

Bud1p

Bud2p

Bud5p

Cdc24p

Cdc42p

COF1

Myo1p

Rho1p

Rho2p

Rho3p

Rho4p

WormBase

INA-1

FURTHER INFORMATION

Encyclopedia of Life Sciences

actin and actin filaments

axon growth

axonal transport and the neuronal cytoskeleton

cytoskeleton

Glossary

LAMELLIPODIUM

A sheet-like extension at the edge of cells that contains a crosslinked F-actin meshwork and is often associated with cell migration.

FILOPODIUM

A long, thin protrusion at the periphery of cells and growth cones that is composed of F-actin bundles.

LATERAL GANGLIONIC EMINENCE

A region of the embryonic brain that gives rise to the striatum. It is also the source of a population of cells that migrate to populate the cerebral cortex and the olfactory bulb.

DII

DiI is a lipophilic carbocyanine dye that emits an intense fluorescence when incorporated into cell membranes. It is commonly used to track cell migration, or for the retrograde or anterograde tracing of axons. It can be used on both live and fixed tissue.

HETEROTOPIA

In general, this terms refers to the displacement of neuronal cell bodies into the white matter.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. It can bind to the carboxyl termini of proteins or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs large, zona occludens 1).

DOMINANT NEGATIVE

Describes a mutant molecule that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

STRESS FIBRES

Bundles of microfilaments and other proteins that are commonly found on migrating cells. They are contractile and can be anchored to a focal adhesion.

FOCAL ADHESION

An area of close apposition between the membrane of a cell and the surface along which the cell is moving.

SH DOMAINS

Src-homology domains are involved in interactions with phosphorylated tyrosine residues on other proteins (SH2 domains) or with proline-rich sections of other proteins (SH3 domains).

ADP RIBOSYLATION

The transfer, through an ADP ribosyltransferase, of one or more ADP-ribosyl groups from NAD+ to a protein.

PC12 CELLS

Neuron-like cells that are derived from a malignant neural crest tumour (a phaeochromocytoma).

N1E-115 CELLS

An adrenergic cell line derived from a mouse neuroblastoma that is commonly used in studies of tumorigenicity.

TOXIN B

A glucosyltransferase that inhibits members of the Rho family of GTPases. It is produced by Clostridium difficile, the causative agent of pseudomembranous colitis.

POINTED END

The structural polarity of filamentous actin was defined by decoration with myosin fragments. This procedure resulted in an arrowhead appearance of the actin filament, with a 'barbed' end and a 'pointed' end. The addition of actin monomers is more favoured at the barbed end than at the pointed end.

CORTICAL MESHWORK

A submembranous layer of microfilaments anchored to the cell membrane that contributes to the mechanical properties of the cell surface and restricts the access of cytoplasmic vesicles to the plasma membrane.

SWISS 3T3 CELLS

An immortal line of fibroblast-like cells that was established from embryos of Swiss mice (which are not an inbred stock). They form confluent monolayers, and their mobility is highly inhibited by contact.

CYTOKINESIS

The final event in the cell-division cycle. Its completion results in the irreversible partition of a mother cell into two daughter cells. It involves cytoplasmic division, driven by an actin-based constriction of the contractile ring. It is worthwhile comparing cytokinesis with mitosis — the process of nuclear division.

RBD DOMAIN

Rho-GTP-binding domain. The RBD of the mammalian diaphanous proteins binds only activated RhoA–C, whereas diaphanous proteins of budding yeast interact with Cdc42 as well. The binding of activated Rho to the RBD of diaphanous proteins stimulates actin reorganization.

CIID DOMAIN

C-terminal intramolecular domain of diaphanous proteins. The RBD domain complexes with CIID in a species-restricted manner to autoregulate the activity of diaphanous proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Da Silva, J., Dotti, C. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3, 694–704 (2002). https://doi.org/10.1038/nrn918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing