Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity

Abstract

The CNS is endowed with an elaborated response repertoire termed 'neuroinflammation', which enables it to cope with pathogens, toxins, traumata and degeneration. On the basis of recent publications, we deduce that orchestrated actions of immune cells, vascular cells and neurons that constitute neuroinflammation are not only provoked by pathological conditions but can also be induced by increased neuronal activity. We suggest that the technical term 'neurogenic neuroinflammation' should be used for inflammatory reactions in the CNS in response to neuronal activity. We believe that neurogenic neuro-inflammation maintains homeostasis to enable the CNS to cope with enhanced metabolic demands and increases the computational power and plasticity of CNS neuronal networks. However, neurogenic neuroinflammation may also become maladaptive and aggravate the outcomes of pain, stress and epilepsy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Triggers, actions and outcomes of neuroinflammation.
Figure 2: Neuronal activity triggers neurogenic inflammation in peripheral tissues.
Figure 3: Neuronal activity triggers neurogenic neuroinflammation in the CNS.

References

  1. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  2. Maier, S. F., Goehler, L. E., Fleshner, M. & Watkins, L. R. The role of the vagus nerve in cytokine-to-brain communication. Ann. NY Acad. Sci. 840, 289–300 (1998).

    CAS  PubMed  Google Scholar 

  3. Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    CAS  PubMed  Google Scholar 

  4. Balabanov, R., Beaumont, T. & Dore-Duffy, P. Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J. Neurosci. Res. 55, 578–587 (1999).

    CAS  PubMed  Google Scholar 

  5. Ransohoff, R. M. & Cardona, A. E. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010).

    CAS  PubMed  Google Scholar 

  6. Kettenmann, H., Hanisch, U.-K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol. Rev. 91, 461–553 (2011).

    CAS  PubMed  Google Scholar 

  7. Aguzzi, A., Barres, B. A. & Bennett, M. L. Microglia: scapegoat, saboteur, or something else? Science 339, 156–161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Skaper, S. D., Giusti, P. & Facci, L. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J. 26, 3103–3117 (2012).

    CAS  PubMed  Google Scholar 

  9. Melchior, B., Puntambekar, S. S. & Carson, M. J. Microglia and the control of autoreactive T cell responses. Neurochem. Int. 49, 145–153 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ransohoff, R. M. & Brown, M. A. Innate immunity in the central nervous system. J. Clin. Invest. 122, 1164–1171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Minami, M., Kuraishi, Y. & Satoh, M. Effects of kainic acid on messenger RNA levels of IL-1β IL-6, TNFα and LIF in the rat brain. Biochem. Biophys. Res. Commun. 176, 593–598 (1991).

    CAS  PubMed  Google Scholar 

  12. Vezzani, A. et al. Interleukin-1β immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci. 19, 5054–5065 (1999).

    CAS  PubMed  Google Scholar 

  13. Vezzani, A., French, J., Bartfai, T. & Baram, T. Z. The role of inflammation in epilepsy. Nature Rev. Neurol. 7, 31–40 (2011).

    CAS  Google Scholar 

  14. Combes, V., Guillemin, G. J., Chan-Ling, T., Hunt, N. H. & Grau, G. E. The crossroads of neuroinflammation in infectious diseases: endothelial cells and astrocytes. Trends Parasitol. 28, 311–319 (2012).

    CAS  PubMed  Google Scholar 

  15. Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W. & Steinhoff, M. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol. Rev. 86, 1309–1379 (2006).

    CAS  PubMed  Google Scholar 

  16. Berczi, I. & Szentiványi, A. Neuroimmune Biology (Elsevier, 2009).

    Google Scholar 

  17. Chiu, I. M., von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nature Neurosci. 15, 1063–1067 (2012).

    CAS  PubMed  Google Scholar 

  18. Gruber-Schoffnegger, D. et al. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J. Neurosci. 33, 6540–6551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hathway, G. J., Vega-Avelaira, D., Moss, A., Ingram, R. & Fitzgerald, M. Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain 144, 110–118 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Zochodne, D. W., Sun, H. & Li, X.-Q. Evidence that nitric oxide- and opioid-containing interneurons innervate vessels in the dorsal horn of the spinal cord of rats. J. Physiol. 532, 749–758 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Beggs, S., Liu, X. J., Kwan, C. & Salter, M. W. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood–brain barrier. Mol. Pain 6, 74–79 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Svensson, C. I. et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J. Neurochem. 86, 1534–1544 (2003).

    CAS  PubMed  Google Scholar 

  23. Zhong, Y. et al. The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: the role of tumor necrosis factor-α. Brain Behav. Immun. 24, 874–880 (2010).

    CAS  PubMed  Google Scholar 

  24. Li, W. E. & Nagy, J. I. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal–glial interactions. Neuroscience 97, 113–123 (2000).

    CAS  PubMed  Google Scholar 

  25. Kuroi, T. et al. Alterations in microglia and astrocytes in the trigeminal nucleus caudalis by repetitive TRPV1 stimulation on the trigeminal nociceptors. Neuroreport 23, 560–565 (2012).

    CAS  PubMed  Google Scholar 

  26. Town, T., Nikolic, V. & Tan, J. The microglial “activation” continuum: from innate to adaptive responses. J. Neuroinflammation 2, 24 (2005).

    PubMed  PubMed Central  Google Scholar 

  27. Maroso, M. et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nature Med. 16, 413–419 (2010).

    CAS  PubMed  Google Scholar 

  28. Liu, T., Gao, Y. J. & Ji, R. R. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci. Bull. 28, 131–144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nicotra, L., Loram, L. C., Watkins, L. R. & Hutchinson, M. R. Toll-like receptors in chronic pain. Exp. Neurol. 234, 316–329 (2012).

    CAS  PubMed  Google Scholar 

  30. Grinberg, Y. Y., Milton, J. G. & Kraig, R. P. Spreading depression sends microglia on Lévy flights. PLoS ONE 6, e19294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Milligan, E. D. & Watkins, L. R. Pathological and protective roles of glia in chronic pain. Nature Rev. Neurosci. 10, 23–36 (2009).

    CAS  Google Scholar 

  32. Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nature Rev. Neurosci. 6, 521–532 (2005).

    CAS  Google Scholar 

  33. Shubayev, V. I. & Myers, R. R. Axonal transport of TNF-α in painful neuropathy: distribution of ligand tracer and TNF receptors. J. Neuroimmunol. 114, 48–56 (2001).

    CAS  PubMed  Google Scholar 

  34. Bradl, M., Bauer, J., Flügel, A., Wekerle, H. & Lassmann, H. Complementary contribution of CD4 and CD8 T lymphocytes to T-cell infiltration of the intact and the degenerative spinal cord. Am. J. Pathol. 166, 1441–1450 (2005).

    PubMed  PubMed Central  Google Scholar 

  35. Levite, M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr. Opin. Pharmacol. 8, 460–471 (2008).

    CAS  PubMed  Google Scholar 

  36. Prod'homme, T., Weber, M. S., Steinman, L. & Zamvil, S. S. A neuropeptide in immune-mediated inflammation, Y? Trends Immunol. 27, 164–167 (2006).

    CAS  PubMed  Google Scholar 

  37. Flierl, M. A., Rittirsch, D., Huber-Lang, M., Sarma, J. V. & Ward, P. A. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening Pandora's box? Mol. Med. 14, 195–204 (2008).

    CAS  PubMed  Google Scholar 

  38. Sorkin, L. S. & McAdoo, D. J. Amino acids and serotonin are released into the lumbar spinal cord of the anesthetized cat following intradermal capsaicin injections. Brain Res. 607, 89–98 (1993).

    CAS  PubMed  Google Scholar 

  39. Men, D. S. & Matsui, Y. Peripheral nerve stimulation increases serotonin and dopamine metabolites in rat spinal cord. Brain Res. Bull. 33, 625–632 (1994).

    CAS  PubMed  Google Scholar 

  40. Krakowski, M. L. & Owens, T. Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur. J. Immunol. 30, 1002–1009 (2000).

    CAS  PubMed  Google Scholar 

  41. Kulka, M., Sheen, C. H., Tancowny, B. P., Grammer, L. C. & Schleimer, R. P. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123, 398–410 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xanthos, D. N. et al. Central nervous system mast cells in peripheral inflammatory nociception. Mol. Pain 7, 42–58 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. Toda, H., Maruyama, H., Budgell, B. & Kurosawa, M. Responses of dorsal spinal cord blood flow to noxious mechanical stimulation of the skin in anesthetized rats. J. Physiol. Sci. 58, 263–270 (2008).

    PubMed  Google Scholar 

  44. Zhao, F. et al. fMRI investigation of the effect of local and systemic lidocaine on noxious electrical stimulation-induced activation in spinal cord. Pain 145, 110–119 (2009).

    CAS  PubMed  Google Scholar 

  45. Ching, S. et al. Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration. J. Neurosci. 27, 10476–10486 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Burnstock, G. Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells. Pharmacol. Rep. 60, 12–20 (2008).

    CAS  PubMed  Google Scholar 

  47. Annunziata, P., Cioni, C., Santonini, R. & Paccagnini, E. Substance P antagonist blocks leakage and reduces activation of cytokine-stimulated rat brain endothelium. J. Neuroimmunol. 131, 41–49 (2002).

    CAS  PubMed  Google Scholar 

  48. McCulloch, J., Uddman, R., Kingman, T. A. & Edvinsson, L. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc. Natl Acad. Sci. USA 83, 5731–5735 (1986).

    CAS  PubMed  Google Scholar 

  49. Duggan, A. W., Morton, C. R., Zhao, Z.-Q. & Hendry, I. A. Noxious heating of the skin releases immunoreactive substance P in the substantia gelatinosa of the cat: a study with antibody microprobes. Brain Res. 403, 345–349 (1987).

    CAS  PubMed  Google Scholar 

  50. Morton, C. R. & Hutchison, W. D. Release of sensory neuropeptides in the spinal cord: studies with calcitonin gene-related peptide and galanin. Neuroscience 31, 807–815 (1989).

    CAS  PubMed  Google Scholar 

  51. Xu, H.-L. & Pelligrino, D. A. ATP release and hydrolysis contribute to rat pial arteriolar dilatation elicited by neuronal activation. Exp. Physiol. 92, 647–651 (2007).

    CAS  PubMed  Google Scholar 

  52. Tsuda, M., Ueno, S. & Inoue, K. Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br. J. Pharmacol. 128, 1497–1504 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fields, R. D. & Burnstock, G. Purinergic signalling in neuron–glia interactions. Nature Rev. Neurosci. 7, 423–436 (2006).

    CAS  Google Scholar 

  54. Yashiro, Y. & Ohhashi, T. Flow- and agonist-mediated nitric oxide- and prostaglandin-dependent dilation in spinal arteries. Am. J. Physiol. 273, H2217–H2223 (1997).

    CAS  PubMed  Google Scholar 

  55. Heinemann, U., Schaible, H.-G. & Schmidt, R. F. Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs with healthy and inflamed knee joints. Exp. Brain Res. 79, 283–292 (1990).

    CAS  PubMed  Google Scholar 

  56. Vanegas, H. & Schaible, H.-G. Prostaglandins and cyclooxygenases in the spinal cord. Prog. Neurobiol. 64, 327–363 (2001).

    CAS  PubMed  Google Scholar 

  57. Xanthos, D. N., Püngel, I., Wunderbaldinger, G. & Sandkühler, J. Effects of peripheral inflammation on the blood–spinal cord barrier. Mol. Pain 8, 44 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kovac, A., Erickson, M. A. & Banks, W. A. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J. Neuroinflammation 8, 139 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Verma, S., Nakaoke, R., Dohgu, S. & Banks, W. A. Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav. Immun. 20, 449–455 (2006).

    CAS  PubMed  Google Scholar 

  60. Pocock, J. M. & Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosci. 30, 527–535 (2007).

    CAS  PubMed  Google Scholar 

  61. Khakh, B. S. & North, R. A. P2X receptors as cell-surface ATP sensors in health and disease. Nature 442, 527–532 (2006).

    CAS  PubMed  Google Scholar 

  62. Krizbai, I. A. et al. Expression of glutamate receptors on cultured cerebral endothelial cells. J. Neurosci. Res. 54, 814–819 (1998).

    CAS  PubMed  Google Scholar 

  63. Palmer, G. C. Neurochemical coupled actions of transmitters in the microvasculature of the brain. Neurosci. Biobehav. Rev. 10, 79–101 (1986).

    CAS  PubMed  Google Scholar 

  64. Wang, J. X., Ikomi, F. & Ohhashi, T. 5-Hydroxytryptamine-induced endothelium-dependent and -independent relaxations in isolated dog anterior spinal small arteries. Can. J. Physiol. Pharmacol. 75, 357–362 (1997).

    CAS  PubMed  Google Scholar 

  65. Beck, G. C. et al. Clinical review: immunomodulatory effects of dopamine in general inflammation. Crit. Care 8, 485–491 (2004).

    PubMed  Google Scholar 

  66. Mead, E. L. et al. Microglial neurotransmitter receptors trigger superoxide production in microglia; consequences for microglial-neuronal interactions. J. Neurochem. 121, 287–301 (2012).

    CAS  PubMed  Google Scholar 

  67. Gyoneva, S. & Traynelis, S. F. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J. Biol. Chem. 288, 15291–15302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shao, W. et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature 494, 90–94 (2013).

    CAS  PubMed  Google Scholar 

  69. Verge, G. M. et al. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 20, 1150–1160 (2004).

    PubMed  Google Scholar 

  70. Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nature Neurosci. 9, 917–924 (2006).

    CAS  PubMed  Google Scholar 

  71. Clark, A. K. & Malcangio, M. Microglial signalling mechanisms: cathepsin S and fractalkine. Exp. Neurol. 234, 283–292 (2012).

    CAS  PubMed  Google Scholar 

  72. Milligan, E. D., Sloane, E. M. & Watkins, L. R. Glia in pathological pain: a role for fractalkine. J. Neuroimmunol. 198, 113–120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).

    CAS  PubMed  Google Scholar 

  74. Dityatev, A. & Rusakov, D. A. Molecular signals of plasticity at the tetrapartite synapse. Curr. Opin. Neurobiol. 21, 353–359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Grace, P. M., Rolan, P. E. & Hutchinson, M. R. Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. Brain Behav. Immun. 25, 1322–1332 (2011).

    CAS  PubMed  Google Scholar 

  76. Drdla, R. & Sandkühler, J. Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo. Mol. Pain 4, 18 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Miyano, K. et al. Activation of the neurokinin-1 receptor in rat spinal astrocytes induces Ca2+ release from IP3-sensitive Ca2+ stores and extracellular Ca2+ influx through TRPC3. Neurochem. Int. 57, 923–934 (2010).

    CAS  PubMed  Google Scholar 

  78. Tumati, S. et al. Tachykinin NK1 receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation. Eur. J. Pharmacol. 684, 64–70 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rasley, A., Bost, K. L., Olson, J. K., Miller, S. D. & Marriott, I. Expression of functional NK-1 receptors in murine microglia. Glia 37, 258–267 (2002).

    PubMed  Google Scholar 

  80. Davis, M. J. & Sharma, N. R. Calcium-release-activated calcium influx in endothelium. J. Vasc. Res. 34, 186–195 (1997).

    CAS  PubMed  Google Scholar 

  81. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nature Rev. Immunol. 7, 803–815 (2007).

    CAS  Google Scholar 

  82. Matsui, T. et al. Release of prostaglandin E2 and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase. Anesth. Analg. 111, 554–560 (2010).

    CAS  PubMed  Google Scholar 

  83. Coderre, T. J., Gonzales, R., Goldyne, M. E., West, J. & Levine, J. D. Noxious stimulus-induced increase in spinal prostaglandin E2 is noradrenergic terminal-dependent. Neurosci. Lett. 115, 253–258 (1990).

    CAS  PubMed  Google Scholar 

  84. Byrnes, K. R., Loane, D. J. & Faden, A. I. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics 6, 94–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Biber, K. et al. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J. Neurochem. 72, 1671–1680 (1999).

    CAS  PubMed  Google Scholar 

  86. Kumar, V., Fahey, P. G., Jong, Y.-J., Ramanan, N. & O'Malley, K. L. Activation of intracellular metabotropic glutamate receptor 5 in striatal neurons leads to up-regulation of genes associated with sustained synaptic transmission including Arc/Arg3.1 protein. J. Biol. Chem. 287, 5412–5425 (2012).

    CAS  PubMed  Google Scholar 

  87. Byrnes, K. R. et al. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 57, 550–560 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Byrnes, K. R. et al. Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Ann. Neurol. 66, 63–74 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, J., Heinke, B. & Sandkühler, J. Activation of group I metabotropic glutamate receptors induces long-term depression at sensory synapses in superficial spinal dorsal horn. Neuropharmacology 39, 2231–2243 (2000).

    CAS  PubMed  Google Scholar 

  90. Deng, W., Wang, H., Rosenberg, P. A., Volpe, J. J. & Jensen, F. E. Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc. Natl Acad. Sci. USA 101, 7751–7756 (2004).

    CAS  PubMed  Google Scholar 

  91. Devaraju, P., Sun, M.-Y., Myers, T. L., Lauderdale, K. & Fiacco, T. A. Astrocytic group I mGluR dependent potentiation of astrocytic glutamate and potassium uptake. J. Neurophysiol. 109, 2404–2414 (2013).

    CAS  PubMed  Google Scholar 

  92. Gillard, S. E., Tzaferis, J., Tsui, H.-C. & Kingston, A. E. Expression of metabotropic glutamate receptors in rat meningeal and brain microvasculature and choroid plexus. J. Comp. Neurol. 461, 317–332 (2003).

    CAS  PubMed  Google Scholar 

  93. Collard, C. D. et al. Neutrophil-derived glutamate regulates vascular endothelial barrier function. J. Biol. Chem. 277, 14801–14811 (2002).

    CAS  PubMed  Google Scholar 

  94. Moore, K. W., de Waal, M. R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  PubMed  Google Scholar 

  95. Park, C.-K. et al. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci. 31, 15072–15085 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ji, R.-R., Xu, Z. Z., Strichartz, G. & Serhan, C. N. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34, 599–609 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Suzuki, T. et al. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J. Neurosci. 24, 1–7 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pintér, E., Helyes, Z. & Szolcsányi, J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol. Ther. 112, 440–456 (2006).

    PubMed  Google Scholar 

  99. Solway, B., Bose, S. C., Corder, G., Donahue, R. R. & Taylor, B. K. Tonic inhibition of chronic pain by neuropeptide Y. Proc. Natl Acad. Sci. USA 108, 7224–7229 (2011).

    CAS  PubMed  Google Scholar 

  100. Orr, A. G., Orr, A. L., Li, X.-J., Gross, R. E. & Traynelis, S. F. Adenosine A2A receptor mediates microglial process retraction. Nature Neurosci. 12, 872–878 (2009).

    CAS  PubMed  Google Scholar 

  101. Neumann, H., Cavalie, A., Jenne, D. E. & Wekerle, H. Induction of MHC class I genes in neurons. Science 269, 549–552 (1995).

    CAS  PubMed  Google Scholar 

  102. Neumann, H., Misgeld, T., Matsumuro, K. & Wekerle, H. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc. Natl Acad. Sci. USA 95, 5779–5784 (1998).

    CAS  PubMed  Google Scholar 

  103. Neumann, H., Boucraut, J., Hahnel, C., Misgeld, T. & Wekerle, H. Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur. J. Neurosci. 8, 2582–2590 (1996).

    CAS  PubMed  Google Scholar 

  104. Neumann, H. Control of glial immune function by neurons. Glia 36, 191–199 (2001).

    CAS  PubMed  Google Scholar 

  105. Black, J. A., Liu, S. & Waxman, S. G. Sodium channel activity modulates multiple functions in microglia. Glia 57, 1072–1081 (2009).

    PubMed  Google Scholar 

  106. McMahon, S. B. & Malcangio, M. Current challenges in glia-pain biology. Neuron 64, 46–54 (2009).

    CAS  PubMed  Google Scholar 

  107. Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 36, 209–217 (2013).

    CAS  PubMed  Google Scholar 

  108. Graeber, M. B. Changing face of microglia. Science 330, 783–788 (2010).

    CAS  PubMed  Google Scholar 

  109. Zhang, J. et al. Neuron-derived IgG protects dopaminergic neurons from insult by 6-OHDA and activates microglia through the FcγR I and TLR4 pathways. Int. J. Biochem. Cell Biol. 45, 1911–1920 (2013).

    CAS  PubMed  Google Scholar 

  110. Vitkovic, L., Maeda, S. & Sternberg, E. Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation 9, 295–312 (2001).

    CAS  PubMed  Google Scholar 

  111. Elenkov, I. J. & Chrousos, G. P. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann. NY Acad. Sci. 966, 290–303 (2002).

    CAS  PubMed  Google Scholar 

  112. Lyons, A. et al. Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activation in vivo and in vitro. J. Neurochem. 110, 1547–1556 (2009).

    CAS  PubMed  Google Scholar 

  113. Lauro, C. et al. Activity of adenosine receptors type 1 Is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. J. Immunol. 180, 7590–7596 (2008).

    CAS  PubMed  Google Scholar 

  114. Santello, M. & Volterra, A. TNFα in synaptic function: switching gears. Trends Neurosci. 35, 638–647 (2012).

    CAS  PubMed  Google Scholar 

  115. Sun, S. et al. Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis. Brain Res. Bull. 75, 83–93 (2008).

    CAS  PubMed  Google Scholar 

  116. Wang, Q. et al. Electroacupuncture pretreatment attenuates cerebral ischemic injury through α7 nicotinic acetylcholine receptor-mediated inhibition of high-mobility group box 1 release in rats. J. Neuroinflammation 9, 24 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. Rueger, M. A. et al. Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS ONE. 7, e43776 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Svensson, C. I. & Yaksh, T. L. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu. Rev. Pharmacol. Toxicol. 42, 553–583 (2002).

    CAS  PubMed  Google Scholar 

  119. Müller, N., Myint, A. M. & Schwarz, M. J. Immunological treatment options for schizophrenia. Curr. Pharm. Biotechnol. 13, 1606–1613 (2012).

    PubMed  Google Scholar 

  120. Hashioka, S. Antidepressants and neuroinflammation: can antidepressants calm glial rage down? Mini Rev. Med. Chem. 11, 555–564 (2011).

    CAS  PubMed  Google Scholar 

  121. Mlodzikowska-Albrecht, J., Steinborn, B. & Zarowski, M. Cytokines, epilepsy and epileptic drugs--is there a mutual influence? Pharmacol. Rep. 59, 129–138 (2007).

    CAS  PubMed  Google Scholar 

  122. Downer, E. J. Cannabinoids and innate immunity: taking a toll on neuroinflammation. ScientificWorldJournal 11, 855–865 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ramirez, S. H. et al. Activation of cannabinoid receptor 2 attenuates leukocyte–endothelial cell interactions and blood–brain barrier dysfunction under inflammatory conditions. J. Neurosci. 32, 4004–4016 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hutchinson, M. R. et al. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience 167, 880–893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Drdla, R., Gassner, M., Gingl, E. & Sandkühler, J. Induction of synaptic long-term potentiation after opioid withdrawal. Science 325, 207–210 (2009).

    CAS  PubMed  Google Scholar 

  126. Ferrini, F. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis. Nature Neurosci. 16, 183–192 (2013).

    CAS  PubMed  Google Scholar 

  127. Orr, S. K. & Bazinet, R. P. The emerging role of docosahexaenoic acid in neuroinflammation. Curr. Opin. Investig. Drugs 9, 735–743 (2008).

    CAS  PubMed  Google Scholar 

  128. Lu, Y., Zhao, L. X., Cao, D. L. & Gao, Y. J. Spinal injection of docosahexaenoic acid attenuates carrageenan-induced inflammatory pain through inhibition of microglia-mediated neuroinflammation in the spinal cord. Neuroscience 241, 22–31 (2013).

    CAS  PubMed  Google Scholar 

  129. Dugan, L. L. & Choi, D. W. Excitotoxicity, free radicals, and cell membrane changes. Ann. Neurol. 35, S17–S21 (1994).

    CAS  PubMed  Google Scholar 

  130. Benediktsson, A. M. et al. Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 60, 175–188 (2012).

    PubMed  Google Scholar 

  131. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS  PubMed  Google Scholar 

  132. Ikeda, H., Heinke, B., Ruscheweyh, R. & Sandkühler, J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299, 1237–1240 (2003).

    CAS  PubMed  Google Scholar 

  133. Ikeda, H. et al. Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312, 1659–1662 (2006).

    CAS  PubMed  Google Scholar 

  134. Sandkühler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758 (2009).

    PubMed  Google Scholar 

  135. Sandkühler, J. & Gruber-Schoffnegger, D. Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr. Opin. Pharmacol. 12, 18–27 (2011).

    PubMed  Google Scholar 

  136. Lever, I. J. et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J. Neurosci. 21, 4469–4477 (2001).

    CAS  PubMed  Google Scholar 

  137. Coull, J. A. M. et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424, 938–942 (2003).

    CAS  PubMed  Google Scholar 

  138. Zhang, W., Liu, L.-Y. & Xu, T.-L. Reduced potassium-chloride co-transporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersensitivity in rats. Neuroscience 152, 502–510 (2008).

    CAS  PubMed  Google Scholar 

  139. Price, T. J., Cervero, F. & De Koninck, Y. Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia. Curr. Top. Med. Chem. 5, 547–555 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schwartz, E. S., Lee, I., Chung, K. & Chung, J. M. Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 138, 514–524 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Salvemini, D., Little, J. W., Doyle, T. & Neumann, W. L. Roles of reactive oxygen and nitrogen species in pain. Free Radic. Biol. Med. 51, 951–966 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bal-Price, A. & Brown, G. C. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 21, 6480–6491 (2001).

    CAS  PubMed  Google Scholar 

  143. Brack, A., Rittner, H. L. & Stein, C. Neurogenic painful inflammation. Curr. Opin. Anaesthesiol. 17, 461–464 (2004).

    PubMed  Google Scholar 

  144. Zhu, B. et al. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol. Dis. 48, 348–355 (2012).

    PubMed  PubMed Central  Google Scholar 

  145. Hein, A. M. & O'Banion, M. K. Neuroinflammation and memory: the role of prostaglandins. Mol. Neurobiol. 40, 15–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jones, K. A. & Thomsen, C. The role of the innate immune system in psychiatric disorders. Mol. Cell Neurosci. 53, 52–62 (2013).

    CAS  PubMed  Google Scholar 

  147. Depino, A. M. Peripheral and central inflammation in autism spectrum disorders. Mol. Cell Neurosci. 53, 69–76 (2013).

    CAS  PubMed  Google Scholar 

  148. Sandkühler, J. in Wall and Melzack's Textbook of Pain (eds Koltzenburg, M., McMahon, S., Tracey, I. & Turk, D. C.) 94–110 (Elsevier, 2013).

    Google Scholar 

  149. Han, C. H., Lee, D. H. & Chung, J. M. Characteristics of ectopic discharges in a rat neuropathic pain model. Pain 84, 253–261 (2000).

    CAS  PubMed  Google Scholar 

  150. Pan, H.-L., Eisenach, J. C. & Chen, S.-R. Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. J. Pharmacol. Exp. Ther. 288, 1026–1030 (1999).

    CAS  PubMed  Google Scholar 

  151. Echeverry, S., Shi, X. Q., Rivest, S. & Zhang, J. Peripheral nerve injury alters blood–spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J. Neurosci. 31, 10819–10828 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Sweitzer, S. M., Hickey, W. F., Rutkowski, M. D., Pahl, J. L. & DeLeo, J. A. Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potential relationship to neuropathic pain. Pain 100, 163–170 (2002).

    PubMed  Google Scholar 

  153. Joëls, M. & Baram, T. Z. The neuro-symphony of stress. Nature Rev. Neurosci. 10, 459–466 (2009).

    Google Scholar 

  154. Esposito, P. et al. Acute stress increases permeability of the blood–brain-barrier through activation of brain mast cells. Brain Res. 888, 117–127 (2001).

    CAS  PubMed  Google Scholar 

  155. Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R. & Maier, S. F. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun. 21, 47–59 (2007).

    CAS  PubMed  Google Scholar 

  156. Tynan, R. J. et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav. Immun. 24, 1058–1068 (2010).

    CAS  PubMed  Google Scholar 

  157. Cirulli, F., Pistillo, L., De Acetis, L., Alleva, E. & Aloe, L. Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress. Brain Behav. Immun. 12, 123–133 (1998).

    CAS  PubMed  Google Scholar 

  158. Rivat, C. et al. Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 150, 358–368 (2010).

    PubMed  Google Scholar 

  159. Northrop, N. A. & Yamamoto, B. K. Persistent neuroinflammatory effects of serial exposure to stress and methamphetamine on the blood–brain barrier. J. Neuroimmune Pharmacol. 7, 951–968 (2012).

    PubMed  PubMed Central  Google Scholar 

  160. Gárate, I. et al. Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression. J. Neuroinflammation 8, 151 (2011).

    PubMed  PubMed Central  Google Scholar 

  161. De Simoni, M. G. et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur. J. Neurosci. 12, 2623–2633 (2000).

    CAS  PubMed  Google Scholar 

  162. Corriveau, R. A., Huh, G. S. & Shatz, C. J. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505–520 (1998).

    CAS  PubMed  Google Scholar 

  163. Lehtimäki, K. A. et al. Increased plasma levels of cytokines after seizures in localization-related epilepsy. Acta Neurol. Scand. 116, 226–230 (2007).

    PubMed  Google Scholar 

  164. Quirico-Santos, T. et al. Resection of the epileptogenic lesion abolishes seizures and reduces inflammatory cytokines of patients with temporal lobe epilepsy. J. Neuroimmunol. 254, 125–130 (2013).

    CAS  PubMed  Google Scholar 

  165. Marchi, N. et al. Blood–brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity. Brain Res. 1353, 176–186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Oliveira, A. L. R. et al. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc. Natl Acad. Sci. USA 101, 17843–17848 (2004).

    CAS  PubMed  Google Scholar 

  167. Rodgers, K. M. et al. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132, 2478–2486 (2009).

    PubMed  PubMed Central  Google Scholar 

  168. Vezzani, A., Friedman, A. & Dingledine, R. J. The role of inflammation in epileptogenesis. Neuropharmacology 69, 16–24 (2013).

    CAS  PubMed  Google Scholar 

  169. Devinsky, O., Vezzani, A., Najjar, S., de Lanerolle, N. C. & Rogawski, M. A. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 36, 174–184 (2013).

    CAS  PubMed  Google Scholar 

  170. Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Katsanos, G. S. et al. Impact of substance P on cellular immunity. J. Biol. Regul. Homeost. Agents 22, 93–98 (2008).

    CAS  PubMed  Google Scholar 

  172. Lee, J., Yamamoto, T., Kuramoto, H. & Kadowaki, M. TRPV1 expressing extrinsic primary sensory neurons play a protective role in mouse oxazolone-induced colitis. Auton. Neurosci. 166, 72–76 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported in part by grants received by J.S. from the Austrian Science Fund (FWF) (project W1205) and the Vienna Science and Technology Fund (WWTF). We thank H. Lassmann, Vienna, for useful discussions and helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Sandkühler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xanthos, D., Sandkühler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15, 43–53 (2014). https://doi.org/10.1038/nrn3617

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing