Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Not(ch) just development: Notch signalling in the adult brain

Key Points

  • Notch is an evolutionarily conserved, membrane-bound receptor whose ligands are also membrane-bound. As ligand-mediated enzymatic cleavage of Notch results in nuclear signalling through canonical and non-canonical pathways, Notch is considered a key integrator of environmental signals and can be thought of as a 'membrane-bound transcription factor'.

  • The Notch signalling cascade is well known for its role during CNS development. However, technical advancements in gene and protein manipulation strategies have revealed both conserved and novel roles for Notch signalling in the adult brain in processes as diverse as neural stem cell maintenance, the regulation of neuronal plasticity and even survival.

  • In neural stem cells, Notch regulates the cell cycle to balance stem cell maintenance with production of daughter cells. The ability of Notch to regulate proliferation is highly cell-type dependent, with more neuronally committed progeny responsive to a variety of environmental cues, not just Notch ligands.

  • Notch signalling also regulates neuronal migration, in part through reelin–DAB (disabled homologue) signalling. Additional research suggests that Notch-mediated regulation of migration may also rely on indirect regulation of microtubule stability.

  • Neuronal dendritic plasticity in the adult brain is reliant on Notch signalling, but is notably age- and 'cell stage'-dependent. For example, Notch signalling regulates dendritic arborization in nascent neurons, but may only fine-tune dendritic spines in 'older' neurons.

  • Notch signalling regulates synaptic plasticity and behaviour, but the direction of this regulation is exquisitely dose- and context-dependent.

  • In healthy, non-aged animals, the regulation of neuron survival by Notch signalling is difficult to separate from its effects on dendritic arborization and spine maintenance. However, in models of neurodegenerative disease, Notch signalling seems to drive dendritic atrophy and may lead to neuron death.

  • Increasing evidence indicates that activity-induced Notch signalling in neurons has an important role in cellular forms of memory and behavioural demonstration of memory.

  • Disruptions in Notch signalling result in diseases that have a strong neurodegenerative component. Therefore, comprehension of Notch signalling in the adult — and fully understanding how it is similar to or different from that in the developing animal — has substantial therapeutic implications.

  • Despite advances in our knowledge of the influence of Notch signalling on a wide range of cell types, stages and functions, it remains challenging to predict the outcome of activation. It is crucial to consider dose-, context- and age-dependence, and to consider the crosstalk with other signalling pathways (which are likely to be as dynamic as the Notch pathway).

Abstract

The Notch pathway is often regarded as a developmental pathway, but components of Notch signalling are expressed and active in the adult brain. With the advent of more sophisticated genetic manipulations, evidence has emerged that suggests both conserved and novel roles for Notch signalling in the adult brain. Not surprisingly, Notch is a key regulator of adult neural stem cells, but it is increasingly clear that Notch signalling also has roles in the regulation of migration, morphology, synaptic plasticity and survival of immature and mature neurons. Understanding the many functions of Notch signalling in the adult brain, and its dysfunction in neurodegenerative disease and malignancy, is crucial to the development of new therapeutics that are centred around this pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch signal transduction.
Figure 2: Pleiotropic roles for Notch signalling in the adult brain.
Figure 3: Notch integrates signals to coordinate a context-specific response.

Similar content being viewed by others

References

  1. Louvi, A. & Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nature Rev. Neurosci. 7, 93–102 (2006).

    Article  CAS  Google Scholar 

  2. Yoon, K. & Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nature Neurosci. 8, 709–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Berezovska, O., Xia, M. Q. & Hyman, B. T. Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 738–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286, 741–746 (1999). This paper is the first to show Notch function in postmitotic neurons in regulating density-dependent dendritic arborization.

    Article  CAS  PubMed  Google Scholar 

  5. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Isidor, B. et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nature Genet. 6 Mar 2011 (doi:10.1038/ng.778).

    Article  CAS  PubMed  Google Scholar 

  9. Simpson, M. A. et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nature Genet. 6 Mar 2011 (doi:10.1038/ng.779).

    Article  CAS  PubMed  Google Scholar 

  10. Fischer, D. F. et al. Activation of the Notch pathway in Down syndrome: cross-talk of Notch and APP. FASEB J. 19, 1451–1458 (2005).

    CAS  PubMed  Google Scholar 

  11. Veeraraghavalu, K., Choi, S. H., Zhang, X. & Sisodia, S. S. Presenilin 1 mutants impair the self-renewal and differentiation of adult murine subventricular zone-neuronal progenitors via cell-autonomous mechanisms involving notch signaling. J. Neurosci. 30, 6903–6915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D'Souza, B., Meloty-Kapella, L. & Weinmaster, G. Canonical and non-canonical Notch ligands. Curr. Top. Dev. Biol. 92, 73–129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kovall, R. A. & Blacklow, S. C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol. 92, 31–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto, S., Charng, W. L. & Bellen, H. J. Endocytosis and intracellular trafficking of Notch and its ligands. Curr. Top. Dev. Biol. 92, 165–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bray, S. & Bernard, F. Notch targets and their regulation. Curr. Top. Dev. Biol. 92, 253–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Sanalkumar, R., Dhanesh, S. B. & James, J. Non-canonical activation of Notch signaling/target genes in vertebrates. Cell. Mol. Life Sci. 67, 2957–2968 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. De Strooper, B. & Annaert, W. Novel research horizons for presenilins and γ-secretases in cell biology and disease. Annu. Rev. Cell Dev. Biol. 26, 235–260 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, M. S. et al. Among γ-secretase substrates Notch1 alone is sufficient to block neurogenesis but does not confer self-renewal properties to neural stem cells. Biochem. Biophys. Res. Commun. 404, 133–138 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Extance, A. Alzheimer's failure raises questions about disease-modifying strategies. Nature Rev. Drug Discov. 9, 749–751 (2010).

    Article  CAS  Google Scholar 

  22. Alvarez-Buylla, A. & Lim, D. A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Andreu-Agullo, C., Morante-Redolat, J. M., Delgado, A. C. & Farinas, I. Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nature Neurosci. 12, 1514–1523 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Breunig, J. J., Silbereis, J., Vaccarino, F. M., Sestan, N. & Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl Acad. Sci. USA 104, 20558–20563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Givogri, M. I. et al. Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev. Neurosci. 28, 81–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Stump, G. et al. Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech. Dev. 114, 153–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Ostenfeld, T. & Svendsen, C. N. Requirement for neurogenesis to proceed through the division of neuronal progenitors following differentiation of epidermal growth factor and fibroblast growth factor-2-responsive human neural stem cells. Stem Cells 22, 798–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Rakic, P., Ayoub, A. E., Breunig, J. J. & Dominguez, M. H. Decision by division: making cortical maps. Trends Neurosci. 32, 291–301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chapouton, P. et al. Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J. Neurosci. 30, 7961–7974 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ables, J. L. et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J. Neurosci. 30, 10484–10492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ehm, O. et al. RBPJκ-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J. Neurosci. 30, 13794–13807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K. & Kageyama, R. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci. 30, 3489–3498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Borghese, L. et al. Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo. Stem Cells 28, 955–964 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Guentchev, M. & McKay, R. D. Notch controls proliferation and differentiation of stem cells in a dose-dependent manner. Eur. J. Neurosci. 23, 2289–2296 (2006).

    Article  PubMed  Google Scholar 

  35. Hashimoto-Torii, K. et al. Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60, 273–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sibbe, M., Forster, E., Basak, O., Taylor, V. & Frotscher, M. Reelin and Notch1 cooperate in the development of the dentate gyrus. J. Neurosci. 29, 8578–8585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brandt, M. D., Maass, A., Kempermann, G. & Storch, A. Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur. J. Neurosci. 32, 1256–1264 (2010).

    Article  PubMed  Google Scholar 

  38. Crews, L. et al. α-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J. Neurosci. 28, 4250–4260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simon-Areces, J., Membrive, G., Garcia-Fernandez, C., Garcia-Segura, L. M. & Arevalo, M. A. Neurogenin 3 cellular and subcellular localization in the developing and adult hippocampus. J. Comp. Neurol. 518, 1814–1824 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Ferrari-Toninelli, G., Bonini, S. A., Bettinsoli, P., Uberti, D. & Memo, M. Microtubule stabilizing effect of notch activation in primary cortical neurons. Neuroscience 154, 946–952 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Giniger, E. A role for Abl in Notch signaling. Neuron 20, 667–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Crowner, D., Le Gall, M., Gates, M. A. & Giniger, E. Notch steers Drosophila ISNb motor axons by regulating the Abl signaling pathway. Curr. Biol. 13, 967–972 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Le Gall, M., De Mattei, C. & Giniger, E. Molecular separation of two signaling pathways for the receptor, Notch. Dev. Biol. 313, 556–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Hassan, B. A. et al. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain. Neuron 25, 549–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Berezovska, O. et al. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93, 433–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Redmond, L., Oh, S. R., Hicks, C., Weinmaster, G. & Ghosh, A. Nuclear Notch1 signaling and the regulation of dendritic development. Nature Neurosci. 3, 30–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Salama-Cohen, P., Arevalo, M. A., Grantyn, R. & Rodriguez-Tebar, A. Notch and NGF/p75NTR control dendrite morphology and the balance of excitatory/inhibitory synaptic input to hippocampal neurones through Neurogenin 3. J. Neurochem. 97, 1269–1278 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, E. J. et al. Targeted deletion of numb and numblike in sensory neurons reveals their essential functions in axon arborization. Genes Dev. 19, 138–151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Dahlhaus, M. et al. Notch1 signaling in pyramidal neurons regulates synaptic connectivity and experience-dependent modifications of acuity in the visual cortex. J. Neurosci. 28, 10794–10802 (2008). This is one of the first studies to show activity-dependent Notch signalling in vivo . Using genetic approaches the authors show that Notch regulates structural and functional plasticity of pyramidal neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Costa, R. M., Honjo, T. & Silva, A. J. Learning and memory deficits in Notch mutant mice. Curr. Biol. 13, 1348–1354 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Givogri, M. I. et al. Central nervous system myelination in mice with deficient expression of Notch1 receptor. J. Neurosci. Res. 67, 309–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Heitzler, P. & Simpson, P. The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083–1092 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Presente, A., Boyles, R. S., Serway, C. N., de Belle, J. S. & Andres, A. J. Notch is required for long-term memory in Drosophila. Proc. Natl Acad. Sci. USA 101, 1764–1768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ge, X. et al. Notch signaling in Drosophila long-term memory formation. Proc. Natl Acad. Sci. USA 101, 10172–10176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pavlopoulos, E., Anezaki, M. & Skoulakis, E. M. Neuralized is expressed in the α/β lobes of adult Drosophila mushroom bodies and facilitates olfactory long-term memory formation. Proc. Natl Acad. Sci. USA 105, 14674–14679 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, Y. et al. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc. Natl Acad. Sci. USA 101, 9458–9462 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Conboy, L. et al. Notch signalling becomes transiently attenuated during long-term memory consolidation in adult Wistar rats. Neurobiol. Learn. Mem. 88, 342–351 (2007). This study carefully examines the time course of Notch signalling during memory formation. Furthermore, it identifies a novel NICD fragment.

    Article  CAS  PubMed  Google Scholar 

  60. Tagami, S. et al. Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol. Cell. Biol. 28, 165–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. de Bivort, B. L., Guo, H. F. & Zhong, Y. Notch signaling is required for activity-dependent synaptic plasticity at the Drosophila neuromuscular junction. J. Neurogenet. 23, 395–404 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Alberi, L. et al. Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron 69, 437–444 (2011). This is the first study to demonstrate that Notch is present at the rodent synapse. They also elegantly show that Notch signalling is dependent on neuronal activity and regulates the structure and function of neurons in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lieber, T., Kidd, S. & Struhl, G. DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 69, 468–481 (2011). Using the power of Drosophila genetics, this study illuminates the dynamics of activity-related Notch signalling elicited by specific odorants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McGeer, P. L., Kawamata, T. & McGeer, E. G. Localization and possible functions of presenilins in brain. Rev. Neurosci. 9, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Franberg, J., Karlstrom, H., Winblad, B., Tjernberg, L. O. & Frykman, S. γ-Secretase dependent production of intracellular domains is reduced in adult compared to embryonic rat brain membranes. PLoS ONE 5, e9772 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Placanica, L., Zhu, L. & Li, Y. M. Gender- and age-dependent γ-secretase activity in mouse brain and its implication in sporadic Alzheimer disease. PLoS ONE 4, e5088 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Song, W. et al. Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl Acad. Sci. USA 96, 6959–6963 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, C. D., Oh, S. Y., Hinman, J. D. & Abraham, C. R. Visualization of APP dimerization and APP-Notch2 heterodimerization in living cells using bimolecular fluorescence complementation. J. Neurochem. 97, 30–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Fassa, A., Mehta, P. & Efthimiopoulos, S. Notch 1 interacts with the amyloid precursor protein in a Numb-independent manner. J. Neurosci. Res. 82, 214–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Oh, S. Y., Chen, C. D. & Abraham, C. R. Cell-type dependent modulation of Notch signaling by the amyloid precursor protein. J. Neurochem. 113, 262–274 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Oh, S. Y. et al. Amyloid precursor protein interacts with notch receptors. J. Neurosci. Res. 82, 32–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Roncarati, R. et al. The γ-secretase-generated intracellular domain of β-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc. Natl Acad. Sci. USA 99, 7102–7107 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kyriazis, G. A. et al. Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis. J. Biol. Chem. 283, 25492–25502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kyriazis, G. A. et al. Stress-induced switch in Numb isoforms enhances Notch-dependent expression of subtype-specific transient receptor potential channel. J. Biol. Chem. 285, 6811–6825 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Ishikura, N. et al. Notch-1 activation and dendritic atrophy in prion disease. Proc. Natl Acad. Sci. USA 102, 886–891 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spilman, P. et al. A γ-secretase inhibitor and quinacrine reduce prions and prevent dendritic degeneration in murine brains. Proc. Natl Acad. Sci. USA 105, 10595–10600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ferron, S. R. et al. Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J. Neurosci. 29, 14394–14407 (2009). This study details the fascinating finding that age-related telomere changes may fundamentally alter neural stem cell and daughter cell behavior through p53 and Notch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oya, S. et al. Attenuation of Notch signaling promotes the differentiation of neural progenitors into neurons in the hippocampal CA1 region after ischemic injury. Neuroscience 158, 683–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, L. et al. The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158, 1356–1363 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, X., Mao, X., Xie, L., Greenberg, D. A. & Jin, K. Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J. Cereb. Blood Flow Metab. 29, 1644–1654 (2009).

    Article  PubMed  Google Scholar 

  81. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Alberi, L. et al. Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. Stroke 41, S64–S71 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Arumugam, T. V. et al. Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature Med. 12, 621–623 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  CAS  Google Scholar 

  85. John, G. R. et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nature Med. 8, 1115–1121 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, S. et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21, 63–75 (1998).

    Article  PubMed  Google Scholar 

  87. Magnus, T. et al. Evidence that nucleocytoplasmic Olig2 translocation mediates brain-injury-induced differentiation of glial precursors to astrocytes. J. Neurosci. Res. 85, 2126–2137 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Morga, E. et al. Jagged1 regulates the activation of astrocytes via modulation of NFκB and JAK/STAT/SOCS pathways. Glia 57, 1741–1753 (2009).

    Article  PubMed  Google Scholar 

  89. Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, J., Leong, S. Y. & Schachner, M. Differential expression of cell fate determinants in neurons and glial cells of adult mouse spinal cord after compression injury. Eur. J. Neurosci. 22, 1895–1906 (2005).

    Article  PubMed  Google Scholar 

  91. Grandbarbe, L. et al. Delta–Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130, 1391–1402 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Jurynczyk, M., Jurewicz, A., Bielecki, B., Raine, C. S. & Selmaj, K. Overcoming failure to repair demyelination in EAE: γ-secretase inhibition of Notch signaling. J. Neurol. Sci. 265, 5–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Nakahara, J., Kanekura, K., Nawa, M., Aiso, S. & Suzuki, N. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis. J. Clin. Invest. 119, 169–181 (2009).

    CAS  PubMed  Google Scholar 

  94. Hurlbut, G. D., Kankel, M. W., Lake, R. J. & Artavanis-Tsakonas, S. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol. 19, 166–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Poellinger, L. & Lendahl, U. Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms. Curr. Opin. Genet. Dev. 18, 449–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Martinez, A. M. et al. Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nature Genet. 41, 1076–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Bernard, F., Krejci, A., Housden, B., Adryan, B. & Bray, S. J. Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 137, 2633–2642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  99. Kawaguchi, D., Yoshimatsu, T., Hozumi, K. & Gotoh, Y. Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135, 3849–3858 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Johnston, R. J. Jr & Desplan, C. Stochastic neuronal cell fate choices. Curr. Opin. Neurobiol. 18, 20–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008). This study elegantly demonstrates the oscillation of Hes1 and other Notch-related genes during development, providing a mechanism for cell fate choices during neurogenesis.

    Article  CAS  PubMed  Google Scholar 

  102. D'Souza, B., Miyamoto, A. & Weinmaster, G. The many facets of Notch ligands. Oncogene 27, 5148–5167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sprinzak, D. et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Miller, A. C., Lyons, E. L. & Herman, T. G. cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr. Biol. 19, 1378–1383 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shikata, Y. et al. Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages. Dev. Biol. 349, 147–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Breunig, J. J. et al. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc. Natl Acad. Sci. USA 105, 13127–13132 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci. 6, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Palma, V. et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132, 335–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Lie, D. C. et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Estrach, S., Ambler, C. A., Lo Celso, C., Hozumi, K. & Watt, F. M. Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 133, 4427–4438 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Hayward, P. et al. Notch modulates Wnt signalling by associating with Armadillo/β-catenin and regulating its transcriptional activity. Development 132, 1819–1830 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase-3 β down-regulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem. 278, 32227–32235 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Shimizu, T. et al. Stabilized β-catenin functions through TCF/LEF proteins and the Notch/RBP-Jκ complex to promote proliferation and suppress differentiation of neural precursor cells. Mol. Cell. Biol. 28, 7427–7441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Aguirre, A., Rubio, M. E. & Gallo, V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467, 323–327 (2010). This study demonstrates the interplay of Notch and EGFR and shows how the two pathways inhibit each other to establish a balance of progenitor production and stem cell maintenance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kuo, C. T. et al. Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127, 1253–1264 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pece, S., Confalonieri, S., Romano, P. R. & Di Fiore, P. P. NUMB-ing down cancer by more than just a NOTCH. Biochim. Biophys. Acta 1815, 26–43 (2011).

    CAS  PubMed  Google Scholar 

  118. Rasin, M. R. et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nature Neurosci. 10, 819–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Colaluca, I. N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Di Marcotullio, L. et al. Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nature Cell Biol. 8, 1415–1423 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell 13, 15–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Chigurupati, S. et al. Evidence for altered numb isoform levels in Alzheimer's disease patients and a triple transgenic mouse model. J. Alzheimers Dis. 21 Jan 2011 (doi:10.3233/JAD-2011-101797).

    Article  PubMed  Google Scholar 

  123. Duan, X., Kang, E., Liu, C. Y., Ming, G. L. & Song, H. Development of neural stem cell in the adult brain. Curr. Opin. Neurobiol. 18, 108–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Johnson, M. A., Ables, J. L. & Eisch, A. J. Cell-intrinsic signals that regulate adult neurogenesis in vivo: insights from inducible approaches. BMB Rep. 42, 245–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13, 543–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bar, E. E., Lin, A., Mahairaki, V., Matsui, W. & Eberhart, C. G. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am. J. Pathol. 177, 1491–1502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005). This paper provided an intriguing mechanism for the observation that hypoxia maintains certain stem cell populations. Notably, HIF1α interacts with and stabilizes NICD, promoting receptor signalling.

    Article  CAS  PubMed  Google Scholar 

  132. Pistollato, F. et al. Interaction of hypoxia-inducible factor-1α and notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 28, 1918–1929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Roitbak, T., Surviladze, Z. & Cunningham, L. A. Continuous expression of HIF-1α in neural stem/progenitor cells. Cell. Mol. Neurobiol. 31, 119–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Lim, D. A. & Alvarez-Buylla, A. Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc. Natl Acad. Sci. USA 96, 7526–7531 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Seri, B., Garcia-Verdugo, J. M., Collado-Morente, L., McEwen, B. S. & Alvarez-Buylla, A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J. Comp. Neurol. 478, 359–378 (2004).

    Article  PubMed  Google Scholar 

  136. Nyfeler, Y. et al. Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J. 24, 3504–3515 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fabel, K. & Kempermann, G. Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med. 10, 59–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Li, G. & Pleasure, S. J. Ongoing interplay between the neural network and neurogenesis in the adult hippocampus. Curr. Opin. Neurobiol. 20, 126–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ma, D. K., Kim, W. R., Ming, G. L. & Song, H. Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann. NY Acad. Sci. 1170, 664–673 (2009).

    Article  PubMed  Google Scholar 

  140. Lugert, S. et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6, 445–456 (2010).In this study the authors identify radial and horizontal stem cells and find that different stem cell pools are recruited depending on the stimulus. Furthermore, they find that some stem cells cannot be activated.

    Article  CAS  PubMed  Google Scholar 

  141. Suh, H. et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1, 515–528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bruel-Jungerman, E., Veyrac, A., Dufour, F., Horwood, J. & Laroche, S. et al. Inhibition of PI3K–Akt signalling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS ONE 4, e7901 (2009).

  143. Snyder, J. S., Glover, L. R., Sanzone, K. M., Kamhi, J. F. & Cameron, H. A. The effects of exercise and stress on the survival and maturation of adult-generated granule cells. Hippocampus, 19, 898–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Carlen, M. et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neurosci. 12, 259–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Jacquet, B. V. et al. FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136, 4021–4031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nomura, T., Goritz, C., Catchpole, T., Henkemeyer, M. & Frisen, J. EphB signaling controls lineage plasticity of adult neural stem cell niche cells. Cell Stem Cell 7, 730–743 (2010). This study demonstrates an incredible phenotypic plasticity of adult neural stems and niche cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Deng, W., Aimone, J. B. & Gage, F. H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Rev. Neurosci. 11, 339–350 (2010).

    Article  CAS  Google Scholar 

  148. Milano, J. et al. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. 82, 341–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Hicks, C. et al. A secreted Delta1-Fc fusion protein functions both as an activator and inhibitor of Notch1 signaling. J. Neurosci. Res. 68, 655–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Beckstead, B. L. et al. Methods to promote Notch signaling at the biomaterial interface and evaluation in a rafted organ culture model. J. Biomed. Mater. Res. A 91, 436–446 (2009).

    Article  PubMed  CAS  Google Scholar 

  151. Breunig, J. J., Arellano, J. I., Macklis, J. D. & Rakic, P. Everything that glitters isn't gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell 1, 612–627 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Mason, H. A., Rakowiecki, S. M., Gridley, T. & Fishell, G. Loss of notch activity in the developing central nervous system leads to increased cell death. Dev. Neurosci. 28, 49–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Hori, K. et al. A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes Dev. 22, 166–178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Saint Just Ribeiro, M. & Wallberg, A. E. Transcriptional mechanisms by the coregulator MAML1. Curr. Protein Pept. Sci. 10, 570–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, L. & Gallagher, P. J. Mind bomb 1 regulation of cFLIP interactions. Am. J. Physiol. Cell Physiol. 297, C1275–C1283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, X. P. et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol. Cell. Biochem. 307, 101–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Purow, B. W. et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 29, 918–925 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huang, P. H., Xu, A. M. & White, F. M. Oncogenic EGFR signaling networks in glioma. Sci. Signal 2, re6 (2009).

    PubMed  Google Scholar 

  159. Chen, J. et al. Characterization of human LNX, a novel ligand of Numb protein X that is downregulated in human gliomas. Int. J. Biochem. Cell Biol. 37, 2273–2283 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Nakamura, H. et al. Identification of a human homolog of the Drosophila neuralized gene within the 10q25.1 malignant astrocytoma deletion region. Oncogene 16, 1009–1019 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Rehman, A. O. & Wang, C. Y. Notch signaling in the regulation of tumor angiogenesis. Trends Cell Biol. 16, 293–300 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Zheng, X. et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA 105, 3368–3373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stockhausen, M. T., Kristoffersen, K. & Poulsen, H. S. The functional role of Notch signaling in human gliomas. Neuro Oncol. 12, 199–211 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Wang, J. et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 28, 17–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fan, X. et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 64, 7787–7793 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Chen, J. et al. Inhibition of Notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes Cancer 1, 822–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Miles, D. K. & Kernie, S. G. Hypoxic-ischemic brain injury activates early hippocampal stem/progenitor cells to replace vulnerable neuroblasts. Hippocampus 18, 793–806 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Irvin, D. K., Zurcher, S. D., Nguyen, T., Weinmaster, G. & Kornblum, H. I. Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development. J. Comp. Neurol. 436, 167–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Murphy, P. A. et al. Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. Proc. Natl Acad. Sci. USA 105, 10901–10906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Irvin, D. K., Nakano, I., Paucar, A. & Kornblum, H. I. Patterns of Jagged1, Jagged2, Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. J. Neurosci. Res. 75, 330–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Yoon, K. J. et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58, 519–531 (2008). This fascinating study demonstrates that daughter progenitor cells can directly provide ligand stimulation to the Notch receptor present on neural stem cells.

    Article  CAS  PubMed  Google Scholar 

  172. Shutter, J. R. et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 14, 1313–1318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lavado, A., Lagutin, O. V., Chow, L. M., Baker, S. J. & Oliver, G. Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol. 8, e1000460 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Kurisu, J., Fukuda, T., Yokoyama, S., Hirano, T. & Kengaku, M. Polarized targeting of DNER into dendritic plasma membrane in hippocampal neurons depends on endocytosis. J. Neurochem. 113, 1598–1610 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.L.A. would like to thank the Medical Science Training Program (MSTP) at both the University of Texas Southwestern Medical Centre, at Dallas, Texas, USA, and Mount Sinai School of Medicine, New York, New York, USA, as well as the US National Institute of Mental Health (NIMH) and National Institute on Drug Abuse (NIDA) for their support. J.J.B. was supported by the Connecticut Stem Cell Research Grant Program during the preparation of this manuscript and is currently supported by the Cedars-Sinai Regenerative Medicine Institute, Los Angeles, California, USA. A.J.E. is supported by grants from the US National Institutes of Health (NIH), including grants from NIDA (DA016765, DA016765-07S, DA023555) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (DK079328), the National Alliance for Research on Schizophrenia and Depression, the National Aeronautics and Space Administration, and the Norwegian Department of Public Health. P.R. is supported by grants from the US National Institute of Neurological Disorders and Stroke (NINDS), NIDA and the Kavli Institute of Neuroscience at Yale University School of Medicine, New Haven, Connecticut, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amelia J. Eisch or Pasko Rakic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

ClinicalTrials.gov database 

NCT00572182

NCT01119599

NCT01122901

FURTHER INFORMATION

Amelia J. Eisch's homepage

Pasko Rakic's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ables, J., Breunig, J., Eisch, A. et al. Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12, 269–283 (2011). https://doi.org/10.1038/nrn3024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing