Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CART peptides: regulators of body weight, reward and other functions

A Corrigendum to this article was published on 01 March 2010

Key Points

  • The CART (cocaine- and amphetamine-regulated transcript) gene, transcripts and peptides were discovered through the initial observation that psychostimulant drugs elevated the levels of the CART mRNA. Although the full name reflects this particular effect, CART peptides are involved in more processes than just those that mediate the effects of drugs like cocaine.

  • CART mRNA is transcribed by the action of known transcription factors, such as cyclic AMP-response-element-binding protein (CREB), and the CART propeptide is processed into smaller active fragments by prohormone convertases.

  • CART peptides are neurotransmitters and neurohormones that are widely but discretely distributed throughout the brain and the periphery.

  • The CART peptide receptor (although it is possible that there is more than one) is thought to be a G-protein-coupled receptor that signals through inhibitory (Gi/o) mechanisms.

  • There has been much interest in CART peptides as regulators of body weight. Evidence for this role comes from both animal and human studies.

  • CART peptides, when injected into the nucleus accumbens, reduce the actions of psychostimulant drugs like cocaine. It has been proposed that CART peptides modulate the effects of cocaine.

  • Many experiments suggest that CART peptides also play a part in endocrine regulation, stress, anxiety and depression, cardiovascular function, pain and other processes.

  • Because CART peptides have so many effects, including a major role in body weight regulation, the CART system could be an interesting target for drug development.

Abstract

Over the past decade or so, CART (cocaine- and amphetamine-regulated transcript) peptides have emerged as major neurotransmitters and hormones. CART peptides are widely distributed in the CNS and are involved in regulating many processes, including food intake and the maintenance of body weight, reward and endocrine functions. Recent studies have produced a wealth of information about the location, regulation, processing and functions of CART peptides, but additional studies aimed at elucidating the physiological effects of the peptides and at characterizing the CART receptor(s) are needed to take advantage of possible therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino-acid sequences of rat proCART and CART peptides.
Figure 2: Proposed CART receptor signalling.
Figure 3: Effects of a missense mutation resulting in Leu34Phe in proCART.
Figure 4: CART peptides as potential regulators of dopamine activity in the nucleus accumbens.
Figure 5: The involvement of the CART system in the stress response.

Similar content being viewed by others

References

  1. Douglass, J., McKinzie, A. A. & Couceyro, P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 15, 2471–2481 (1995). This basic paper established the field of CART peptide research. It also demonstrated the psychostimulant effect which, although sometimes controversial, has been confirmed several times, as summarized in reference 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spiess, J., Villarreal, J. & Vale, W. Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. Biochemistry 20, 1982–1988 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Thim, L., Kristensen, P., Nielsen, P. F., Wulff, B. S. & Clausen, J. T. Tissue-specific processing of cocaine- and amphetamine-regulated transcript peptides in the rat. Proc. Natl Acad. Sci. USA 96, 2722–2727 (1999). This study elucidated the tissue-specific processing and sequence of specific CART peptides. Reference 8 was a strong follow-up to this work.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dominguez, G. The CART gene: structure and regulation. Peptides 27, 1913–1918 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Thim, L. et al. Purification and characterisation of a new hypothalamic satiety peptide, cocaine and amphetamine regulated transcript (CART), produced in yeast. FEBS Lett. 428, 263–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Ludvigsen, S., Thim, L., Blom, A. M. & Wulff, B. S. Solution structure of the satiety factor, CART, reveals new functionality of a well-known fold. Biochemistry 40, 9082–9088 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Dey, A. et al. Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3. J. Biol. Chem. 278, 15007–15014 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Stein, J., Shah, R., Steiner, D. F. & Dey, A. RNAi-mediated silencing of prohormone convertase (PC) 5/6 expression leads to impairment in processing of cocaine- and amphetamine-regulated transcript (CART) precursor. Biochem. J. 400, 209–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stein, J., Steiner, D. F. & Dey, A. Processing of cocaine- and amphetamine-regulated transcript (CART) precursor proteins by prohormone convertases (PCs) and its implications. Peptides 27, 1919–1925 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Dylag, T., Kotlinksa, J., Rafalski, P., Pachuta, A. & Silberring, J. The activity of CART peptide fragments. Peptides 27, 1926–1933 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Dominguez, G., Lakatos, A. & Kuhar, M. J. Characterization of the cocaine- and amphetamine-regulated transcript (CART) peptide gene promoter and its activation by a cyclic AMP-dependent signaling pathway in GH3 cells. J. Neurochem. 80, 885–893 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Dominguez, G. & Kuhar, M. J. Transcriptional regulation of the CART promoter in CATH.a cells. Brain Res. Mol. Brain Res. 126, 22–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Barrett, P., Davidson, J. & Morgan, P. CART gene promoter transcription is regulated by a cyclic adenosine monophosphate response element. Obes. Res. 10, 1291–1298 (2002). This and other work by Barrett was among the first to demonstrate regulation of CART gene expression by transcription factors.

    Article  CAS  PubMed  Google Scholar 

  14. Koylu, E. O., Couceyro, P. R., Lambert, P. D. & Kuhar, M. J. Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J. Comp. Neurol. 391, 115–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Gautvik, K. M. et al. Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc. Natl Acad. Sci. USA 93, 8733–8738 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, Y., Koylu, E. O., Couceyro, P. & Kuhar, M. J. Ultrastructural localization of CART (cocaine- and amphetamine- regulated transcript) peptides in the nucleus accumbens of monkeys. Synapse 27, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Smith, Y., Kieval, J., Couceyro, P. R. & Kuhar, M. J. CART peptide-immunoreactive neurones in the nucleus accumbens in monkeys: ultrastructural analysis, colocalization studies, and synaptic interactions with dopaminergic afferents. J. Comp. Neurol. 407, 491–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Vrang, N. Anatomy of hypothalamic CART neurons. Peptides 27, 1970–1980 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hubert, G. W. & Kuhar, M. J. Colocalization of CART with substance P but not enkephalin in the rat nucleus accumbens. Brain Res. 1050, 8–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Murphy, K. G. et al. Quantification and synthesis of cocaine- and amphetamine-regulated transcript peptide (79–102)-like immunoreactivity and mRNA in rat tissues. J. Endocrinol. 166, 659–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Kuhar, M. J. & Yoho, L. L. CART peptide analysis by Western blotting. Synapse 33, 163–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ekblad, E. CART in the enteric nervous system. Peptides 27, 2024–2030 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Larsen, P. J. et al. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit. J. Neuroendocrinol. 15, 219–226 (2003). This study demonstrated the presence of CART peptides in the portal blood, which is fundamental to a role for them in endocrine regulation.

    Article  CAS  PubMed  Google Scholar 

  24. Koylu, E. O. et al. Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J. Neuroendocrinol. 9, 823–833 (1997). This paper and reference 14 presented a detailed description of CART peptide distribution. The distribution suggested many roles for the CART system in endocrine function, stress and feeding.

    Article  CAS  PubMed  Google Scholar 

  25. Vicentic, A. CART peptide diurnal variations in blood and brain. Peptides 27, 1942–1948 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Vrang, N., Tang-Christensen, M., Larsen, P. J. & Kristensen, P. Recombinant CART peptide induces c-Fos expression in central areas involved in control of feeding behaviour. Brain Res. 818, 499–509 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Yermolaieva, O., Chen, J., Couceyro, P. R. & Hoshi, T. Cocaine- and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons. J. Neurosci. 21, 7474–7480 (2001). This was one of the first papers to demonstrate intracellular signalling by CART peptides, and it also gave evidence of a G-protein coupled CART receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sarkar, S., Wittmann, G., Fekete, C. & Lechan, R. M. Central administration of cocaine- and amphetamine-regulated transcript increases phosphorylation of cAMP response element binding protein in corticotrophin-releasing hormone-producing neurons but not in prothyrotropin-releasing hormone-producing neurons in the hypothalamic paraventricular nucleus. Brain Res. 999, 181–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lakatos, A., Prinster, S., Vicentic, A., Hall, R. A. & Kuhar, M. J. Cocaine- and amphetamine-regulated transcript (CART) peptide activates the extracellular signal-regulated kinase (ERK) pathway in AtT20 cells via putative G-protein coupled receptors. Neurosci. Lett. 384, 198–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Sen, A., Bettegowda, A., Jimenez-Krassel, F., Ireland, J. J. & Smith, G. W. Cocaine- and amphetamine-regulated transcript regulation of follicle-stimulating hormone signal transduction in bovine granulosa cells. Endocrinology 148, 4400–4410 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Vicentic, A., Lakatos, A. & Kuhar, M. J. CART (cocaine- and amphetamine-regulated transcript) peptide receptors: specific binding in AtT20 cells. Eur. J. Pharmacol. 528, 188–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Keller, P. A. et al. Characterization and localization of cocaine- and amphetamine-regulated transcript (CART) binding sites. Peptides 27, 1328–1334 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Maletinska, L. et al. Cocaine- and amphetamine-regulated transcript (CART) peptide specific binding in pheochromocytoma cells PC12. Eur. J. Pharmacol. 559, 109–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Jones, D. C. & Kuhar, M. J. CART receptor binding in primary cell cultures of the rat nucleus accumbens. Synapse 62, 122–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hunter, R. G. & Kuhar, M. J. CART peptides as targets for CNS drug development. Curr. Drug Targets CNS Neurol. Disord. 2, 201–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Couceyro, P., Paquet, M., Koylu, E., Kuhar, M. J. & Smith, Y. Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in myenteric plexus neurons of the rat ileum and co- localization with choline acetyltransferase. Synapse 30, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Wierup, N., Gunnarsdottir, A., Ekblad, E. & Sundler, F. Characterization of CART-containing neurons and cells in the porcine pancreas, gastro-intestinal tract, adrenal and thyroid glands. BMC Neurosci. 8, 51 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ekblad, E., Kuhar, M., Wierup, N. & Sundler, F. Cocaine- and amphetamine-regulated transcript: distribution and function in rat gastrointestinal tract. Neurogastroenterol. Motil. 15, 545–557 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Ellis, L. M. & Mawe, G. M. Distribution and chemical coding of cocaine- and amphetamine-regulated transcript peptide (CART)-immunoreactive neurons in the guinea pig bowel. Cell Tissue Res. 312, 265–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Gunnarsdottir, A., Wierup, N., Larsson, L. T., Kuhar, M. J. & Ekblad, E. CART-peptide immunoreactivity in enteric nerves in patients with Hirschsprung's disease. Eur. J. Pediatr. Surg. 17, 184–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lambert, P. D. et al. A role for novel CART peptide fragments in the central control of food intake. Neuropeptides 31, 620–621 (1997).

    Google Scholar 

  42. Lambert, P. D. et al. CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse 29, 293–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kristensen, P. et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72–76 (1998). This landmark paper linked hypothalamic CART peptides to feeding and regulation by leptin.

    Article  CAS  PubMed  Google Scholar 

  44. Larsen, P. J. et al. Ups and downs for neuropeptides in body weight homeostasis: pharmacological potential of cocaine amphetamine regulated transcript and pre-proglucagon-derived peptides. Eur. J. Pharmacol. 440, 159–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. de Lartigue, G., Dimaline, R., Varro, A. & Dockray, G. J. Cocaine- and amphetamine-regulated transcript: stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin. J. Neurosci. 27, 2876–2882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Broberger, C., Holmberg, K., Kuhar, M. J. & Hokfelt, T. Cocaine- and amphetamine-regulated transcript in the rat vagus nerve: a putative mediator of cholecystokinin-induced satiety. Proc. Natl Acad. Sci. USA 96, 13506–13511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okumura, T., Yamada, H., Motomura, W. & Kohgo, Y. Cocaine-amphetamine-regulated transcript (CART) acts in the central nervous system to inhibit gastric acid secretion via brain corticotrophin-releasing factor system. Endocrinology 141, 2854–2860 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Asakawa, A. et al. Cocaine-amphetamine-regulated transcript influences energy metabolism, anxiety and gastric emptying in mice. Horm. Metab. Res. 33, 554–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Smedh, U. & Moran, T. H. Peptides that regulate food intake: separable mechanisms for dorsal hindbrain CART peptide to inhibit gastric emptying and food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1418–R1426 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Smedh, U. & Moran, T. H. The dorsal vagal complex as a site for cocaine- and amphetamine-regulated transcript peptide to suppress gastric emptying. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R124–R130 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, S. C., Shieh, K. R. & Li, H. Y. Cocaine- and amphetamine-regulated transcript in the nucleus accumbens participates in the regulation of feeding behavior in rats. Neuroscience 133, 841–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Jean, A. et al. Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc. Natl Acad. Sci. USA 104, 16335–16340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Larsen, P. J., Vrang, N., Petersen, P. C. & Kristensen, P. Chronic intracerebroventricular administration of recombinant CART(42–89) peptide inhibits and causes weight loss in lean and obese Zucker (fa/fa) rats. Obes. Res. 8, 590–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Asnicar, M. A. et al. Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology 142, 4394–4400 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Moffett, M. et al. Studies of cocaine- and amphetamine-regulated transcript (CART) knockout mice. Peptides 27, 2037–2045 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Wierup, N. et al. CART knock out mice have impaired insulin secretion and glucose intolerance, altered beta cell morphology and increased body weight. Regul. Pept. 129, 203–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Qing, K. & Chen, Y. Central CART gene delivery by recombinant AAV vector attenuates body weight gain in diet-induced-obese rats. Regul. Pept. 140, 21–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Steiner, R. C., Hsiung, H. M. & Picciotto, M. R. Cocaine self-administration and locomotor sensitization are not altered in CART knockout mice. Behav. Brain Res. 171, 56–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Tian, D. R. et al. Changes of hypothalamic alpha-MSH and CART peptide expression in diet-induced obese rats. Peptides 25, 2147–2153 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Vrang, N., Kristensen, P., Tang-Christensen, M. & Larsen, P. J. Effects of leptin on arcuate pro-opiomelanocortin and cocaine-amphetamine-regulated transcript expression are independent of circulating levels of corticosterone. J. Neuroendocrinol. 14, 880–886 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Dhillo, W. S. et al. Hypothalamic interactions between neuropeptide Y, agouti-related protein, cocaine- and amphetamine-regulated transcript and alpha-melanocyte-stimulating hormone in vitro in male rats. J. Neuroendocrinol. 14, 725–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Adam, C. L., Archer, Z. A., Findlay, P. A., Thomas, L. & Marie, M. Hypothalamic gene expression in sheep for cocaine- and amphetamine-regulated transcript, pro-opiomelanocortin, neuropeptide Y, agouti-related peptide and leptin receptor and responses to negative energy balance. Neuroendocrinology 75, 250–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Elias, C. F. et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375–1385 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, Z. W. et al. Comparing the hypothalamic and extrahypothalamic actions of endogenous hyperleptinemia. Proc. Natl Acad. Sci. USA 96, 10373–10378 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elias, C. F. et al. Characterization of CART neurons in rat and human hypothalamus. J. Comp. Neurol. 26, 1–19 (2001).

    Article  Google Scholar 

  66. Germano, C. M. et al. Time course effects of adrenalectomy and food intake on CART expression in the hypothalamus. Brain Res. 1166, 55–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Osei-Hyiaman, D. et al. Cocaine- and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide. Neuroendocrinology 81, 273–282 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Fekete, C. et al. Association of cocaine- and amphetamine-regulated transcript- immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. J. Neurosci. 20, 9224–9234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fekete, C. & Lechan, R. M. Neuroendocrine implications for the association between cocaine- and amphetamine regulated transcript (CART) and hypophysiotropic thyrotropin-releasing hormone (TRH). Peptides 27, 2012–2018 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Wittmann, G., Liposits, Z., Lechan, R. M. & Fekete, C. Medullary adrenergic neurons contribute to the cocaine- and amphetamine-regulated transcript-immunoreactive innervation of thyrotropin-releasing hormone synthesizing neurons in the hypothalamic paraventricular nucleus. Brain Res. 1006, 1–7 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, C., Billington, C. J., Levine, A. S. & Kotz, C. M. Effect of CART in the hypothalamic paraventricular nucleus on feeding and uncoupling protein gene expression. Neuroreport 11, 3251–3255 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Kong, W. M. et al. A role for arcuate cocaine and amphetamine-regulated transcript in hyperphagia, thermogenesis, and cold adaptation. FASEB J. 17, 1688–1690 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. del Giudice, E. M. et al. Mutational screening of the CART gene in obese children: identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family. Diabetes 50, 2157–2160 (2001). This paper demonstrated a relationship between a mutation in the CART gene and obesity among family members. The mutation disrupts CART peptide processing and levels (see reference 74).

    Article  CAS  PubMed  Google Scholar 

  74. Yanik, T., Dominguez, G., Kuhar, M. J., Del Giudice, E. M. & Loh, Y. P. The Leu34Phe ProCART mutation leads to cocaine- and amphetamine-regulated transcript (CART) deficiency: a possible cause for obesity in humans. Endocrinology 147, 39–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Dominguez, G., del Giudice, E. M. & Kuhar, M. J. CART peptide levels are altered by a mutation associated with obesity at codon 34. Mol. Psychiatry 9, 1065–1066 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Yamada, K. et al. Sequencing of the putative promoter region of the cocaine- and amphetamine-regulated-transcript gene and identification of polymorphic sites associated with obesity. Int. J. Obes. Relat. Metab. Disord. 26, 132–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Guerardel, A. et al. Analysis of sequence variability in the CART gene in relation to obesity in a Caucasian population. BMC Genet. 6, 19 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Vasseur, F. et al. Impact of a CART promoter genetic variation on plasma lipid profile in a general population. Mol. Genet. Metab. 90, 199–204 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Challis, B. G. et al. The CART gene and human obesity: mutational analysis and population genetics. Diabetes 49, 872–875 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Fu, M. et al. Association of the cocaine and amphetamine-regulated transcript gene with type 2 diabetes mellitus. Zhonghua Nei Ke Za Zhi 41, 805–808 (2002).

    CAS  PubMed  Google Scholar 

  81. Walder, K., Morris, C. & Ravussin, E. A polymorphism in the gene encoding CART is not associated with obesity in Pima Indians. Int. J. Obes. Relat. Metab. Disord. 24, 520–521 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Echwald, S. M. et al. Sequence variants in the human cocaine and amphetamine-regulated transcript (CART) gene in subjects with early onset obesity. Obes Res. 7, 532–536 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Kenealy, S. J., Kim, K. S., Hu, Z. & Rothschild, M. F. Genetic linkage mapping of the porcine cocaine- and amphetamine- regulated transcript (CART) gene. J. Anim. Sci. 77, 791–792 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Aja, S., Robinson, B. M., Mills, K. J., Ladenheim, E. E. & Moran, T. H. Fourth ventricular CART reduces food and water intake and produces a conditioned taste aversion in rats. Behav. Neurosci. 116, 918–921 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Aja, S., Sahandy, S., Ladenheim, E. E., Schwartz, G. J. & Moran, T. H. Intracerebroventricular CART peptide reduces food intake and alters motor behavior at a hindbrain site. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1862–R1867 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Aja, S., Schwartz, G. J., Kuhar, M. J. & Moran, T. H. Intracerebroventricular CART peptide reduces rat ingestive behavior and alters licking microstructure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1613–R1619 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Keating, G. L., Kuhar, M. J. & Rye, D. B. High dose CART induces abnormal EEG activity and behavioral seizures. Neuropeptides 42, 199–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Abbott, C. R. et al. Evidence of an orexigenic role for cocaine- and amphetamine-regulated transcript after administration into discrete hypothalamic nuclei. Endocrinology 142, 3457–3463 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Albertson, D. N. et al. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J. Neurochem. 88, 1211–1219 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang, W. X., Fasulo, W. H., Mash, D. C. & Hemby, S. E. Molecular profiling of midbrain dopamine regions in cocaine overdose victims. J. Neurochem. 85, 911–924 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jung, S. K. et al. Association between polymorphism in intron 1 of cocaine- and amphetamine-regulated transcript gene with alcoholism, but not with bipolar disorder and schizophrenia in Korean population. Neurosci. Lett. 365, 54–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Salinas, A., Wilde, J. D. & Maldve, R. E. Ethanol enhancement of cocaine- and amphetamine-regulated transcript mRNA and peptide expression in the nucleus accumbens. J. Neurochem. 97, 408–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Ogden, C. A. et al. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol. Psychiatry 9, 1007–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Vrang, N., Larsen, P. J. & Kristensen, P. Cocaine-amphetamine regulated transcript (CART) expression is not regulated by amphetamine. Neuroreport 13, 1215–1218 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Marie-Claire, C. et al. Fos but not Cart (cocaine and amphetamine regulated transcript) is overexpressed by several drugs of abuse: a comparative study using real-time quantitative polymerase chain reaction in rat brain. Neurosci. Lett. 345, 77–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Jones, D. C. & Kuhar, M. J. Cocaine-amphetamine-regulated transcript expression in the rat nucleus accumbens is regulated by adenylyl cyclase and the cyclic adenosine 5′-monophosphate/protein kinase A second messenger system. J. Pharmacol. Exp. Ther. 317, 454–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Fagergren, P. & Hurd, Y. L. Mesolimbic gender differences in peptide CART mRNA expression: effects of cocaine. Neuroreport 10, 3449–3452 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Brenz Verca, M. S., Widmer, D. A., Wagner, G. C. & Dreyer, J. Cocaine-induced expression of the tetraspanin CD81 and its relation to hypothalamic function. Mol. Cell. Neurosci. 17, 303–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Hunter, R. G., Vicentic, A., Rogge, G. & Kuhar, M. J. The effects of cocaine on CART expression in the rat nucleus accumbens: a possible role for corticosterone. Eur. J. Pharmacol. 517, 45–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Hubert, G. W. & Kuhar, M. J. Cocaine administration increases the fraction of CART cells in the rat nucleus accumbens that co-immunostain for c-Fos. Neuropeptides 42, 339–343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beaudry, G., Zekki, H., Rouillard, C. & Levesque, D. Clozapine and dopamine D3 receptor antisense reduce cocaine- and amphetamine-regulated transcript expression in the rat nucleus accumbens shell. Synapse 51, 233–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Hunter, R. G. et al. Regulation of CART mRNA in the rat nucleus accumbens via D3 dopamine receptors. Neuropharmacology 50, 858–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Hubert, G. W. & Kuhar, M. J. Colocalization of CART peptide with prodynorphin and dopamine D1 receptors in the rat nucleus accumbens. Neuropeptides 40, 409–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Kimmel, H. L., Gong, W., Vechia, S. D., Hunter, R. G. & Kuhar, M. J. Intra-ventral tegmental area injection of rat cocaine and amphetamine- regulated transcript peptide 55–102 induces locomotor activity and promotes conditioned place preference. J. Pharmacol. Exp. Ther. 294, 784–792 (2000).

    CAS  PubMed  Google Scholar 

  105. Shieh, K. R. Effects of the cocaine- and amphetamine-regulated transcript peptide on the turnover of central dopaminergic neurons. Neuropharmacology 44, 940–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Dallvechia-Adams, S., Kuhar, M. J. & Smith, Y. Cocaine- and amphetamine-regulated transcript peptide projections in the ventral midbrain: colocalization with g-aminobutyric acid, melanin-concentrating hormone, dynorphin, and synaptic interactions with dopamine neurons. J. Comp. Neurol. 448, 360–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Freeman, W. M. et al. Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration. Neuropsychopharmacology 33, 1807–1817 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Jaworski, J. N., Kozel, M. A., Philpot, K. B. & Kuhar, M. J. Intra-accumbal injection of CART (cocaine-amphetamine regulated transcript) peptide reduces cocaine-induced locomotor activity. J. Pharmacol. Exp. Ther. 307, 1038–1044 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Kim, J. H., Creekmore, E. & Vezina, P. Microinjection of CART peptide 55–102 into the nucleus accumbens blocks amphetamine-induced locomotion. Neuropeptides 37, 369–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, S., Yoon, H. S. & Kim, J. H. CART peptide 55–102 microinjected into the nucleus accumbens inhibits the expression of behavioral sensitization by amphetamine. Regul. Pept. 144, 6–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Jaworski, J. N., Hansen, S. T., Kuhar, M. J. & Mark, G. P. Injection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens reduces cocaine-self-administration in rats. Behav. Brain Res. 191, 266–271 (2008). This drug self-administration paper demonstrated that CART peptides might suppress cocaine-induced reward.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Couceyro, P. R., Koylu, E. O. & Kuhar, M. J. Further studies on the anatomical distribution of CART by in situ hybridization. J. Chem. Neuroanat. 12, 229–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Stanley, S. A. et al. Actions of cocaine- and amphetamine-regulated transcript (CART) peptide on regulation of appetite and hypothalamo-pituitary axes in vitro and in vivo in male rats. Brain Res. 893, 186–194 (2001). This was one of the first papers to demonstrate a relationship between CART peptides and the stress-response system.

    Article  CAS  PubMed  Google Scholar 

  114. Kuriyama, G. et al. Cocaine- and amphetamine-regulated transcript peptide in the rat anterior pituitary gland is localized in gonadotrophs and suppresses prolactin secretion. Endocrinology 145, 2542–2550 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Raptis, S. et al. Cocaine- and amphetamine-regulated transcript co-contained in thyrotropin-releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus modulates TRH-induced prolactin secretion. Endocrinology 145, 1695–1699 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Baranowska, B., Wolinska-Witort, E., Martynska, L., Chmielowska, M. & Baranowska-Bik, A. Effects of cocaine-amphetamine regulated transcript (CART) on hormone release. Regul. Pept. 122, 55–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Smith, S. M. et al. Cocaine- and amphetamine-regulated transcript is localized in pituitary lactotropes and is regulated during lactation. Endocrinology 147, 1213–1223 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Baranowska, B. et al. Controversial opinions on the role of CART in prolactin release. Neuro Endocrinol. Lett. 27, 60–62 (2007).

    Google Scholar 

  119. Dun, N. J., Dun, S. L., Kwok, E. H., Yang, J. & Chang, J. Cocaine- and amphetamine-regulated transcript-immunoreactivity in the rat sympatho-adrenal axis. Neurosci. Lett. 283, 97–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Dun, S. L., Chianca, D. A. Jr, Dun, N. J., Yang, J. & Chang, J. K. Differential expression of cocaine- and amphetamine-regulated transcript-immunoreactivity in the rat spinal preganglionic nuclei. Neurosci. Lett. 294, 143–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Dun, S. L., Ng, Y. K., Brailoiu, G. C., Ling, E. A. & Dun, N. J. Cocaine- and amphetamine-regulated transcript peptide-immunoreactivity in adrenergic C1 neurons projecting to the intermediolateral cell column of the rat. J. Chem. Neuroanat. 23, 123–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Dall Vechia, S., Lambert, P. D., Couceyro, P. C., Kuhar, M. J. & Smith, Y. CART peptide immunoreactivity in the hypothalamus and pituitary in monkeys: analysis of ultrastructural features and synaptic connections in the paraventricular nucleus. J. Comp. Neurol. 416, 291–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Broberger, C. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res. 848, 101–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Dun, S. L., Brailoiu, G. C., Yang, J., Chang, J. K. & Dun, N. J. Cocaine- and amphetamine-regulated transcript peptide and sympatho-adrenal axis. Peptides 27, 1949–1955 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Vrang, N., Larsen, P. J., Tang-Christensen, M., Larsen, L. K. & Kristensen, P. Hypothalamic cocaine-amphetamine regulated transcript (CART) is regulated by glucocorticoids. Brain Res. 965, 45–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Smith, S. M. et al. Cocaine- and amphetamine-regulated transcript activates the hypothalamic-pituitary-adrenal axis through a corticotropin-releasing factor receptor-dependent mechanism. Endocrinology 145, 5202–5209 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Balkan, B., Koylu, E. O., Kuhar, M. J. & Pogun, S. The effect of adrenalectomy on cocaine and amphetamine-regulated transcript (CART) expression in the hypothalamic nuclei of the rat. Brain Res. 917, 15–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Balkan, B., Koylu, E., Pogun, S. & Kuhar, M. J. Effects of adrenalectomy on CART expression in the rat arcuate nucleus. Synapse 50, 14–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Savontaus, E., Conwell, I. M. & Wardlaw, S. L. Effects of adrenalectomy on AGRP, POMC, NPY and CART gene expression in the basal hypothalamus of fed and fasted rats. Brain Res. 958, 130–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Stanley, S. A. et al. Regulation of rat pituitary cocaine- and amphetamine-regulated transcript (CART) by CRH and glucocorticoids. Am. J. Physiol. Endocrinol. Metab. 287, E583–E590 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Koylu, E. O. et al. Co-localization of cart peptide immunoreactivity and nitric oxide synthase activity in rat hypothalamus. Brain Res. 868, 352–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Vicentic, A., Hunter, R. G. & Kuhar, M. J. Effect of corticosterone on CART peptide levels in rat blood. Peptides 26, 531–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Sergeyev, V., Broberger, C. & Hokfelt, T. Effect of LPS administration on the expression of POMC, NPY, galanin, CART and MCH mRNAs in the rat hypothalamus. Brain Res. Mol. Brain Res. 90, 93–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Kong, W. M. et al. A role for arcuate cocaine and amphetamine-regulated transcript in hyperphagia, thermogenesis, and cold adaptation. Faseb J. 17, 1688–1690 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Gozen, O. et al. Sex differences in the regulation of cocaine and amphetamine-regulated transcript expression in hypothalamic nuclei of rats by forced swim stress. Synapse 61, 561–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Hunter, R. G. et al. Regulation of CART mRNA by stress and corticosteroids in the hippocampus and amygdala. Brain Res. 1152, 234–240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kask, A., Schioth, H. B., Mutulis, F., Wikberg, J. E. & Rago, L. Anorexigenic cocaine- and amphetamine-regulated transcript peptide intensifies fear reactions in rats. Brain Res. 857, 283–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Chaki, S., Kawashima, N., Suzuki, Y., Shimazaki, T. & Okuyama, S. Cocaine- and amphetamine-regulated transcript peptide produces anxiety-like behavior in rodents. Eur. J. Pharmacol. 464, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Stanek, L. M. Cocaine- and amphetamine related transcript (CART) and anxiety. Peptides 27, 2005–2011 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Bjorkqvist, M. et al. Cocaine- and amphetamine-regulated transcript is increased in Huntington disease. Mov. Disord. 22, 1952–1954 (2007).

    Article  PubMed  Google Scholar 

  141. Orsetti, M., Di Briscoe, F., Canonico, P. L., Genazzani, A. A. & Ghi, P. Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur. J. Neurosci. 27, 2156–2164 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. del Giudice, E. M. et al. Adolescents carrying a missense mutation in the CART gene exhibit increased anxiety and depression. Depress. Anxiety 23, 90–92 (2006).

    Article  CAS  Google Scholar 

  143. Fenwick, N. M., Martin, C. L. & Llewellyn-Smith, I. J. Immunoreactivity for cocaine- and amphetamine-regulated transcript in rat sympathetic preganglionic neurons projecting to sympathetic ganglia and the adrenal medulla. J. Comp. Neurol. 495, 422–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Burman, K. J., Sartor, D. M., Verberne, A. J. & Llewellyn-Smith, I. J. Cocaine- and amphetamine-regulated transcript in catecholamine and noncatecholamine presympathetic vasomotor neurons of rat rostral ventrolateral medulla. J. Comp. Neurol. 476, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Richardson, R. J., Grkovic, I. & Anderson, C. R. Cocaine- and amphetamine-related transcript peptide and somatostatin in rat intracardiac ganglia. Cell Tissue Res. 324, 17–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Matsumura, K., Tsuchihashi, T. & Abe, I. Central human cocaine- and amphetamine-regulated transcript peptide 55–102 increases arterial pressure in conscious rabbits. Hypertension 38, 1096–1100 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Hwang, L. L., Chen, C. T., Li, T. L., Chiu, C. Z. & Chi, S. F. Central pressor effects of CART peptides in anesthetized rats. Neuropeptides 38, 69–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Iliff, J. J., Alkayed, N. J., Gloshani, K. J., Traystman, R. J. & West, G. A. Cocaine- and amphetamine-regulated transcript (CART) peptide: a vasoactive role in the cerebral circulation. J. Cereb. Blood Flow Metab. 25, 1376–1385 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Kozsurek, M. et al. Cocaine- and amphetamine-regulated transcript peptide (CART) is present in peptidergic C primary afferents and axons of excitatory interneurons with a possible role in nociception in the superficial laminae of the rat spinal cord. Eur. J. Neurosci. 26, 1624–1631 (2007).

    Article  PubMed  Google Scholar 

  150. Damaj, M. I., Martin, B. R. & Kuhar, M. J. Antinociceptive effects of supraspinal rat cart (55–102) peptide in mice. Brain Res. 983, 233–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Bannon, A. W. et al. Multiple behavioral effects of cocaine- and amphetamine-regulated transcript (CART) peptides in mice: CART 42–89 and CART 49–89 differ in potency and activity. J. Pharmacol. Exp. Ther. 299, 1021–1026 (2001).

    CAS  PubMed  Google Scholar 

  152. Damaj, M. I., Hunter, R. G., Martin, B. R. & Kuhar, M. J. Intrathecal CART (55–102) enhances the spinal analgesic actions of morphine in mice. Brain Res. 1024, 146–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Damaj, M. I., Zheng, J., Martin, B. R. & Kuhar, M. J. Intrathecal CART (55–102) attenuates hyperalgesia and allodynia in a mouse model of neuropathic but not inflammatory pain. Peptides 27, 2019–2023 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Ahn, J. D., Dubern, B., Lubrano-Berthelier, C., Clement, K. & Karsenty, G. Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology 147, 3196–3202 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Patel, M. S. & Elefteriou, F. The new field of neuroskeletal biology. Calcif. Tissue Int. 80, 337–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Louis, J. C. M. Methods of preventing neuron degeneration and promoting neuron regeneration. Amgen, Int. Patent Appl. Publication #WO96/34619 (1996).

  158. Xu, Y. et al. Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection. Proc. Natl Acad. Sci. USA 103, 14489–14494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wu, B., Hu, S., Yang, M., Pan, H. & Zhu, S. CART peptide promotes the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor. Biochem. Biophys. Res. Commun. 347, 656–661 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Brischoux, F., Fellmann, D. & Risold, P. Y. Ontogenetic development of the diencephalic MCH neurons: a hypothalamic 'MCH area' hypothesis. Eur. J. Neurosci. 13, 1733–1744 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Brischoux, F., Griffond, B., Fellmann, D. & Risold, P. Y. Early and transient ontogenetic expression of the cocaine- and amphetamine-regulated transcript peptide in the rat mesencephalon: correlation with tyrosine hydroxylase expression. J. Neurobiol. 52, 221–229 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Dun, S. L., Castellino, S. J., Yang, J., Chang, J. K. & Dun, N. J. Cocaine- and amphetamine-regulated transcript peptide-immunoreactivity in dorsal motor nucleus of the vagus neurons of immature rats. Brain Res. Dev. Brain Res. 131, 93–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Adan, R. A., Vanderschuren, L. J. & la Fleur, E. S. Anti-obesity drugs and neural circuits of feeding. Trends Pharmacol. Sci. 29, 208–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Meister, B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol. Behav. 92, 263–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Chaudhri, O. B., Salem, V., Murphy, K. G. & Bloom, S. R. Gastrointestinal satiety signals. Annu. Rev. Physiol. 70, 239–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Saper, C. B., Chou, T. C. & Elmquist, J. K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Jensen, P. B. et al. The hypothalamic satiety peptide CART is expressed in anorectic and non-anorectic pancreatic islet tumors and in the normal islet of Langerhans. FEBS Lett. 447, 139–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Wierup, N. et al. Cocaine- and amphetamine-regulated transcript (CART) is expressed in several islet cell types during rat development. J. Histochem. Cytochem. 52, 169–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Wierup, N., Bjorkqvist, M., Kuhar, M. J., Mulder, H. & Sundler, F. CART regulates islet hormone secretion and is expressed in the beta-cells of type 2 diabetic rats. Diabetes 55, 305–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Hubert, G. W., Jones, D. C., Moffett, M. C., Rogge, G. & Kuhar, M. J. CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem. Pharmacol. 75, 57–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Barrett, P. et al. The differential regulation of CART gene expression in a pituitary cell line and primary cell cultures of ovine pars tuberalis cells. J. Neuroendocrinol. 13, 347–352 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the helpful suggestions of Drs Nestler, Hunter, Sundler, Wierup and Vrang, and the support of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Kuhar.

Ethics declarations

Competing interests

G. Rogge, D. Jones, G. W. Hubert, Y. Lin and M. J. Kuhar

CART peptides: regulators of body weight, reward and other functions. Nature Reviews Neuroscience 9, 747–758 (2008); doi:10.1038/nrn2493

Michael Kuhar received some funding from Pfizer Inc. for 2007.

Related links

Related links

FURTHER INFORMATION

M. J. Kuhar's homepage

Glossary

Intracisternal injection

The injection of a substance into the space between the cerebellum and the medulla, which is filled with cerebrospinal fluid.

Tyrosine hydroxylase

The enzyme that catalyzes the conversion of L-tyrosine to dihydroxyphenylalanine (DOPA), which is a precursor of dopamine.

Elevated plus maze

A test that is used to assess anxiety-like behaviour in animals, usually rats or mice. The basic measure is the animal's preference — measured as duration of inhabitation — for dark, enclosed places over bright, more open places. More time spent in the bright and open areas suggests a lower level of anxiety.

Formalin test

A model of chronic pain that is usually carried out in rats or mice as a test for substances that reduce pain. It involves a subcutaneous injection of formalin into the hind paw, which causes severe inflammation. The pain measurement can be the time the animal spends with weight on the injected paw or the time the animal spends biting and licking the injected paw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogge, G., Jones, D., Hubert, G. et al. CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 9, 747–758 (2008). https://doi.org/10.1038/nrn2493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing