Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synaptic AMPA receptor composition in development, plasticity and disease

Key Points

  • AMPA receptors (AMPARs) mediate nearly all fast excitatory neurotransmission in the mammalian CNS.

  • AMPARs are heteromeric assemblies of four core subunits, GluA1–4, together with auxiliary subunits and a dynamically changing set of interacting proteins.

  • The assembly and subunit composition of AMPARs undergo activity-dependent regulation during biogenesis.

  • The presence or absence of the edited form of the GluA2 subunit, GluA2(R), determines whether the assembled AMPAR gates Ca2+.

  • There is a wealth of evidence suggesting that the synaptic trafficking, retention and removal of AMPARs of specific subunit combinations and that have specific biophysical properties are of paramount importance for synaptic plasticity. These AMPAR-subtype-specific events are regulated both by protein interactions and by phosphorylation events within the carboxy-terminal tails.

  • Recent studies reporting that the C-terminal tails are not essential for plasticity and that very few GluA1 subunits are phosphorylated have prompted a major re-evaluation of the fundamental mechanisms of AMPAR trafficking and synaptic plasticity.

  • Understanding the molecular details of AMPAR assembly, trafficking, recycling and degradation, and how dysfunction affects synapses, neurons and networks will provide invaluable insights into neurological and neurodegenerative disease.

Abstract

AMPA receptors (AMPARs) are assemblies of four core subunits, GluA1–4, that mediate most fast excitatory neurotransmission. The component subunits determine the functional properties of AMPARs, and the prevailing view is that the subunit composition also determines AMPAR trafficking, which is dynamically regulated during development, synaptic plasticity and in response to neuronal stress in disease. Recently, the subunit dependence of AMPAR trafficking has been questioned, leading to a reappraisal of this field. In this Review, we discuss what is known, uncertain, conjectured and unknown about the roles of the individual subunits, and how they affect AMPAR assembly, trafficking and function under both normal and pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AMPAR receptor topology and properties.
Figure 2: The slot hypothesis of LTP.
Figure 3: Subunit-specific AMPAR trafficking through the secretory pathway.
Figure 4: CP-AMPAR trafficking in hippocampal plasticity.
Figure 5: CP-AMPAR plasticity at cerebellar granule cell–stellate cell synapses.

Similar content being viewed by others

References

  1. Wisden, W. & Seeburg, P. H. Mammalian ionotropic glutamate receptors. Curr. Opin. Neurobiol. 3, 291–298 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Mammen, A. L., Huganir, R. L. & O'Brien, R. J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Archibald, K., Perry, M. J., Molnar, E. & Henley, J. M. Surface expression and metabolic half-life of AMPA receptors in cultured rat cerebellar granule cells. Neuropharmacology 37, 1345–1353 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Henley, J. M., Barker, E. A. & Glebov, O. O. Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci. 34, 258–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huganir, R. L. & Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704–717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicoll, R. A. & Roche, K. W. Long-term potentiation: peeling the onion. Neuropharmacology 74, 18–22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sans, N. et al. Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J. Neurosci. 23, 9367–9373 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wenthold, R. J., Petralia, R. S., Blahos, J. II & Niedzielski, A. S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001). This paper proposed the now widely accepted model that regulated addition of GluA1–GluA2-and continuous replacement of GluA2–GluA3-containing synaptic AMPARs provides the mechanism for how surface receptor number is established and maintained.

    Article  CAS  PubMed  Google Scholar 

  11. Kessels, H. W., Kopec, C. D., Klein, M. E. & Malinow, R. Roles of stargazin and phosphorylation in the control of AMPA receptor subcellular distribution. Nat. Neurosci. 12, 888–896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, J. J., Esteban, J. A., Hayashi, Y. & Malinow, R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098–1106 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bernard, V., Somogyi, P. & Bolam, J. P. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J. Neurosci. 17, 819–833 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pelkey, K. A. et al. Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron 85, 1257–1272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, S. H., Simonetta, A. & Sheng, M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43, 221–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Granger, A. J., Shi, Y., Lu, W., Cerpas, M. & Nicoll, R. A. LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature 493, 495–500 (2013). Contrary to the prevailing view, this paper reported the unexpected finding that there is no absolute requirement for any individual AMPAR subunit, or C-terminal protein interaction, for LTP.

    Article  CAS  PubMed  Google Scholar 

  19. Granger, A. J. & Nicoll, R. A. LTD expression is independent of glutamate receptor subtype. Front. Synapt. Neurosci. 6, 15 (2014).

    Article  CAS  Google Scholar 

  20. Kim, C. H. et al. Persistent hippocampal CA1 LTP in mice lacking the C-terminal PDZ ligand of GluR1. Nat. Neurosci. 8, 985–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Kerr, J. M. & Blanpied, T. A. Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J. Neurosci. 32, 658–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hosokawa, T., Mitsushima, D., Kaneko, R. & Hayashi, Y. Stoichiometry and phosphoisotypes of hippocampal AMPA-type glutamate receptor phosphorylation. Neuron 85, 60–67 (2015). Using biochemical approaches, this report suggests that there is almost no phosphorylation of GluA1 at S831 and S845, the two major sites identified by many previous papers as critical for AMPAR regulation.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, H. K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631–643 (2003). This study generated transgenic mice that express GluA1 with mutated phosphorylation sites and demonstrated that phosphorylation of GluA1 is required for LTD and LTP, and learning and memory.

    Article  CAS  PubMed  Google Scholar 

  24. Esteban, J. A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6, 136–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. MacGillavry, H. D., Song, Y., Raghavachari, S. & Blanpied, T. A. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78, 615–622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Steiner, P. et al. Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60, 788–802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coombs, I. D. & Cull-Candy, S. G. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience 162, 656–665 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, L. et al. Stargazing regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000). This paper reports that AMPAR subunit interaction with stargazin is required for surface expression of AMPARs and implies the widespread influence of TARPs in AMPAR trafficking.

    Article  CAS  PubMed  Google Scholar 

  32. Sumioka, A. Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking. J. Biochem. 153, 331–337 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Opazo, P. et al. CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67, 239–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Opazo, P., Sainlos, M. & Choquet, D. Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr. Opin. Neurobiol. 22, 453–460 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Carta, M. et al. CaMKII-dependent phosphorylation of GluK5 mediates plasticity of kainate receptors. EMBO J. 32, 496–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saglietti, L. et al. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 54, 461–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Tai, C. Y., Kim, S. A. & Schuman, E. M. Cadherins and synaptic plasticity. Curr. Opin. Cell Biol. 20, 567–575 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Linhoff, M. W. et al. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61, 734–749 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soler-Llavina, G. J. et al. Leucine-rich repeat transmembrane proteins are essential for maintenance of long-term potentiation. Neuron 79, 439–446 (2013). This study shows that LRRTM synaptic cell adhesion molecules are required for LTP because they maintain the surface expression of newly recruited synaptic AMPARs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Makino, H. & Malinow, R. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64, 381–390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawahara, Y., Ito, K., Sun, H., Kanazawa, I. & Kwak, S. Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur. J. Neurosci. 18, 23–33 (2003).

    Article  PubMed  Google Scholar 

  42. Wright, A. & Vissel, B. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front. Mol. Neurosci. 5, 34 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Isaac, J. T., Ashby, M. & McBain, C. J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54, 859–871 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, S. J. & Zukin, R. S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Man, H. Y. GluA2-lacking, calcium-permeable AMPA receptors — inducers of plasticity? Curr. Opin. Neurobiol. 21, 291–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Washburn, M. S. & Dingledine, R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J. Pharmacol. Exp. Ther. 278, 669–678 (1996).

    CAS  PubMed  Google Scholar 

  48. Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat. Neurosci. 9, 602–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, Y., Wang, X. B. & Zhou, Q. Perisynaptic GluR2-lacking AMPA receptors control the reversibility of synaptic and spines modifications. Proc. Natl Acad. Sci. USA 107, 11999–12004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jaafari, N., Henley, J. M. & Hanley, J. G. PICK1 mediates transient synaptic expression of GluA2-lacking AMPA receptors during glycine-induced AMPA receptor trafficking. J. Neurosci. 32, 11618–11630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He, K. et al. Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc. Natl Acad. Sci. USA 106, 20033–20038 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fortin, D. A. et al. Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-permeable AMPA receptors recruited by CaM-kinase I. J. Neurosci. 30, 11565–11575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adesnik, H. & Nicoll, R. A. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J. Neurosci. 27, 4598–4602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gray, E. E., Fink, A. E., Sarinana, J., Vissel, B. & O'Dell, T. J. Long-term potentiation in the hippocampal CA1 region does not require insertion and activation of GluR2-lacking AMPA receptors. J. Neurophysiol. 98, 2488–2492 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Granger, A. J. & Nicoll, R. A. Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on. Phil. Trans. R. Soc. B 369, 20130136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ho, M. T. et al. Developmental expression of Ca2+-permeable AMPA receptors underlies depolarization-induced long-term depression at mossy fiber CA3 pyramid synapses. J. Neurosci. 27, 11651–11662 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, S. Q. & Cull-Candy, S. G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000). This paper provided the first description of activity-induced changes in the AMPAR subunit composition from GluA2-lacking, Ca2+-permeable to GluA2-containing Ca2+-impermeable complexes at cerebellar stellate cell synapses.

    Article  CAS  PubMed  Google Scholar 

  58. Kelly, L., Farrant, M. & Cull-Candy, S. G. Synaptic mGluR activation drives plasticity of calcium-permeable AMPA receptors. Nat. Neurosci. 12, 593–601 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Turrigiano, G. G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thiagarajan, T. C., Lindskog, M. & Tsien, R. W. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Aoto, J., Nam, C. I., Poon, M. M., Ting, P. & Chen, L. Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60, 308–320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sutton, M. A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Ogoshi, F. et al. Tumor necrosis-factor-alpha (TNF-α) induces rapid insertion of Ca2+-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons. Exp. Neurol. 193, 384–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Shepherd, J. D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gainey, M. A., Hurvitz-Wolff, J. R., Lambo, M. E. & Turrigiano, G. G. Synaptic scaling requires the GluR2 subunit of the AMPA receptor. J. Neurosci. 29, 6479–6489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pellegrini-Giampietro, D. E., Bennett, M. V. & Zukin, R. S. Are Ca2+-permeable kainate/AMPA receptors more abundant in immature brain? Neurosci. Lett. 144, 65–69 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Pickard, L., Noel, J., Henley, J. M., Collingridge, G. L. & Molnar, E. Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J. Neurosci. 20, 7922–7931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Monyer, H., Seeburg, P. H. & Wisden, W. Glutamate-operated channels — developmentally early and mature forms arise by alternative splicing. Neuron 6, 799–810 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Allen, N. J. Role of glia in developmental synapse formation. Curr. Opin. Neurobiol. 23, 1027–1033 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki, E., Kessler, M. & Arai, A. C. The fast kinetics of AMPA GluR3 receptors is selectively modulated by the TARPs γ4 and γ8. Mol. Cell. Neurosci. 38, 117–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Blair, M. G. et al. Developmental changes in structural and functional properties of hippocampal AMPARs parallels the emergence of deliberative spatial navigation in juvenile rats. J. Neurosci. 33, 12218–12228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mayer, M. L. Glutamate receptors at atomic resolution. Nature 440, 456–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Sukumaran, M., Penn, A. C. & Greger, I. H. AMPA receptor assembly: atomic determinants and built-in modulators. Adv. Exp. Med. Biol. 970, 241–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Nakagawa, T. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol. Neurobiol. 42, 161–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rossmann, M. et al. Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers. EMBO J. 30, 959–971 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Greger, I. H., Khatri, L. & Ziff, E. B. RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34, 759–772 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Greger, I. H., Khatri, L., Kong, X. & Ziff, E. B. AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40, 763–774 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Mah, S. J., Cornell, E., Mitchell, N. A. & Fleck, M. W. Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function. J. Neurosci. 25, 2215–2225 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Greger, I. H., Ziff, E. B. & Penn, A. C. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci. 30, 407–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Brorson, J. R., Li, D. & Suzuki, T. Selective expression of heteromeric AMPA receptors driven by flip-flop differences. J. Neurosci. 24, 3461–3470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Greger, I. H., Akamine, P., Khatri, L. & Ziff, E. B. Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis. Neuron 51, 85–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Kumar, S. S., Bacci, A., Kharazia, V. & Huguenard, J. R. A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J. Neurosci. 22, 3005–3015 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lu, W., Khatri, L. & Ziff, E. B. Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) receptor subunit GluA2 from the endoplasmic reticulum is stimulated by a complex containing Ca2+/calmodulin-activated kinase II (CaMKII) and PICK1 protein and by release of Ca2+ from internal stores. J. Biol. Chem. 289, 19218–19230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vandenberghe, W., Nicoll, R. A. & Bredt, D. S. Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic AMPA receptor transport. J. Neurosci. 25, 1095–1102 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tomita, S., Nicoll, R. A. & Bredt, D. S. PDZ protein interactions regulating glutamate receptor function and plasticity. J. Cell Biol. 153, F19–F24 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Bokel, C., Dass, S., Wilsch-Brauninger, M. & Roth, S. Drosophila Cornichon acts as cargo receptor for ER export of the TGFα-like growth factor Gurken. Development 133, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Sauvageau, E. et al. CNIH4 interacts with newly synthesized GPCR and controls their export from the endoplasmic reticulum. Traffic 15, 383–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Brockie, P. J. et al. Cornichons control ER export of AMPA receptors to regulate synaptic excitability. Neuron 80, 129–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harmel, N. et al. AMPA receptors commandeer an ancient cargo exporter for use as an auxiliary subunit for signaling. PLoS ONE 7, e30681 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hanley, J. G. Subunit-specific trafficking mechanisms regulating the synaptic expression of Ca2+-permeable AMPA receptors. Semin. Cell Dev. Biol. 27, 14–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Terashima, A. et al. An essential role for PICK1 in NMDA receptor-dependent bidirectional synaptic plasticity. Neuron 57, 872–882 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin, D. T. & Huganir, R. L. PICK1 and phosphorylation of the glutamate receptor 2 (GluR2) AMPA receptor subunit regulates GluR2 recycling after NMDA receptor-induced internalization. J. Neurosci. 27, 13903–13908 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Citri, A. et al. Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression. J. Neurosci. 30, 16437–16452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Volk, L., Kim, C. H., Takamiya, K., Yu, Y. & Huganir, R. L. Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning. Proc. Natl Acad. Sci. USA 107, 21784–21789 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Petrini, E. M. et al. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 63, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl Acad. Sci. USA 99, 13902–13907 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Boehm, J., Ehrlich, I., Hsieh, H. & Malinow, R. Two mutations preventing PDZ-protein interactions of GluR1 have opposite effects on synaptic plasticity. Learn. Mem. 13, 562–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Mauceri, D., Cattabeni, F., Di Luca, M. & Gardoni, F. Calcium/calmodulin-dependent protein kinase II phosphorylation drives synapse-associated protein 97 into spines. J. Biol. Chem. 279, 23813–23821 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, H., Nash, J. E., Zamorano, P. & Garner, C. C. Interaction of SAP97 with minus-end-directed actin motor myosin VI. Implications for AMPA receptor trafficking. J. Biol. Chem. 277, 30928–30934 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Loo, L. S., Tang, N., Al-Haddawi, M., Dawe, G. S. & Hong, W. A role for sorting nexin 27 in AMPA receptor trafficking. Nat. Commun. 5, 3176 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Hussain, N. K., Diering, G. H., Sole, J., Anggono, V. & Huganir, R. L. Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc. Natl Acad. Sci. USA 111, 11840–11845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, S. J. & Cull-Candy, S. G. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nat. Neurosci. 8, 768–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Gardner, S. M. et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45, 903–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Jackson, A. C. & Nicoll, R. A. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 70, 178–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Haering, S. C., Tapken, D., Pahl, S. & Hollmann, M. Auxiliary subunits: shepherding AMPA receptors to the plasma membrane. Membranes (Basel) 4, 469–490 (2014).

    Article  CAS  Google Scholar 

  110. Zheng, Y. et al. SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 glutamate receptors in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 103, 1100–1105 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schwenk, J. et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323, 1313–1319 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Kalashnikova, E. et al. SynDIG1: an activity-regulated, AMPA- receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65, 80–93 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kirk, L. M. et al. Distribution of the SynDIG4/Proline rich transmembrane protein 1 in rat brain. J. Comp. Neurol. http://dx.doi.org/10.1002/cne.23945 (2015).

  114. von Engelhardt, J. et al. CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. Science 327, 1518–1522 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Farrow, P. et al. Auxiliary subunits of the CKAMP family differentially modulate AMPA receptor properties. eLife 4, e09693 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Shanks, N. F. et al. Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L. Cell Rep. 1, 590–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Constals, A. et al. Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron 85, 787–803 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Morimoto-Tomita, M. et al. Autoinactivation of neuronal AMPA receptors via glutamate-regulated TARP interaction. Neuron 61, 101–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nakagawa, T., Cheng, Y., Ramm, E., Sheng, M. & Walz, T. Structure and different conformational states of native AMPA receptor complexes. Nature 433, 545–549 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Semenov, A., Moykkynen, T., Coleman, S. K., Korpi, E. R. & Keinanen, K. Autoinactivation of the stargazin-AMPA receptor complex: subunit-dependency and independence from physical dissociation. PLoS ONE 7, e49282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Soto, D., Coombs, I. D., Kelly, L., Farrant, M. & Cull-Candy, S. G. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat. Neurosci. 10, 1260–1267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Soto, D. et al. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5. Nat. Neurosci. 12, 277–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bats, C., Soto, D., Studniarczyk, D., Farrant, M. & Cull-Candy, S. G. Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nat. Neurosci. 15, 853–861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jackson, A. C. et al. Probing TARP modulation of AMPA receptor conductance with polyamine toxins. J. Neurosci. 31, 7511–7520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Studniarczyk, D., Coombs, I., Cull-Candy, S. G. & Farrant, M. TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs. Nat. Neurosci. 16, 1266–1274 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Herring, B. E. et al. Cornichon proteins determine the subunit composition of synaptic AMPA receptors. Neuron 77, 1083–1096 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chater, T. E. & Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. 8, 401 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wang, J. Q. et al. Roles of subunit phosphorylation in regulating glutamate receptor function. Eur. J. Pharmacol. 728, 183–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Lu, W. & Roche, K. W. Posttranslational regulation of AMPA receptor trafficking and function. Curr. Opin. Neurobiol. 22, 470–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J. & Huganir, R. L. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179–1188 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Kristensen, A. S. et al. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat. Neurosci. 14, 727–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Banke, T. G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee, H. K., Takamiya, K., He, K., Song, L. & Huganir, R. L. Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. J. Neurophysiol. 103, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Steinberg, J. P. et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49, 845–860 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Luchkina, N. V. et al. Developmental switch in the kinase dependency of long-term potentiation depends on expression of GluA4 subunit-containing AMPA receptors. Proc. Natl Acad. Sci. USA 111, 4321–4326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Henley, J. M., Craig, T. J. & Wilkinson, K. A. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol. Rev. 94, 1249–1285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sanderson, J. L. et al. AKAP150-anchored calcineurin regulates synaptic plasticity by limiting synaptic incorporation of Ca2+-permeable AMPA receptors. J. Neurosci. 32, 15036–15052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kim, S. & Ziff, E. B. Calcineurin mediates synaptic scaling via synaptic trafficking of Ca2+-permeable AMPA receptors. PLoS Biol. 12, e1001900 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Diering, G. H., Gustina, A. S. & Huganir, R. L. PKA–GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity. Neuron 84, 790–805 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Guire, E. S., Oh, M. C., Soderling, T. R. & Derkach, V. A. Recruitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I. J. Neurosci. 28, 6000–6009 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hampel, H. et al. The future of Alzheimer's disease: the next 10 years. Prog. Neurobiol. 95, 718–728 (2011).

    Article  PubMed  Google Scholar 

  143. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Walsh, D. M. & Selkoe, D. J. Aβ oligomers — a decade of discovery. J. Neurochem. 101, 1172–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Zhao, W. Q. et al. Inhibition of calcineurin-mediated endocytosis and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid β oligomer-induced synaptic disruption. J. Biol. Chem. 285, 7619–7632 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Whitcomb, D. J. et al. Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci. Rep. 5, 10934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Spaethling, J. M., Klein, D. M., Singh, P. & Meaney, D. F. Calcium-permeable AMPA receptors appear in cortical neurons after traumatic mechanical injury and contribute to neuronal fate. J. Neurotrauma 25, 1207–1216 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Grooms, S. Y., Opitz, T., Bennett, M. V. & Zukin, R. S. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proc. Natl Acad. Sci. USA 97, 3631–3636 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yamashita, T. & Kwak, S. The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients. Brain Res. 1584, 28–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  151. Verdoorn, T. A., Burnashev, N., Monyer, H., Seeburg, P. H. & Sakmann, B. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252, 1715–1718 (1991).

    Article  CAS  PubMed  Google Scholar 

  152. Hestrin, S. Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons. Neuron 11, 1083–1091 (1993).

    Article  CAS  PubMed  Google Scholar 

  153. Clem, R. L. & Barth, A. Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron 49, 663–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Goel, A. et al. Cross-modal regulation of synaptic AMPA receptors in primary sensory cortices by visual experience. Nat. Neurosci. 9, 1001–1003 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Goel, A. et al. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity. PLoS ONE 6, e18264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Clem, R. L., Anggono, V. & Huganir, R. L. PICK1 regulates incorporation of calcium-permeable AMPA receptors during cortical synaptic strengthening. J. Neurosci. 30, 6360–6366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bellone, C. & Luscher, C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur. J. Neurosci. 21, 1280–1288 (2005).

    Article  PubMed  Google Scholar 

  158. Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Conrad, K. L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the UK Medical Research Council (MRC), BBSRC, Alzheimer's Society, BRACE and British Heart Foundation for financial support. They thank A. Evans and R. Carmichael for critical reading and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeremy M. Henley or Kevin A. Wilkinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Ionotropic glutamate receptors

A family of glutamate-gated cation channels that can be subdivided into AMPA, NMDA and kainate receptors on the basis of their pharmacological properties.

Synaptic plasticity

The process by which synaptic transmission can strengthen or weaken in response to specific patterns of activity.

PDZ domain

A structural domain of 80–90 amino acids that binds cognate proteins containing a short carboxy-terminal PDZ ligand. Among other functions, PDZ interactions anchor receptor proteins in the membrane to cytoskeletal components.

Long-term potentiation

(LTP). The persistent strengthening of synaptic transmission that is mainly due to increased numbers of postsynaptic AMPA receptors.

Long-term depression

(LTD). A long-lasting decrease in synaptic strength that is mainly due to reduced numbers of postsynaptic AMPA receptors.

Membrane-associated guanylate kinase

(MAGUK). A superfamily of multidomain, catalytically inert scaffolding proteins that facilitate interactions between cytoskeletal proteins, microtubule- or actin-based machinery and molecules involved in signal transduction.

Auxiliary subunits

Specialized transmembrane components of the AMPA receptor complex that modulate forward trafficking and the pharmacological and functional properties of the surface-expressed receptor.

RNA editing

A post-transcriptional modification process that changes an RNA molecule to insert, delete or substitute nucleotides. Editing of the base A→I at a specific site results in the substitution of Q with R in almost all GluA2 subunits in the CNS.

Ca2+-impermeable AMPARs

(CI-AMPA receptors). Tetrameric assemblies containing the RNA-edited form of the GluA2 subunit in which the uncharged amino acid glutamine (Q) is changed to the positively charged arginine (R) in the ion channel.

Ca2+-permeable AMPARs

(CP-AMPA receptors). AMPA receptors are calcium permeable when they lack GluA2 or contain unedited GluA2.

Homeostatic synaptic scaling

A feedback mechanism by which a neuron can upregulate or downregulate its synaptic responsiveness in response to sustained alterations in activity.

Silent synapses

Synapses that contain postsynaptic NMDA receptors but that lack AMPA receptors, rendering the synapse silent at resting membrane potential.

AKAP150

(Also known as AKAP79 in humans). A specialized scaffold protein that can bring together protein kinase A (PKA), PKC, the scaffolding proteins synapse-associated protein 97 (SAP97) and postsynaptic density protein 95 (PSD95) and the Ca2+-dependent protein phosphatase calcineurin with AMPA receptors at synapses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henley, J., Wilkinson, K. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 17, 337–350 (2016). https://doi.org/10.1038/nrn.2016.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing