Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Network abnormalities and interneuron dysfunction in Alzheimer disease

Key Points

  • The brain controls the function of neural circuits and networks, in part, by modulating the synchrony of their components.

  • Network hypersynchrony and altered oscillatory rhythmic activity may underlie cognitive abnormalities in Alzheimer disease (AD).

  • In AD, network activities that support cognition are altered decades before clinical disease onset, and the affected networks predict future pathology and brain atrophy.

  • Although the precise causes and pathophysiological consequences of these network alterations remain to be fully elucidated, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders.

  • Several lines of evidence suggest that modulating interneuron-dependent network alterations could be a useful therapeutic strategy to improve brain functions in these conditions.

Abstract

The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synchrony and functional states of networks.
Figure 2: Encoding reveals network dysfunction in people with mild cognitive impairment.
Figure 3: Neuronal activity regulates amyloid-β production and deposition.
Figure 4: Neuronal ensembles generate oscillatory activity patterns.
Figure 5: Close association between behavioural state, gamma oscillations and epileptiform activity in mice and humans.
Figure 6: Targeting interneurons to improve Alzheimer disease-related network dysfunction.

Similar content being viewed by others

References

  1. Seidman, L. J. et al. Medial temporal lobe default mode functioning and hippocampal structure as vulnerability indicators for schizophrenia: a MRI study of non-psychotic adolescent first-degree relatives. Schizophr. Res. 159, 426–434 (2014).

    PubMed  Google Scholar 

  2. Fahoum, F., Zelmann, R., Tyvaert, L., Dubeau, F. & Gotman, J. Epileptic discharges affect the default mode network — fMRI and intracerebral EEG evidence. PLoS ONE 8, e68038 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Oser, N. et al. Default mode network alterations during language task performance in children with benign epilepsy with centrotemporal spikes (BECTS). Epilepsy Behav. 33, 12–17 (2014).

    PubMed  Google Scholar 

  4. Sperling, R. A. et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188 (2009). This study shows that PiB+ amyloid deposits are associated with deactivation deficits in a default network component in non-demented individuals and patients with MCI, linking aberrant neuronal activity and pathological changes.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Anticevic, A. et al. The role of default network deactivation in cognition and disease. Trends Cognit. Sci. 16, 584–592 (2012).

    Google Scholar 

  6. Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-ɛ4 allele. Proc. Natl Acad. Sci. USA 106, 7209–7214 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mondadori, C. R. et al. Enhanced brain activity may precede the diagnosis of Alzheimer's disease by 30 years. Brain 129, 2908–2922 (2006).

    PubMed  Google Scholar 

  8. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012). This study demonstrates changes in CSF biomarkers, cerebral amyloid deposition and brain metabolism in carriers of autosomal dominant FAD mutations at least two decades before the estimated onset of clinical symptoms.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reiman, E. M. et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer's disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol. 11, 1048–1056 (2012). This study shows hippocampal hyperactivity and deactivation deficits in the DMN in 18–26-year-old asymptomatic PSEN1 -mutation carriers.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jasper, H. H. Cortical excitatory state and variability in human brain rhythms. Science 83, 259–260 (1936).

    CAS  PubMed  Google Scholar 

  11. Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19, 4595–4608 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Poulet, J. F. & Petersen, C. C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    CAS  PubMed  Google Scholar 

  13. Poulet, J. F., Fernandez, L. M., Crochet, S. & Petersen, C. C. Thalamic control of cortical states. Nat. Neurosci. 15, 370–372 (2012).

    CAS  PubMed  Google Scholar 

  14. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    CAS  PubMed  Google Scholar 

  15. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012).

    CAS  PubMed  Google Scholar 

  16. Karch, C. M., Cruchaga, C. & Goate, A. M. Alzheimer's disease genetics: from the bench to the clinic. Neuron 83, 11–26 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gomez-Isla, T. et al. The impact of different presenilin 1 and presenilin 2 mutations on amyloid deposition, neurofibrillary changes and neuronal loss in the familial Alzheimer's disease brain: evidence for other phenotype-modifying factors. Brain 122, 1709–1719 (1999).

    PubMed  Google Scholar 

  18. Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet. 13, 159–170 (2004).

    CAS  PubMed  Google Scholar 

  19. Steiner, H. & Haass, C. Intramembrane proteolysis by presenilins. Nat. Rev. Mol. Cell Biol. 1, 217–224 (2000).

    CAS  PubMed  Google Scholar 

  20. Tsubuki, S., Takaki, Y. & Saido, T. C. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβ to physiologically relevant proteolytic degradation. Lancet 361, 1957–1958 (2003).

    CAS  PubMed  Google Scholar 

  21. Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4, 887–893 (2001).

    CAS  PubMed  Google Scholar 

  22. Shimada, H. et al. Clinical course of patients with familial early-onset Alzheimer's disease potentially lacking senile plaques bearing the E693Δ mutation in amyloid precursor protein. Dement. Geriatr. Cogn. Disord. 32, 45–54 (2011).

    PubMed  Google Scholar 

  23. Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    CAS  PubMed  Google Scholar 

  24. Maloney, J. A. et al. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J. Biol. Chem. 289, 30990–31000 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, S. et al. Soluble oligomers of amyloid β-protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009). This study shows that amyloid-β blocks neuronal glutamate uptake at synapses, which results in glutamate spillover, aberrant activation of extra- or perisynaptic GluN2B-containing NMDARs and enhanced long-term depression.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, S. et al. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 31, 6627–6638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84 (2005).

    CAS  PubMed  Google Scholar 

  29. Musiek, E. S. & Holtzman, D. M. Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nat. Neurosci. 18, 800–806 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, P. et al. Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration. Cell Rep. 11, 1760–1771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ashe, K. H. & Zahs, K. R. Probing the biology of Alzheimer's disease in mice. Neuron 66, 631–645 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris, M., Maeda, S., Vossel, K. & Mucke, L. The many faces of tau. Neuron 70, 410–426 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, Y. & Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204–1222 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    CAS  PubMed  Google Scholar 

  35. Maeda, S. et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 17, 530–551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. SantaCruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mandelkow, E. M. & Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med. 2, a006247 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahley, R. W. & Huang, Y. Apolipoprotein E sets the stage: response to injury triggers neuropathology. Neuron 76, 871–885 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pike, K. E. et al. β-Amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 130, 2837–2844 (2007).

    PubMed  Google Scholar 

  41. Savva, G. M. et al. Age, neuropathology, and dementia. N. Engl. J. Med. 360, 2302–2309 (2009).

    CAS  PubMed  Google Scholar 

  42. Ingelsson, M. et al. Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62, 925–931 (2004).

    CAS  PubMed  Google Scholar 

  43. Lesne, S. E. et al. Brain amyloid-β oligomers in ageing and Alzheimer's disease. Brain 136, 1383–1398 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Selkoe, D. J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192, 106–113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Klein, W. L., Krafft, G. A. & Finch, C. E. Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum. Trends Neurosci. 24, 219–224 (2001).

    CAS  PubMed  Google Scholar 

  46. Walsh, D. M. & Selkoe, D. J. Aβ oligomers — a decade of discovery. J. Neurochem. 101, 1172–1184 (2007).

    CAS  PubMed  Google Scholar 

  47. Shankar, G. M. et al. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866–2875 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng, I. H. et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–23828 (2007).

    CAS  PubMed  Google Scholar 

  49. Tomiyama, T. et al. A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J. Neurosci. 30, 4845–4856 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lesné, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    PubMed  Google Scholar 

  51. Meilandt, W. J. et al. Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Aβ oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J. Neurosci. 29, 1977–1986 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mably, A. J. et al. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice. Neurobiol. Dis. 82, 372–384 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. De Strooper, B. Loss-of-function presenilin mutations in Alzheimer disease. EMBO Rep. 8, 141–146 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pimplikar, S. W. Neuroinflammation in Alzheimer's disease: from pathogenesis to a therapeutic target. J. Clin. Immunol. 34, S64–S69 (2014).

    PubMed  Google Scholar 

  55. Xia, D. et al. Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer's disease. Neuron 85, 967–981 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bredesen, D. E. Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence. Mol. Neurodegener. 4, 27 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Bentley, W. J., Li, J. M., Snyder, A. Z., Raichle, M. E. & Snyder, L. H. Oxygen level and LFP in task-positive and task-negative areas: bridging BOLD fMRI and electrophysiology. Cereb. Cortex 26, 346–357 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Boyatzis, R. E., Rochford, K. & Jack, A. I. Antagonistic neural networks underlying differentiated leadership roles. Front. Hum. Neurosci. 8, 114 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    CAS  PubMed  Google Scholar 

  61. Sperling, R. A. et al. Functional alterations in memory networks in early Alzheimer's disease. Neuromolecular Med. 12, 27–43 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bookheimer, S. Y. et al. Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med. 343, 450–456 (2000). This study shows hippocampal hyperactivity during memory tasks in asymptomatic APOE ɛ 4 carriers.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Trivedi, M. A. et al. fMRI activation during episodic encoding and metacognitive appraisal across the lifespan: risk factors for Alzheimer's disease. Neuropsychologia 46, 1667–1678 (2008).

    PubMed  Google Scholar 

  64. Kunz, L. et al. Reduced grid-cell-like representations in adults at genetic risk for Alzheimer's disease. Science 350, 430–433 (2015).

    CAS  PubMed  Google Scholar 

  65. Quiroz, Y. T. et al. Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease. Ann. Neurol. 68, 865–875 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Sepulveda-Falla, D., Glatzel, M. & Lopera, F. Phenotypic profile of early-onset familial Alzheimer's disease caused by presenilin-1 E280A mutation. J. Alzheimers Dis. 32, 1–12 (2012).

    CAS  PubMed  Google Scholar 

  67. Bakker, A. et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474 (2012). This study shows that treatment with low doses of the antiepileptic drug levetiracetam reduces hippocampal hyperactivity and improves cognition in patients with MCI.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dickerson, B. C. et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65, 404–411 (2005).

    CAS  PubMed  Google Scholar 

  69. Celone, K. A. et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J. Neurosci. 26, 10222–10231 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Persson, J. et al. Altered deactivation in individuals with genetic risk for Alzheimer's disease. Neuropsychologia 46, 1679–1687 (2008).

    CAS  PubMed  Google Scholar 

  71. Dickerson, B. C. et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann. Neurol. 56, 27–35 (2004).

    PubMed  PubMed Central  Google Scholar 

  72. Putcha, D. et al. Hippocampal hyperactivation associated with cortical thinning in Alzheimer's disease signature regions in non-demented elderly adults. J. Neurosci. 31, 17680–17688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bakker, A., Albert, M. S., Krauss, G., Speck, C. L. & Gallagher, M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention asessed by fMRI and memory task performance. Neuroimage Clin. 7, 688–698 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Sanchez, P. E. et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model. Proc. Natl Acad. Sci. USA 109, E2895–E2903 (2012). This study shows that levetiracetam reduces network hypersynchrony, synaptic deficits and behavioural abnormalities in hAPP-J20 mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nygaard, H. B. et al. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer's disease mouse model. Alzheimers Res. Ther. 7, 25 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 16, 613–621 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Suberbielle, E. et al. DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat. Commun. 6, 8897 (2015).

    CAS  PubMed  Google Scholar 

  78. Madabhushi, R., Pan, L. & Tsai, L. H. DNA damage and its links to neurodegeneration. Neuron 83, 266–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, J., Basak, J. M. & Holtzman, D. M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287–303 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Saito, T. et al. Single App knock-in mouse models of Alzheimer's disease. Nat. Neurosci. 17, 661–663 (2014).

    CAS  PubMed  Google Scholar 

  81. Roh, J. H. et al. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer's disease pathology. Sci. Transl Med. 4, 150ra122 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. Kang, J. E. et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  84. Bero, A. W. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 14, 750–756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yamamoto, K. et al. Chronic optogenetic activation augments Aβ pathology in a mouse model of Alzheimer disease. Cell Rep. 11, 859–865 (2015).

    CAS  PubMed  Google Scholar 

  86. Dolev, I. et al. Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nat. Neurosci. 16, 587–595 (2013). This study shows that amyloid-β production and the amyloid-β 1–42 /amyloid-β 1–40 ratio are regulated by neuronal action potential firing through calcium-dependent conformational changes in PSEN1 at presynaptic terminals.

    CAS  PubMed  Google Scholar 

  87. Nitsch, R. M., Farber, S. A., Growdon, H. J. & Wurtman, R. J. Release of amyloid β-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc. Natl Acad. Sci. USA 90, 5191–5193 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003). This study shows that neuronal activity regulates amyloid-β production.

    CAS  PubMed  Google Scholar 

  89. Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    CAS  PubMed  Google Scholar 

  90. Laviv, T. et al. Basal GABA regulates GABABR conformation and release probability at single hippocampal synapses. Neuron 67, 253–267 (2010).

    CAS  PubMed  Google Scholar 

  91. Palop, J. J. & Mucke, L. Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005).

    CAS  PubMed  Google Scholar 

  93. Abramov, E. et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Neurosci. 12, 1567–1576 (2009).

    CAS  PubMed  Google Scholar 

  94. Puzzo, D. et al. Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 28, 14537–14545 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Willem, M. et al. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526, 443–447 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55, 697–711 (2007). This study shows that hAPP-J20 mice have network hyperexcitability that is associated with extensive anatomical and physiological alterations in learning and memory centres.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, X. F., Weisenfeld, A. & Rothman, S. M. Prolonged exposure to levetiracetam reveals a presynaptic effect on neurotransmission. Epilepsia 48, 1861–1869 (2007).

    CAS  PubMed  Google Scholar 

  98. Meehan, A. L., Yang, X., McAdams, B. D., Yuan, L. & Rothman, S. M. A new mechanism for antiepileptic drug action: vesicular entry may mediate the effects of levetiracetam. J. Neurophysiol. 106, 1227–1239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kurudenkandy, F. R. et al. Amyloid-β-induced action potential desynchronization and degradation of hippocampal gamma oscillations is prevented by interference with peptide conformation change and aggregation. J. Neurosci. 34, 11416–11425 (2014). This study shows that amyloid-β reduces gamma oscillations by desynchronizing the action potentials of hippocampal pyramidal cells.

    PubMed  PubMed Central  Google Scholar 

  100. Sanchez-Mejia, R. O. et al. Phospholipase A2 reduction ameliorates cognitve deficits in mouse model of Alzheimer's disease. Nat. Neurosci. 11, 1311–1318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Busche, M. A. et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 109, 8740–8745 (2012). This study shows that amyloid-β increases hippocampal neuronal activity in vivo by calcium imaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Minkeviciene, R. et al. Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy. J. Neurosci. 29, 3453–3462 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Um, J. W. et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci. 15, 1227–1235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bezzina, C. et al. Early onset of hypersynchronous network activity and expression of a marker of chronic seizures in the Tg2576 mouse model of Alzheimer's disease. PLoS ONE 10, e0119910 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Harris, J. A. et al. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68, 428–441 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Born, H. A. et al. Genetic suppression of transgenic APP rescues hypersynchronous network activity in a mouse model of Alzeimer's disease. J. Neurosci. 34, 3826–3840 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Ittner, A. A., Gladbach, A., Bertz, J., Suh, L. S. & Ittner, L. M. p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer inverted question marks disease. Acta Neuropathol. Commun. 2, 149 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Roberson, E. D. et al. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J. Neurosci. 31, 700–711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Busche, M. A. et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321, 1686–1689 (2008). This study shows that APP23xPS45 mice have hyperactive neurons and synchronized neuronal activity by calcium imaging.

    CAS  PubMed  Google Scholar 

  110. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007). This study shows that endogenous tau promotes APP-dependent network hypersynchrony and cognitive decline.

    CAS  PubMed  Google Scholar 

  111. Ittner, L. M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    CAS  PubMed  Google Scholar 

  112. Palop, J. J. et al. Vulnerability of dentate granule cells to disruption of Arc expression in human amyloid precursor protein transgenic mice. J. Neurosci. 25, 9686–9693 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chin, J. et al. Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 25, 9694–9703 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Grienberger, C. et al. Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease. Nat. Commun. 3, 774 (2012).

    PubMed  Google Scholar 

  115. Rudinskiy, N. et al. Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer's disease. Nat. Neurosci. 15, 1422–1429 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Spires, T. L. & Hyman, B. T. Neuronal structure is altered by amyloid plaques. Rev. Neurosci. 15, 267–278 (2004).

    PubMed  Google Scholar 

  117. Koffie, R. M. et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl Acad. Sci. USA 106, 4012–4017 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Siskova, Z. et al. Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer's disease. Neuron 84, 1023–1033 (2014).

    CAS  PubMed  Google Scholar 

  119. Garcia-Cabrero, A. M. et al. Hyperexcitability and epileptic seizures in a model of frontotemporal dementia. Neurobiol. Dis. 58, 200–208 (2013).

    CAS  PubMed  Google Scholar 

  120. Hunter, J. M. et al. Emergence of a seizure phenotype in aged apolipoprotein epsilon 4 targeted replacement mice. Brain Res. 1467, 120–132 (2012).

    CAS  PubMed  Google Scholar 

  121. Morris, M. et al. Network dysfunction in α-synuclein transgenic mice and human Lewy body dementia. Ann. Clin. Transl Neurol. 2, 1012–1028 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Siwek, M. E. et al. Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer's disease. Neural Plast. 2015, 781731 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Lalonde, R., Dumont, M., Staufenbiel, M. & Strazielle, C. Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behav. Brain Res. 157, 91–98 (2005).

    CAS  PubMed  Google Scholar 

  124. Hsiao, K. K. et al. Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15, 1203–1218 (1995).

    CAS  PubMed  Google Scholar 

  125. Vossel, K. A. et al. Tau reduction prevents Aβ-induced impairments in axonal transport. Science 330, 198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Devos, S. L. et al. Antisense reduction of tau in adult mice protects against seizures. J. Neurosci. 33, 12887–12897 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Romanelli, M. F., Morris, J. C., Ashkin, K. & Coben, L. A. Advanced Alzheimer's disease is a risk factor for late-onset seizures. Arch. Neurol. 47, 847–850 (1990).

    CAS  PubMed  Google Scholar 

  128. Hauser, W. A., Morris, M. L., Heston, L. L. & Anderson, V. E. Seizures and myoclonus in patients with Alzheimer's disease. Neurology 36, 1226–1230 (1986).

    CAS  PubMed  Google Scholar 

  129. Irizarry, M. C. et al. Incidence of new-onset seizures in mild to moderate Alzheimer disease. Arch. Neurol. 69, 368–372 (2012).

    PubMed  PubMed Central  Google Scholar 

  130. Risse, S. C. et al. Myoclonus, seizures, and paratonia in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 4, 217–225 (1990).

    CAS  PubMed  Google Scholar 

  131. Horvath, A., Szucs, A., Barcs, G., Noebels, J. L. & Kamondi, A. Epileptic seizures in Alzheimer disease: a review. Alzheimer Dis. Assoc. Disord. 30, 186–192 (2016).

    PubMed  Google Scholar 

  132. Imfeld, P., Bodmer, M., Schuerch, M., Jick, S. S. & Meier, C. R. Seizures in patients with Alzheimer's disease or vascular dementia: a population-based nested case-control analysis. Epilepsia 54, 700–707 (2013).

    CAS  PubMed  Google Scholar 

  133. Amatniek, J. C. et al. Incidence and predictors of seizures in patients with Alzheimer's disease. Epilepsia 47, 867–872 (2006). This study shows that early onset of AD is a risk factor for seizures.

    PubMed  Google Scholar 

  134. Sherzai, D., Losey, T., Vega, S. & Sherzai, A. Seizures and dementia in the elderly: Nationwide Inpatient Sample 1999–2008. Epilepsy Behav. 36, 53–56 (2014).

    PubMed  Google Scholar 

  135. Scarmeas, N. et al. Seizures in Alzheimer disease: who, when, and how common? Arch. Neurol. 66, 992–997 (2009).

    PubMed  PubMed Central  Google Scholar 

  136. Vossel, K. A. et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 70, 1158–1166 (2013). This study shows that epileptic activity in patients with MCI or early AD can occur early in the disease course and is frequently non-convulsive in nature.

    PubMed  PubMed Central  Google Scholar 

  137. Hesdorffer, D. C., Hauser, W. A., Annegers, J. F., Kokmen, E. & Rocca, W. A. Dementia and adult-onset unprovoked seizures. Neurology 46, 727–730 (1996).

    CAS  PubMed  Google Scholar 

  138. Cretin, B. et al. Epileptic prodromal Alzheimer's disease, a retrospective study of 13 new cases: expanding the spectrum of Alzheimer's disease to an epileptic variant? J. Alzheimers Dis. 52, 1125–1133 (2016).

    PubMed  Google Scholar 

  139. Palop, J. J. & Mucke, L. Epilepsy and cognitive impairments in Alzheimer disease. Arch. Neurol. 66, 435–440 (2009).

    PubMed  PubMed Central  Google Scholar 

  140. Noebels, J. A perfect storm: converging paths of epilepsy and Alzheimer's dementia intersect in the hippocampal formation. Epilepsia 52 (Suppl. 1), 39–46 (2011).

    PubMed  PubMed Central  Google Scholar 

  141. Larner, A. J. Presenilin-1 mutation Alzheimer's disease: a genetic epilepsy syndrome? Epilepsy Behav. 21, 20–22 (2011).

    CAS  PubMed  Google Scholar 

  142. Larner, A. J. & Doran, M. Clinical phenotypic heterogeneity of Alzheimer's disease associated with mutations of the presenilin-1 gene. J. Neurol. 253, 139–158 (2006). This study shows that seizures are a clinical feature of many pedigrees of patients with FAD who carry PSEN1 mutations.

    CAS  PubMed  Google Scholar 

  143. Jayadev, S. et al. Alzheimer's disease phenotypes and genotypes associated with mutations in presenilin 2. Brain 133, 1143–1154 (2010).

    PubMed  PubMed Central  Google Scholar 

  144. Cabrejo, L. et al. Phenotype associated with APP duplication in five families. Brain 129, 2966–2976 (2006). This study shows that seizures are a clinical feature of many patients with FAD who carry wild-type APP duplications.

    PubMed  Google Scholar 

  145. McNaughton, D. et al. Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series. Neurobiol. Aging 33, e13–21 (2012).

    Google Scholar 

  146. Zarea, A. et al. Seizures in dominantly inherited Alzheimer disease. Neurology 87, 912–919 (2016).

    PubMed  Google Scholar 

  147. Lai, F. & Williams, R. S. A prospective study of Alzheimer disease in Down syndrome. Arch. Neurol. 46, 849–853 (1989).

    CAS  PubMed  Google Scholar 

  148. Snider, B. J. et al. Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch. Neurol. 62, 1821–1830 (2005).

    PubMed  Google Scholar 

  149. Moehlmann, T. et al. Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Aβ42 production. Proc. Natl Acad. Sci. USA 99, 8025–8030 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Jensen, O. & Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends Cognit. Sci. 11, 267–269 (2007).

    Google Scholar 

  151. Viney, T. J. et al. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat. Neurosci. 16, 1802–1811 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Tukker, J. J., Fuentealba, P., Hartwich, K., Somogyi, P. & Klausberger, T. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J. Neurosci. 27, 8184–8189 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Uhlhaas, P. J. et al. Neural synchrony in cortical networks: history, concept and current status. Front. Integr. Neurosci. 3, 17 (2009).

    PubMed  PubMed Central  Google Scholar 

  154. Matsumoto, J. Y. et al. Network oscillations modulate interictal epileptiform spike rate during human memory. Brain 136, 2444–2456 (2013). This study shows that memory-induced oscillatory changes, including increased gamma power, reduce epileptiform discharges in humans with epilepsy.

    PubMed  PubMed Central  Google Scholar 

  155. Sederberg, P. B. et al. Gamma oscillations distinguish true from false memories. Psychol. Sci. 18, 927–932 (2007).

    PubMed  Google Scholar 

  156. Sederberg, P. B. et al. Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cereb. Cortex 17, 1190–1196 (2007). This study shows that increases in cortical and hippocampal gamma oscillations during memory tasks predict successful encoding of new memories in humans.

    PubMed  Google Scholar 

  157. Jensen, O., Kaiser, J. & Lachaux, J. P. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 30, 317–324 (2007).

    CAS  PubMed  Google Scholar 

  158. Yamamoto, J., Suh, J., Takeuchi, D. & Tonegawa, S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 157, 845–857 (2014).

    CAS  PubMed  Google Scholar 

  159. Tallon-Baudry, C., Bertrand, O., Delpuech, C. & Pernier, J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J. Neurosci. 16, 4240–4249 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lachaux, J. P. et al. The many faces of the gamma band response to complex visual stimuli. Neuroimage 25, 491–501 (2005).

    PubMed  Google Scholar 

  161. Harris, K. D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Crone, N. E., Miglioretti, D. L., Gordon, B. & Lesser, R. P. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121, 2301–2315 (1998).

    PubMed  Google Scholar 

  163. Burke, J. F. et al. Synchronous and asynchronous theta and gamma activity during episodic memory formation. J. Neurosci. 33, 292–304 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Sun, L. et al. Evidence for dysregulated high-frequency oscillations during sensory processing in medication-naive, first episode schizophrenia. Schizophr. Res. 150, 519–525 (2013).

    PubMed  Google Scholar 

  165. Herrmann, C. S. & Demiralp, T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin. Neurophysiol. 116, 2719–2733 (2005).

    CAS  PubMed  Google Scholar 

  166. Niessing, J. et al. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309, 948–951 (2005).

    CAS  PubMed  Google Scholar 

  167. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  PubMed  Google Scholar 

  168. Goldman, R. I., Stern, J. M., Engel, J. Jr & Cohen, M. S. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13, 2487–2492 (2002).

    PubMed  PubMed Central  Google Scholar 

  169. Laufs, H. et al. EEG-correlated fMRI of human alpha activity. Neuroimage 19, 1463–1476 (2003).

    CAS  PubMed  Google Scholar 

  170. Scheeringa, R. et al. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44, 1224–1238 (2009).

    PubMed  Google Scholar 

  171. Ossandon, T. et al. Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J. Neurosci. 31, 14521–14530 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012). This study shows that impairments of inhibitory interneurons contribute to network hypersynchrony, altered oscillatory rhythms and behavioural deficits in hAPP-J20 mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Maheshwari, A., Marks, R. L., Yu, K. M. & Noebels, J. L. Shift in interictal relative gamma power as a novel biomarker for drug response in two mouse models of absence epilepsy. Epilepsia 57, 79–88 (2016).

    CAS  PubMed  Google Scholar 

  174. Crooks, V. C., Lubben, J., Petitti, D. B., Little, D. & Chiu, V. Social network, cognitive function, and dementia incidence among elderly women. Am. J. Public Health 98, 1221–1227 (2008).

    PubMed  PubMed Central  Google Scholar 

  175. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    CAS  PubMed  Google Scholar 

  176. Hestrin, S. & Galarreta, M. Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 28, 304–309 (2005).

    CAS  PubMed  Google Scholar 

  177. Lapray, D. et al. Behavior-dependent specialization of identified hippocampal interneurons. Nat. Neurosci. 15, 1265–1271 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009). This study shows that parvalbumin cell activity is mechanistically linked to gamma oscillations.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Fazzari, P. et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464, 1376–1380 (2010).

    CAS  PubMed  Google Scholar 

  181. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Southwell, D. G. et al. Interneurons from embryonic development to cell-based therapy. Science 344, 1240622 (2014).

    PubMed  PubMed Central  Google Scholar 

  183. Han, S. et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Chao, H. T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hunt, R. F., Girskis, K. M., Rubenstein, J. L., Alvarez-Buylla, A. & Baraban, S. C. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat. Neurosci. 16, 692–697 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Tong, L. M. et al. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation. J. Neurosci. 34, 9506–9515 (2014). This study shows that transplants of inhibitory interneurons restore learning and memory in APOE4 -KI mice.

    PubMed  PubMed Central  Google Scholar 

  187. Freund, T. F. & Katona, I. Perisomatic inhibition. Neuron 56, 33–42 (2007).

    CAS  PubMed  Google Scholar 

  188. Schmidt, M. J. et al. Modulation of behavioral networks by selective interneuronal inactivation. Mol. Psychiatry 19, 580–587 (2014).

    CAS  PubMed  Google Scholar 

  189. Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Rubio, S. E. et al. Accelerated aging of the GABAergic septohippocampal pathway and decreased hippocampal rhythms in a mouse model of Alzheimer's disease. FASEB J. 26, 4458–4467 (2012).

    CAS  PubMed  Google Scholar 

  193. Gurevicius, K., Lipponen, A. & Tanila, H. Increased cortical and thalamic excitability in freely moving APPswe/PS1dE9 mice modeling epileptic activity associated with Alzheimer's disease. Cereb. Cortex 23, 1148–1158 (2013).

    PubMed  Google Scholar 

  194. Kemere, C., Carr, M. F., Karlsson, M. P. & Frank, L. M. Rapid and continuous modulation of hippocampal network state during exploration of new places. PLoS ONE 8, e73114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Busche, M. A. et al. Rescue of long-range circuit dysfunction in Alzheimer's disease models. Nat. Neurosci. 18, 1623–1630 (2015).

    CAS  PubMed  Google Scholar 

  196. Mander, B. A. et al. β-Amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat. Neurosci. 18, 1051–1057 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., Verhey, F. R. & Riedel, W. J. 40-Hz steady state response in Alzheimer's disease and mild cognitive impairment. Neurobiol. Aging 32, 24–30 (2011).

    CAS  PubMed  Google Scholar 

  198. van Deursen, J. A., Vuurman, E. F., Verhey, F. R., van Kranen-Mastenbroek, V. H. & Riedel, W. J. Increased EEG gamma band activity in Alzheimer's disease and mild cognitive impairment. J. Neural Transm. (Vienna) 115, 1301–1311 (2008).

    CAS  Google Scholar 

  199. Nimmrich, V., Draguhn, A. & Axmacher, N. Neuronal network oscillations in neurodegenerative diseases. Neuromolecular Med. 17, 270–284 (2015).

    CAS  PubMed  Google Scholar 

  200. Gillespie, A. K. et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90, 740–751 (2016). This study shows reduced gamma power during hippocampal sharp-wave ripples in APOE4 -KI mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Pena-Ortega, F., Solis-Cisneros, A., Ordaz, B., Balleza-Tapia, H. & Javier Lopez-Guerrero, J. Amyloid beta 1–42 inhibits entorhinal cortex activity in the beta-gamma range: role of GSK-3. Curr. Alzheimer Res. 9, 857–863 (2012).

    CAS  PubMed  Google Scholar 

  202. Driver, J. E. et al. Impairment of hippocampal gamma-frequency oscillations in vitro in mice overexpressing human amyloid precursor protein (APP). Eur. J. Neurosci. 26, 1280–1288 (2007).

    PubMed  Google Scholar 

  203. Villette, V. et al. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-β pathology in the rat. J. Neurosci. 30, 10991–11003 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Tort, A. B., Komorowski, R. W., Manns, J. R., Kopell, N. J. & Eichenbaum, H. Theta–gamma coupling increases during the learning of item–context associations. Proc. Natl Acad. Sci. USA 106, 20942–20947 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I. & Schroeder, C. E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).

    CAS  PubMed  Google Scholar 

  207. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Freund, T. F. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003).

    CAS  PubMed  Google Scholar 

  211. Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R. & Buzsaki, G. Cross-frequency phase–phase coupling between theta and gamma oscillations in the hippocampus. J. Neurosci. 32, 423–435 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Goutagny, R. et al. Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer's disease. Eur. J. Neurosci. 37, 1896–1902 (2013).

    PubMed  Google Scholar 

  213. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003). This study shows that different types of interneurons contribute to specific oscillatory frequencies.

    CAS  PubMed  Google Scholar 

  214. Andrews-Zwilling, Y. et al. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS ONE 7, e40555 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang, W. Z. et al. The developmental changes of Nav1.1 and Nav1.2 expression in the human hippocampus and temporal lobe. Brain Res. 1389, 61–70 (2011).

    CAS  PubMed  Google Scholar 

  216. Corbett, B. F. et al. Sodium channel cleavage is associated with aberrant neuronal activity and cognitive deficits in a mouse model of Alzheimer's disease. J. Neurosci. 33, 7020–7026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Kim, D. Y. et al. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat. Cell Biol. 9, 755–764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Yang, L. B. et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med. 9, 3–4 (2003).

    CAS  PubMed  Google Scholar 

  219. Kim, D. Y. et al. The E280A presenilin mutation reduces voltage-gated sodium channel levels in neuronal cells. Neurodegener. Dis. 13, 64–68 (2014).

    CAS  PubMed  Google Scholar 

  220. Ponomareva, N. V., Korovaitseva, G. I. & Rogaev, E. I. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol. Aging 29, 819–827 (2008).

    CAS  PubMed  Google Scholar 

  221. Andrews-Zwilling, Y. et al. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci. 30, 13707–13717 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    CAS  PubMed  Google Scholar 

  223. DeKosky, S. T. & Scheff, S. W. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990).

    CAS  PubMed  Google Scholar 

  224. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    CAS  PubMed  Google Scholar 

  225. Hsia, A. Y. et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc. Natl Acad. Sci. USA 96, 3228–3233 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Mucke, L. et al. High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Kim, J. H., Anwyl, R., Suh, Y. H., Djamgoz, M. B. & Rowan, M. J. Use-dependent effects of amyloidogenic fragments of β-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J. Neurosci. 21, 1327–1333 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Hsieh, H. et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Palop, J. J. & Mucke, L. Synaptic depression and aberrant excitatory network activity in Alzheimer's disease: two faces of the same coin? Neuromolecular Med. 12, 48–55 (2010).

    CAS  PubMed  Google Scholar 

  230. Liu, L. et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024 (2004).

    CAS  PubMed  Google Scholar 

  231. Campbell, S. L., Hablitz, J. J. & Olsen, M. L. Functional changes in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia. Front. Cell. Neurosci. 8, 425 (2014).

    PubMed  PubMed Central  Google Scholar 

  232. Palop, J. J. et al. Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits. Proc. Natl Acad. Sci. USA 100, 9572–9577 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Cheng, J. S. et al. Collagen VI protects neurons against Aβ toxicity. Nat. Neurosci. 12, 119–121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Chin, J. et al. Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer's disease. J. Neurosci. 27, 2727–2733 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Meilandt, W. J. et al. Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 28, 5007–5017 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Orr, A. G. et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat. Neurosci. 18, 423–434 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 270–279 (2011).

    PubMed  PubMed Central  Google Scholar 

  238. Gainotti, G., Quaranta, D., Vita, M. G. & Marra, C. Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer's disease. J. Alzheimers Dis. 38, 481–495 (2014).

    CAS  PubMed  Google Scholar 

  239. Budson, A. E. & Solomon, P. R. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician. Neurologist 18, 356–363 (2012).

    PubMed  PubMed Central  Google Scholar 

  240. Jensen, H. S., Grunnet, M. & Bastlund, J. F. Therapeutic potential of NaV1.1 activators. Trends Pharmacol. Sci. 35, 113–118 (2014).

    CAS  PubMed  Google Scholar 

  241. Tuszynski, M. H. et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med. 11, 551–555 (2005).

    CAS  PubMed  Google Scholar 

  242. Knoferle, J. et al. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice. J. Neurosci. 34, 14069–14078 (2014).

    PubMed  PubMed Central  Google Scholar 

  243. Buckner, R. L. et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005). This study shows that PiB+ amyloid preferentially deposits in brain regions of the DMN.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Axelman, K., Basun, H., Winblad, B. & Lannfelt, L. A large Swedish family with Alzheimer's disease with a codon 670/671 amyloid precursor protein mutation: a clinical and genealogical investigation. Arch. Neurol. 51, 1193–1197 (1994).

    CAS  PubMed  Google Scholar 

  245. Godbolt, A. K. et al. A second family with familial AD and the V717L APP mutation has a later age at onset. Neurology 66, 611–612 (2006).

    CAS  PubMed  Google Scholar 

  246. Abe, M. et al. Phenotypical difference of amyloid precursor protein (APP) V717L mutation in Japanese family. BMC Neurol. 12, 38 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Kennedy, A. M. et al. Familial Alzheimer's disease. A pedigree with a mis-sense mutation in the amyloid precursor protein gene (amyloid precursor protein 717 valine→glycine). Brain 116, 309–324 (1993).

    PubMed  Google Scholar 

  248. Mullan, M. et al. Clinical comparison of Alzheimer's disease in pedigrees with the codon 717 Val→Ile mutation in the amyloid precursor protein gene. Neurobiol. Aging 14, 407–419 (1993).

    CAS  PubMed  Google Scholar 

  249. Lindquist, S. G. et al. Atypical early-onset Alzheimer's disease caused by the Iranian APP mutation. J. Neurol. Sci. 268, 124–130 (2008).

    CAS  PubMed  Google Scholar 

  250. Edwards-Lee, T. et al. An African American family with early-onset Alzheimer disease and an APP (T714I) mutation. Neurology 64, 377–379 (2005).

    CAS  PubMed  Google Scholar 

  251. Sleegers, K. et al. APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. Brain 129, 2977–2983 (2006).

    PubMed  Google Scholar 

  252. Remes, A. M. et al. Hereditary dementia with intracerebral hemorrhages and cerebral amyloid angiopathy. Neurology 63, 234–240 (2004).

    CAS  PubMed  Google Scholar 

  253. Rovelet-Lecrux, A. et al. APP locus duplication in a Finnish family with dementia and intracerebral haemorrhage. J. Neurol. Neurosurg. Psychiatry 78, 1158–1159 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Axelman, K., Basun, H. & Lannfelt, L. Wide range of disease onset in a family with Alzheimer disease and a His163Tyr mutation in the presenilin-1 gene. Arch. Neurol. 55, 698–702 (1998).

    CAS  PubMed  Google Scholar 

  255. Mangone, C. A. et al. Early onset Alzheimer's disease in a South American pedigree from Argentina. Acta Neurol. Scand. 91, 6–13 (1995).

    CAS  PubMed  Google Scholar 

  256. Mann, D. M. A. et al. Amyloid angiopathy and variability in amyloid β deposition is determined by mutation position in presenilin-1-linked Alzheimer's disease. Am. J. Pathol. 158, 2165–2175 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Frommelt, P., Schnabel, R., Kuhne, W., Nee, L. E. & Polinsky, R. J. Familial Alzheimer disease: a large, multigeneration German kindred. Alzheimer Dis. Assoc. Disord. 5, 36–43 (1991).

    CAS  PubMed  Google Scholar 

  258. Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in alzheimer's disease. Ann. Neurol. http://dx.doi.org/10.1002/ana.24794 (2016).

Download references

Acknowledgements

The authors thank P. Sanchez, Y. Huang, A. Kreitzer and members of their laboratories for helpful discussions; S. Ordway for editorial review; and C. Dickerson and A. Cheung for administrative assistance. This work was supported by US National Institutes of Health grants AG011385 (L.M.), AG053981 (L.M.) and AG047313 (J.J.P.); an Alzheimer's Association grant IIRG-13-284779 (J.J.P.); an S.D. Bechtel, Jr. Young Investigator Award (J.J.P.); and a gift from the Dolby Family.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge J. Palop or Lennart Mucke.

Ethics declarations

Competing interests

L.M. has received research funding from Bristol-Myers Squibb and Cure Network Dolby Acceleration Partners; he serves on the scientific advisory boards of Acumen Pharmaceuticals, Alkahest, Dolby Family Ventures, E-scape Bio and Neuropore Therapies. J.P. received research funding from Genentech and Cure Network Dolby Acceleration Partners.

Supplementary information

Supplementary information S1 (table)

FAD mouse models with network hypersynchrony. (PDF 217 kb)

Supplementary information S2 (table)

Alterations APP-J20 mice have in common with human AD patients (PDF 198 kb)

Supplementary information S3 (table)

Genetic alterations in FAD pedigrees showing network hypersynchrony (PDF 301 kb)

PowerPoint slides

Glossary

Encoding

Transformation of acquired information into changes in brain activity. Memory formation requires effective encoding but also involves the storage of the acquired information for later retrieval.

Preclinical stages

Phases of disease development during which people are still asymptomatic and physicians are not yet able to detect by standard clinical examination the abnormalities that are required for the diagnosis of the disease.

Oscillatory rhythmic activity

Rhythmic electrical activity that is generated by populations of neurons and contains different frequency bands. Frequency, amplitude (or power) and phase are the basic properties of brain oscillations (or brain rhythms).

Network hypersynchrony

Pathological state of excessive synchronization of neuronal activities that results in epileptiform discharges or seizures that are detectable by local field recordings or electroencephalography.

Neuronal synchrony

The degree of correlated neuronal activity within or across populations of neurons; measures to assess neuronal synchrony typically include action potentials or membrane potential fluctuations for single neurons (cellular synchrony), and local field recordings, electroencephalographic recordings or microscopic imaging with activity-dependent sensors for populations of neurons (network synchrony).

Default mode network

(DMN). Brain regions that show decreased functional MRI signals during attention-demanding tasks and increased functional MRI signals during inwardly oriented mental activity.

Non-task-related networks

Networks (also known as task-negative networks) that comprise widely distributed brain regions that show decreased functional MRI signals during attention- demanding cognitive tasks.

Inhibitory interneuron

A type of neuronal cell that typically produces the inhibitory neurotransmitter GABA and regulates the activity of many other neurons, neuronal synchrony and the functional state of brain networks.

Task-related networks

Networks (also known as task-positive networks) that comprise widely distributed brain regions that show increased functional MRI signals during attention- demanding cognitive tasks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palop, J., Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17, 777–792 (2016). https://doi.org/10.1038/nrn.2016.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing