Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploitation of the host ubiquitin system by human bacterial pathogens

Key Points

  • Ubiquitylation is a host defence system that prevents bacterial infection; however, many bacterial pathogens exploit this system using virulence factors, such as secreted effector proteins and toxins.

  • In this Review, we highlight the strategies that human bacterial pathogens use to subvert and manipulate host defence systems by targeting ubiquitylation, with a focus on the role of molecular mimicry and secreted bacterial effector proteins.

  • A number of ubiquitin-like proteins (UBLs; such as SUMO and NEDD proteins), which have a similar sequence and three-dimensional structure to ubiquitin, also function as protein modifiers in eukaryotes. Bacteria have also evolved mechanisms to counteract these systems.

  • Our understanding of the mechanistic basis of bacterial interference with ubiquitylation in vitro has advanced, but our current knowledge of the interplay between pathogens (and their effectors) and host ubiquitin systems at the single-cell level and under in vivo conditions requires further study.

Abstract

Ubiquitylation is a crucial post-translational protein modification that regulates several cellular processes in eukaryotes, including inflammatory responses, endocytic trafficking and the cell cycle. Importantly, ubiquitylation also has a central role in modulating eukaryotic defence systems; however, accumulating evidence shows that many bacterial pathogens exploit host ubiquitin systems for their own benefit. In this Review, we highlight the ways in which human bacterial pathogens target ubiquitylation to subvert and manipulate host defence systems, with a focus on the role of molecular mimicry and secreted bacterial effector proteins. These strategies enable bacterial pathogens to maximize effector function and obtain nutrients, thereby promoting bacterial proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ubiquitylation cascade.
Figure 2: Bacterial interference with ubiquitin-mediated innate immune signalling.
Figure 3: Bacterial hijacking of ubiquitin-like systems.
Figure 4: Temporal and spatial regulation of ubiquitin pathways by bacterial pathogens.

Similar content being viewed by others

References

  1. Jiang, X. & Chen, Z. J. The role of ubiquitylation in immune defence and pathogen evasion. Nature Rev. Immunol. 12, 35–48 (2012).

    CAS  Google Scholar 

  2. Huang, J. & Brumell, J. H. Bacteria–autophagy interplay: a battle for survival. Nature Rev. Microbiol. 12, 101–114 (2014).

    CAS  Google Scholar 

  3. Rytkönen, A. & Holden, D. W. Bacterial interference of ubiquitination and deubiquitination. Cell Host Microbe 1, 13–22 (2007).

    PubMed  Google Scholar 

  4. Angot, A., Vergunst, A., Genin, S. & Peeters, N. Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog. 3, e3 (2007).

    PubMed  PubMed Central  Google Scholar 

  5. Ribet, D. & Cossart, P. Pathogen-mediated posttranslational modifications: a re-emerging field. Cell 143, 694–702 (2010).

    CAS  PubMed  Google Scholar 

  6. Collins, C. A. & Brown, E. J. Cytosol as battleground: ubiquitin as a weapon for both host and pathogen. Trends Cell Biol. 20, 205–213 (2010).

    CAS  PubMed  Google Scholar 

  7. Trujillo, M. & Shirasu, K. Ubiquitination in plant immunity. Curr. Opin. Plant Biol. 13, 402–428 (2010).

    CAS  PubMed  Google Scholar 

  8. Marino, D., Peeters, N. & Rivas, S. Ubiquitination during plant immune signaling. Plant Physiol. 160, 15–27 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    CAS  PubMed  Google Scholar 

  10. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    CAS  PubMed  Google Scholar 

  11. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nature Rev. Mol. Cell Biol. 10, 398–409 (2009).

    CAS  Google Scholar 

  12. Ciechanover, A. & Ben-Saadon, R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103–106 (2004).

    CAS  PubMed  Google Scholar 

  13. Wang, X., Herr, R. A. & Hansen, T. H. Ubiquitination of substrates by esterification. Traffic 13, 19–24 (2012).

    CAS  PubMed  Google Scholar 

  14. Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).

    CAS  PubMed  Google Scholar 

  15. Xia, Z. P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    CAS  PubMed  Google Scholar 

  18. Kulathu, Y. & Komander, D. Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nature Rev. Mol. Cell Biol. 13, 508–523 (2012).

    CAS  Google Scholar 

  19. Reyes-Turcu, F. E., Ventii, K. H. & Wilkinson, K. D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363–397 (2009).

    CAS  PubMed  Google Scholar 

  20. Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hicks, S. W. & Galán, J. E. Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr. Opin. Microbiol. 13, 41–46 (2010).

    CAS  PubMed  Google Scholar 

  22. McGhie, E. J., Brawn, L. C., Hume, P. J., Humphreys, D. & Koronakis, V. Salmonella takes control: effector-driven manipulation of the host. Curr. Opin. Microbiol. 12, 117–124 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Diao, J., Zhang, Y., Huibregtse, J. M., Zhou, D. & Chen, J. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nature Struct. Mol. Biol. 15, 65–70 (2008).

    CAS  Google Scholar 

  24. Zhang, Y., Higashide, W. M., McCormick, B. A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol. 62, 786–793 (2006).

    CAS  PubMed  Google Scholar 

  25. Lin, D. Y., Diao, J., Zhou, D. & Chen, J. Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7. J. Biol. Chem. 286, 441–449 (2011).

    CAS  PubMed  Google Scholar 

  26. Hospenthal, M. K., Freund, S. M. & Komander, D. Assembly, analysis and architecture of atypical ubiquitin chains. Nature Struct. Mol. Biol. 20, 555–565 (2013).

    CAS  Google Scholar 

  27. Piscatelli, H. et al. The EHEC Type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation. PLoS ONE 6, e19331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tobe, T. et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl Acad. Sci. USA 103, 14941–14946 (2006).

    CAS  PubMed  Google Scholar 

  29. Li, M. et al. Identification and characterization of NleI, a new non-LEE-encoded effector of enteropathogenic Escherichia coli (EPEC). Microbes Infect. 8, 2890–2898 (2006).

    CAS  PubMed  Google Scholar 

  30. Wu, B. et al. A. NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases. PLoS Pathog. 6, e1000960 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Hubber, A. & Roy, C. R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell Dev. Biol. 26, 261–283 (2010).

    CAS  PubMed  Google Scholar 

  32. Kubori, T., Hyakutake, A. & Nagai, H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol. Microbiol. 67, 1307–1319 (2008).

    CAS  PubMed  Google Scholar 

  33. Kubori, T., Shinzawa, N., Kanuka, H. & Nagai, H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog. 6, e1001216 (2010). This study shows that the L. pneumophila E3 ligase effector LubX functions as a meta-effector that temporally regulates another effector protein in host cells.

    PubMed  PubMed Central  Google Scholar 

  34. Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007). This report provides the first evidence that IpaH–SspH family proteins function as E3 ubiquitin ligases and suggests that the N-terminal and conserved C-terminal regions function as substrate-recognition and catalytic domains, respectively.

    CAS  PubMed  Google Scholar 

  35. Singer, A. U. et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nature Struct. Mol. Biol. 15, 1293–1301 (2008).

    CAS  Google Scholar 

  36. Zhu, Y. et al. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nature Struct. Mol. Biol. 15, 1302–1308 (2008).

    CAS  Google Scholar 

  37. Quezada, C. M., Hicks, S. W., Galán, J. E. & Stebbins, C. E. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl Acad. Sci. USA 106, 4864–4869 (2009). This study reports the crystal structure of Salmonella spp. SspH2 and shows that the LRR domain interacts with the E3 ligase domain to regulate its activity.

    CAS  PubMed  Google Scholar 

  38. Chou, Y. C., Keszei, A. F., Rohde, J. R., Tyers, M. & Sicheri, F. Conserved structural mechanisms for autoinhibition in IpaH ubiquitin ligases. J. Biol. Chem. 287, 268–275 (2012).

    CAS  PubMed  Google Scholar 

  39. Keszei, A. F. et al. Structure of an SspH1–PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Mol. Cell Biol. 34, 362–373 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Ogawa, M., Handa, Y., Ashida, H., Suzuki, M. & Sasakawa, C. The versatility of Shigella effectors. Nature Rev. Microbiol. 6, 11–16 (2008).

    CAS  Google Scholar 

  41. Ashida, H. et al. Shigella deploy multiple countermeasures against host innate immune responses. Curr. Opin. Microbiol. 14, 16–23 (2011).

    CAS  PubMed  Google Scholar 

  42. Ashida, H. et al. Shigella are versatile mucosal pathogens that circumvent the host innate immune system. Curr. Opin. Immunol. 23, 448–455 (2011).

    CAS  PubMed  Google Scholar 

  43. Toyotome, T. et al. Shigella protein IpaH9.8 is secreted from bacteria within mammalian cells and transported to the nucleus. J. Biol. Chem. 276, 32071–32079 (2001).

    CAS  PubMed  Google Scholar 

  44. Okukda, J. et al. Shigella effector IpaH9.8 binds to a splicing factor U2AF35 to modulate host immune responses. Biochem. Biophys. Res. Commun. 333, 531–539 (2005).

    Google Scholar 

  45. Seyedarabi, A., Sullivan, J. A., Sasakawa, C. & Pickersgill, R. W. A disulfide driven domain swap switches off the activity of Shigella IpaH9.8 E3 ligase. FEBS Lett. 584, 4163–4168 (2010).

    CAS  PubMed  Google Scholar 

  46. Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nature Cell Biol. 12, 66–73 (2010).

    CAS  PubMed  Google Scholar 

  47. Ashida, H., Nakano, H. & Sasakawa, C. Shigella IpaH0722 E3 ubiquitin ligase effector targets TRAF2 to inhibit PKC–NF-κB activity in invaded epithelial cells. PLoS Pathog. 9, e1003409 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, F. et al. Shigella flexneri T3SS effector IpaH4.5 modulates the host inflammatory response via interaction with NF-κB p65 protein. Cell. Microbiol. 15, 474–485 (2013).

    CAS  PubMed  Google Scholar 

  49. Bernal-Bayard, J. & Ramos-Morales, F. Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin. J. Biol. Chem. 284, 27587–27595 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsolis, R. M. et al. Identification of a putative Salmonella enterica serotype typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect. Immun. 67, 6385–6393 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Haraga, A. & Miller, S. I. A. Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 8, 837–846 (2006).

    CAS  PubMed  Google Scholar 

  52. Hicks, S. W., Charron, G., Hang, H. C. & Galán, J. E. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. Cell Host Microbe 10, 9–20 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhavsar, A. P. et al. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. PLoS Pathog. 9, e1003518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rytkönen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl Acad. Sci. USA 104, 3502–3507 (2007).

    PubMed  Google Scholar 

  55. Monack, D. M., Mecsas, J., Bouley, D. & Falkow, S. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J. Exp. Med. 188, 2127–2137 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Orth, K. et al. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923 (1999).

    CAS  PubMed  Google Scholar 

  57. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    CAS  PubMed  Google Scholar 

  58. Zhou, H. et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. J. Exp. Med. 202, 1327–1332 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Haase, R., Richter, K., Pfaffinger, G., Courtois, G. & Ruckdeschel, K. Yersinia outer protein P suppresses TGF-β-activated kinase-1 activity to impair innate immune signaling in Yersinia enterocolitica-infected cells. J. Immunol. 175, 8209–8217 (2005).

    CAS  PubMed  Google Scholar 

  60. Thiefes, A. et al. The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the IL-1 signalling pathway. EMBO Rep. 7, 838–844 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    CAS  PubMed  Google Scholar 

  62. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl Acad. Sci. USA 103, 18574–18579 (2006).

    CAS  PubMed  Google Scholar 

  63. Tan, K. S. et al. Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J. Immunol. 184, 5160–5171 (2010).

    CAS  PubMed  Google Scholar 

  64. Misaghi, S. et al. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol. Microbiol. 61, 142–150 (2006).

    CAS  PubMed  Google Scholar 

  65. Le Negrate, G. et al. ChlaDub1 of Chlamydia trachomatis suppresses NF-κB activation and inhibits IκBα ubiquitination and degradation. Cell. Microbiol. 10, 1879–1892 (2008).

    CAS  PubMed  Google Scholar 

  66. Furtado, A. R. et al. The chlamydial OTU domain-containing protein ChlaOTU is an early type III secretion effector targeting ubiquitin and NDP52. Cell. Microbiol. 15, 2064–2079 (2013).

    CAS  PubMed  Google Scholar 

  67. Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nature Rev. Immunol. 10, 826–837 (2010).

    CAS  Google Scholar 

  68. Davis, B. K., Wen, H. & Ting, J. P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cui, J. & Shao, F. Biochemistry and cell signaling taught by bacterial effectors. Trends Biochem. Sci. 36, 532–540 (2011).

    CAS  PubMed  Google Scholar 

  70. Rahman, M. M. & McFadden, G. Modulation of NF-κB signalling by microbial pathogens. Nature Rev. Microbiol. 9, 291–306 (2011).

    CAS  Google Scholar 

  71. Carayol, N. & Tran Van Nhieu, G. Tips and tricks about Shigella invasion of epithelial cells. Curr. Opin. Microbiol. 16, 32–37 (2013).

    CAS  PubMed  Google Scholar 

  72. Sanada, T. et al. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483, 623–626 (2012). This study shows that the S. flexneri T3SS effector OspI deamidates UBC13, thereby inhibiting TRAF6 polyubiquitylation and preventing NF-κB activation.

    CAS  PubMed  Google Scholar 

  73. Fu, P. et al. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathog. 9, e1003322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nishide, A. et al. Structural basis for the recognition of Ubc13 by the Shigella flexneri effector OspI. J. Mol. Biol. 425, 2623–2631 (2013).

    CAS  PubMed  Google Scholar 

  75. Kim, D. W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl Acad. Sci. USA 102, 14046–14051 (2005).

    CAS  PubMed  Google Scholar 

  76. Pruneda, J. N. et al. E2Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis. EMBO J. 33, 437–449 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, Y., Dong, N., Hu, L. & Shao, F. The Shigella type three secretion system effector OspG directly and specifically binds to host ubiquitin for activation. PLoS ONE 8, e57558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Newton, H. J. et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-κB p65. PLoS Pathog. 6, e1000898 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Nadler, C. et al. The type III secretion effector NleE inhibits NF-κB activation. PLoS Pathog. 6, e1000743 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Zhang, L. et al. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 481, 204–208 (2011). This study suggests that the EPEC T3SS effector NleE, which has methyltransferase activity, modifies TAB2 and TAB3 and prevents their ubiquitin-binding activity, resulting in the inhibition of NF-κB.

    PubMed  Google Scholar 

  81. Gao, X. et al. NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation. Cell Host Microbe 13, 87–99 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yan, D., Wang, X., Luo, L., Cao, X. & Ge, B. Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs. Nature Immunol. 13, 1063–1071 (2012).

    CAS  Google Scholar 

  83. Yan, D. et al. Enteropathogenic Escherichia coli Tir recruits cellular SHP-2 through ITIM motifs to suppress host immune response. Cell Signal. 25, 1887–1894 (2013).

    CAS  PubMed  Google Scholar 

  84. van der Veen, A. G. & Ploegh, H. L. Ubiquitin-like proteins. Annu. Rev. Biochem. 81, 323–357 (2012).

    CAS  PubMed  Google Scholar 

  85. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nature Rev. Mol. Cell Biol. 8, 947–956 (2007).

    CAS  Google Scholar 

  86. Boggio, R. & Chiocca, S. Viruses and sumoylation: recent highlights. Curr. Opin. Microbiol. 9, 430–436 (2006).

    CAS  PubMed  Google Scholar 

  87. Everett, R. D., Boutell, C. & Hale, B. G. Interplay between viruses and host sumoylation pathways. Nature Rev. Microbiol. 11, 400–411 (2013).

    CAS  Google Scholar 

  88. Ribet, D. et al. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464, 1192–1195 (2010). This study shows that L. monocytogenes impairs host sumoylation, which restricts Listeria spp. infection. The bacterial toxin LLO targets the SUMO E2 enzyme UBC9 for degradation, which results in inhibition of sumoylation during infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rabut, G. & Peter, M. Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 969–976 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010). This study reveals that Cif and CHBP deamidate NEDD8 and interfere with its function, resulting in cell cycle arrest.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jubelin, G. et al. Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways. PLoS Pathog. 6, e1001128 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. Morikawa, H. et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem. Biophys. Res. Commun. 401, 268–274 (2010).

    CAS  PubMed  Google Scholar 

  93. Nougayrède, J. P. et al. Type III secretion-dependent cell cycle block caused in HeLa cells by enteropathogenic Escherichia coli O103. Infect. Immun. 69, 6785–6795 (2001).

    PubMed  PubMed Central  Google Scholar 

  94. Marchès, O. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol. 50, 1553–1567 (2003).

    PubMed  Google Scholar 

  95. Hsu, Y. et al. Structure of the cyclomodulin Cif from pathogenic Escherichia coli. J. Mol. Biol. 384, 465–477 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yao, Q. et al. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc. Natl Acad. Sci. USA 106, 3716–3721 (2009).

    CAS  PubMed  Google Scholar 

  97. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    CAS  Google Scholar 

  98. Toro, T. B., Toth, J. I. & Petroski, M. D. The cyclomodulin cycle inhibiting factor (CIF) alters cullin neddylation dynamics. J. Biol. Chem. 288, 14716–14726 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yao, Q. et al. Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis. Proc. Natl Acad. Sci. USA 109, 20395–20400 (2012).

    CAS  PubMed  Google Scholar 

  100. Iwai, H. et al. A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell 130, 611–623 (2007).

    CAS  PubMed  Google Scholar 

  101. Kim, M. et al. Bacterial interactions with the host epithelium. Cell Host Microbe 8, 20–35 (2010).

    CAS  PubMed  Google Scholar 

  102. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galán, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    CAS  PubMed  Google Scholar 

  103. Rudolph, M. G. et al. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J. Biol. Chem. 274, 30501–30509 (1999).

    CAS  PubMed  Google Scholar 

  104. Buchwald, G. et al. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J. 21, 3286–3295 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fu, Y. & Galán, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    CAS  PubMed  Google Scholar 

  106. Kubori, T. & Galán, J. E. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342 (2003).

    CAS  PubMed  Google Scholar 

  107. Patel, J. C. & Galán, J. E. Differential activation and function of Rho GTPases during Salmonella–host cell interactions. J. Cell Biol. 175, 453–463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Steele-Mortimer, O. et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem. 275, 37718–37724 (2000).

    CAS  PubMed  Google Scholar 

  109. Patel, J. C., Hueffer, K., Lam, T. T. & Galán, J. E. Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization. Cell 137, 283–294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hicks, S. W. & Galán, J. E. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nature Rev. Microbiol. 11, 316–326 (2013).

    CAS  Google Scholar 

  111. Price, C. T., Al-Quadan, T., Santic, M., Rosenshine, I. & Abu Kwaik, Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334, 1553–1557 (2011). This study shows that L. pneumophila AnkB assembles polyubiquitylated proteins on the LCV and promotes their proteasomal degradation to generate amino acids that contribute to intracellular bacterial proliferation and survival.

    CAS  PubMed  Google Scholar 

  112. Lomma, M. et al. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell. Microbiol. 12, 1272–1291 (2010).

    CAS  PubMed  Google Scholar 

  113. Price, C. T. et al. Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog. 5, e1000704 (2009).

    PubMed  PubMed Central  Google Scholar 

  114. Price, C. T., Al-Quadan, T., Santic, M., Jones, S. C. & Abu Kwaik, Y. Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J. Exp. Med. 207, 1713–1726 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Rogers, L. D., Brown, N. F., Fang, Y., Pelech, S. & Foster, L. J. Phosphoproteomic analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events. Sci. Signal. 4, rs9 (2011).

    PubMed  Google Scholar 

  116. Imami, K. et al. Global impact of Salmonella pathogenicity island 2-secreted effectors on the host phosphoproteome. Mol. Cell Proteomics 12, 1632–1643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schmutz, C. et al. Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol. Cell Proteomics 12, 2952–2968 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bhoj, V. G. & Chen, Z. J. Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437 (2009).

    CAS  PubMed  Google Scholar 

  119. Hayden, M. S. & Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26, 203–234 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Franchi, L., Warner, N., Viani, K. & Nuñez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sun, S. C. Deubiquitylation and regulation of the immune response. Nature Rev. Immunol. 8, 501–511 (2008).

    CAS  Google Scholar 

  122. Harhaj, E. W. & Dixit, V. M. Regulation of NF-κB by deubiquitinases. Immunol. Rev. 246, 107–124 (2012).

    PubMed  PubMed Central  Google Scholar 

  123. Deretic, V. Autophagy in infection. Curr. Opin. Cell Biol. 22, 252–262 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zheng, Y. T. et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909–5916 (2009).

    CAS  PubMed  Google Scholar 

  125. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunol. 10, 1215–1221 (2009).

    CAS  Google Scholar 

  126. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ogawa, M., Mimuro, H., Yoshikawa, Y., Ashida, H. & Sasakawa, C. Manipulation of autophagy by bacteria for their own benefit. Microbiol. Immunol. 55, 459–471 (2011).

    CAS  PubMed  Google Scholar 

  128. Mostowy, S. & Cossart, P. Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol. 22, 283–291 (2012).

    CAS  PubMed  Google Scholar 

  129. Canadien, V. et al. Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J. Immunol. 174, 2471–2475 (2005).

    CAS  PubMed  Google Scholar 

  130. Szeto, J. et al. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2, 189–199 (2006).

    CAS  PubMed  Google Scholar 

  131. Mesquita, F. S. et al. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog. 8, e1002743 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Arena, E. T. et al. The deubiquitinase activity of the Salmonella pathogenicity island 2 effector, SseL, prevents accumulation of cellular lipid droplets. Infect. Immun. 79, 4392–4400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Choy, A. et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072–1076 (2012). This study shows that the L. pneumophila T4SS effector RavZ uncouples the LC3–PE interaction — which is important for autophagosome maturation — via its proteolytic activity, thereby preventing autophagy.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yoshikawa, Y. et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biol. 11, 1233–1240 (2009). This study shows that the recruitment of host proteins ARP2/3, VASP and actin by L. monocytogenes ActA prevents autophagic recognition of the bacterium.

    CAS  PubMed  Google Scholar 

  135. Dortet, L. et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog. 7, e1002168 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Specially Promoted Research (grant number 23000012 to C.S), a Grant-in-Aid for Young Scientists (A) (grant number 23689027 to M.K), a Grant-in-Aid for Scientific Research on Innovative Areas (grant numbers 25121711 and 25112506 to M.K) and a Grant-in-Aid for Scientific Research (C) (grant number 25460527 to H.A). This work was also supported by research grants from the Yakult Bio-Science Foundation and the Nippon Institute for Biological Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Ashida or Chihiro Sasakawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Proteasome

A large complex of proteases that degrades ubiquitylated proteins in eukaryotic cells.

Phagolysosome

An organelle that is formed by the fusion of a phagosome and a lysosome. Within it, phagocytosed material is degraded by lysosomal hydrolytic enzymes.

Autophagosome

A double-membrane organelle that engulfs cellular components and delivers them to lysosomes.

Type III and type IV secretion systems

(T3SSs and T4SSs). Multicomponent machines that deliver bacterial effectors into host cells. T3SSs are evolutionarily and structurally related to flagellar export systems, whereas T4SSs are related to bacterial conjugation systems that translocate DNA.

Endocytosis

A process by which a cell imports molecules from the external environment by engulfing a volume of extracellular space within its membrane.

Reactive oxygen species

(ROS). Reactive chemical molecules that contain oxygen. They are generated by various cellular processes.

Pathogen-associated molecular patterns

(PAMPs). Pathogen-specific molecules, such as peptidoglycan, flagellin or viral RNA, that are sensed as foreign material by the innate immune system.

Prokaryotic ubiquitin-like protein system

(Pup system). A functional homologue of the eukaryotic ubiquitin system; it targets prokaryotic substrates for proteasomal degradation.

Attaching and effacing lesions

Lesions that form by intimate bacterial attachment, resulting in the effacement of the brush-border microvilli of epithelial cells and the formation of an actin pedestal on the cell surface.

Danger-associated molecular patterns

(DAMPs). Molecules that are released by damaged or stressed cells, either in the presence or absence of bacterial infection, and trigger immune responses.

Thioredoxin

(TRX). A small redox protein that is involved in several functions related to defence against oxidative stress and apoptosis.

TGFβ signalling

(Transforming growth factor β signalling). Members of the TGFβ family are cytokines that are involved in the regulation of cell proliferation, differentiation and apoptosis.

Papain-like hydrolytic fold

Certain hydrolytic enzymes have a Cys-His-Gln catalytic triad fold, which is conserved in papain cysteine protease.

Cyclomodulins

Bacterial effectors and toxins that inhibit eukaryotic cell cycle progression.

Actin stress fibre

Bundles that are composed of approximately 10–30 actin filaments; they have important roles in morphological stability, adhesion and motility.

Guanine nucleotide exchange factors

(GEFs). Proteins that activate GTPases by catalysing the conversion of the inactive GDP-bound form to the active GTP-bound form.

GTPase-activating proteins

(GAPs). Proteins that inactivate GTPases by catalysing the hydrolysis of GTP to GDP.

Vesicular membranes

Complex structures composed of a lipid bilayer that contains transmembrane proteins and encloses soluble hydrophilic components that are derived from the cytosol of a donor cell.

F-box domain

A 42–48 amino acid domain that is involved in polyubiquitylation in eukaryotic cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashida, H., Kim, M. & Sasakawa, C. Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol 12, 399–413 (2014). https://doi.org/10.1038/nrmicro3259

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3259

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology