Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The abundance and variety of carbohydrate-active enzymes in the human gut microbiota

Subjects

Key Points

  • The human genome encodes only a small number of digestive glycoside hydrolases for the breakdown of sucrose, lactose and starch. Instead, the large diversity of complex polysaccharides in our diet is mainly digested by specialized enzymes encoded by the gut microbiome.

  • A model human microbiome was constructed from 177 microbial genomes in proportions that approximate their representation in the healthy adult gut, and this mini-microbiome was used to evaluate the diversity of carbohydrate-active enzymes (CAZymes) in the gut microbiota.

  • Gut bacteria from the phylum Bacteroidetes encode more CAZymes, and encode CAZymes from more families, than the other phyla represented in the model mini-microbiome. The large substrate range of these CAZymes is compatible with the diversity of the dietary plant cell wall polysaccharides that are presented to members of the microbiota.

Abstract

Descriptions of the microbial communities that live on and in the human body have progressed at a spectacular rate over the past 5 years, fuelled primarily by highly parallel DNA-sequencing technologies and associated advances in bioinformatics, and by the expectation that understanding how to manipulate the structure and functions of our microbiota will allow us to affect health and prevent or treat diseases. Among the myriad of genes that have been identified in the human gut microbiome, those that encode carbohydrate-active enzymes (CAZymes) are of particular interest, as these enzymes are required to digest most of our complex repertoire of dietary polysaccharides. In this Analysis article, we examine the carbohydrate-digestive capacity of a simplified but representative mini-microbiome in order to highlight the abundance and variety of bacterial CAZymes that are represented in the human gut microbiota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycoside hydrolases encoded by the human genome.
Figure 2: The mini-microbiome.
Figure 3: Carbohydrate-active enzyme composition of the mini-microbiome.
Figure 4: Glycoside hydrolases in the mini-microbiome.
Figure 5: Diversity of glycan-cleaving enzymes.

Similar content being viewed by others

References

  1. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  CAS  Google Scholar 

  2. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  Google Scholar 

  3. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Commun. 3, 1245 (2012).

    Article  Google Scholar 

  4. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  Google Scholar 

  5. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009). Metagenomic and 16S rRNA sequencing suggest the existence of a functional core microbiome and that obesity is associated with reduced bacterial diversity and altered metabolic pathways.

    Article  CAS  Google Scholar 

  6. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). This huge metagenomic sequencing effort on the gut microbiota of 124 individuals has revealed a set of 3.3 million non-redundant genes. If 1.5–2% of these genes encode GHs and PLs (our model mini-microbiome has 1.75%), this would amount to some 50,000–60,000 GHs and PLs.

    Article  CAS  Google Scholar 

  7. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  CAS  Google Scholar 

  8. Paliy, O., Kenche, H., Abernathy, F. & Michail, S. High-throughput quantitative analysis of the human intestinal microbiota with a phylogenetic microarray. Appl. Environ. Microbiol. 75, 3572–3579 (2009).

    Article  CAS  Google Scholar 

  9. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  Google Scholar 

  10. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  Google Scholar 

  11. Lagier, J. C., Million, M., Hugon, P., Armougom, F. & Raoult, D. Human gut microbiota: repertoire and variations. Front. Cell. Infect. Microbiol. 2, 136 (2012).

    Article  Google Scholar 

  12. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  Google Scholar 

  13. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  Google Scholar 

  14. Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358 (2012).

    Article  CAS  Google Scholar 

  15. Grabitske, H. A. & Slavin, J. L. Low-digestible carbohydrates in practice. J. Am. Diet. Assoc. 108, 1677–1681 (2008).

    Article  Google Scholar 

  16. Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).

    Article  CAS  Google Scholar 

  17. Lattimer, J. M. & Haub, M. D. Effects of dietary fiber and its components on metabolic health. Nutrients 2, 1266–1289 (2010).

    Article  CAS  Google Scholar 

  18. Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011). This study shows that two species of gut bacteria, B. thetaiotaomicron and Bacteroides ovatus , are capable of utilizing nearly all the major plant and host complex glycans, including type II rhamnogalacturonan.

    Article  CAS  Google Scholar 

  19. Cantarel, B. L., Lombard, V. & Henrissat, B. Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE 7, e28742 (2012). This analysis of 520 metagenomic samples from five major body sites shows that even when the microbial community composition varies, the CAZyme profiles are very similar within a body site, suggesting that the observed functional profile and microbiota have adapted to the local carbohydrate composition.

    Article  CAS  Google Scholar 

  20. Bernalier-Donadille, A. [Fermentative metabolism by the human gut microbiota]. Gastroenterol. Clin. Biol. 34 (Suppl. 1), S16–S22 (2010) (in French).

    Article  CAS  Google Scholar 

  21. McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).

    Article  CAS  Google Scholar 

  22. Hijova, E. & Chmelarova, A. Short chain fatty acids and colonic health. Bratisl. Lek. Listy 108, 354–358 (2007).

    CAS  PubMed  Google Scholar 

  23. Floch, M. H. & Hong-Curtiss, J. Probiotics and functional foods in gastrointestinal disorders. Curr. Treat. Opt. Gastroenterol. 5, 311–321 (2002).

    Article  Google Scholar 

  24. Hamer, H. M. et al. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119 (2008).

    Article  CAS  Google Scholar 

  25. Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316 (1991).

    Article  CAS  Google Scholar 

  26. Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nature Rev. Microbiol. 10, 323–335 (2012).

    Article  CAS  Google Scholar 

  27. Lombard, V. et al. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem. J. 432, 437–444 (2010).

    Article  CAS  Google Scholar 

  28. Gloster, T. M., Turkenburg, J. P., Potts, J. R., Henrissat, B. & Davies, G. J. Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora. Chem. Biol. 15, 1058–1067 (2008).

    Article  CAS  Google Scholar 

  29. Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859 (1995).

    Article  CAS  Google Scholar 

  30. Henrissat, B. & Bairoch, A. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316, 695–696 (1996).

    Article  Google Scholar 

  31. Henrissat, B. & Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781–788 (1993).

    Article  CAS  Google Scholar 

  32. Henrissat, B. & Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644 (1997).

    Article  CAS  Google Scholar 

  33. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  Google Scholar 

  34. Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  Google Scholar 

  35. Bjursell, M. K., Martens, E. C. & Gordon, J. I. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J. Biol. Chem. 281, 36269–36279 (2006).

    Article  CAS  Google Scholar 

  36. Mirande, C. et al. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1A and Roseburia intestinalis XB6B4 from the human intestine. J. Appl. Microbiol. 109, 451–460 (2010).

    CAS  PubMed  Google Scholar 

  37. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Rev. Microbiol. 6, 121–131 (2008).

    Article  CAS  Google Scholar 

  38. Robert, C., Del'Homme, C. & Bernalier-Donadille, A. Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon. FEMS Microbiol. Lett. 205, 209–214 (2001).

    Article  CAS  Google Scholar 

  39. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  Google Scholar 

  40. Markowitz, V. M. et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 38, D382–D390 (2010).

    Article  CAS  Google Scholar 

  41. Markowitz, V. M. et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res. 40, D115–D122 (2012).

    Article  CAS  Google Scholar 

  42. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  43. Kuriki, T. & Imanaka, T. The concept of the α-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87, 557–565 (1999).

    Article  CAS  Google Scholar 

  44. Stam, M. R., Danchin, E. G., Rancurel, C., Coutinho, P. M. & Henrissat, B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19, 555–562 (2006).

    Article  CAS  Google Scholar 

  45. Leitch, E. C., Walker, A. W., Duncan, S. H., Holtrop, G. & Flint, H. J. Selective colonization of insoluble substrates by human faecal bacteria. Environ. Microbiol. 9, 667–679 (2007).

    Article  Google Scholar 

  46. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).

    Article  CAS  Google Scholar 

  47. Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    Article  CAS  Google Scholar 

  48. Kitahara, M., Sakamoto, M., Ike, M., Sakata, S. & Benno, Y. Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 55, 2143–2147 (2005).

    Article  CAS  Google Scholar 

  49. Hehemann, J. H., Kelly, A. G., Pudlo, N. A., Martens, E. C. & Boraston, A. B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl Acad. Sci. USA 109, 19786–19791 (2012).

    Article  CAS  Google Scholar 

  50. Zoetendal, E. G., Plugge, C. M., Akkermans, A. D. & de Vos, W. M. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int. J. Syst. Evol. Microbiol. 53, 211–215 (2003).

    Article  Google Scholar 

  51. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.E.K. was funded by La Fondation Infectiopôle Sud, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Henrissat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

CAZy

HMP

IMG

IMG/M HMP

MetaHIT

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

The genomes composing the mini-microbiome (PDF 304 kb)

Supplementary information S2 (table)

Abundance of each family of glycoside hydrolases (GH) and polysaccharide lyases (PL) in the bacterial strains composing the mini-microbiome (XLSX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaoutari, A., Armougom, F., Gordon, J. et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11, 497–504 (2013). https://doi.org/10.1038/nrmicro3050

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3050

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology