Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells

Key Points

  • Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. They are obligate intracellular bacteria that reside in cells of haematopoietic origin in mammals and also in tick cells. This Review focuses on recent A. phagocytophilum and E. chaffeensis studies related to their pathogenesis, observed primarily from the bacterial perspective.

  • A. phagocytophilum and E. chaffeensis lack genes for the biosynthesis of the lipopolysaccharide and peptidoglycan that activate host leukocytes. Instead, they acquire host cholesterol from the low-density-lipoprotein uptake pathway.

  • Caveolae-mediated endocytosis directs A. phagocytophilum and E. chaffeensis to an intracellular compartment, or inclusion, that does not acquire components of NADPH oxidase nor show similarity to late endosomes or lysosomes. E. chaffeensis inclusions retain early-endosome characteristics, whereas A. phagocytophilum inclusions acquire early-autophagosome characteristics.

  • A. phagocytophilum and E. chaffeensis both have small genomes (approximately 1.2–1.5 Mb) with a low coding capacity for proteins involved in central intermediary metabolism and amino acid synthesis. However, both retained genes for aerobic respiration and for the biosynthesis of all of the necessary nucleotides and most vitamins and cofactors.

  • In A. phagocytophilum there is an expansion of the OMP1–P44 superfamily encoding outer-membrane proteins that are unique to the family Anaplasmataceae. Some of these proteins have been shown to be porins.

  • In cell culture A. phagocytophilum and E. chaffeensis undergo developmental stages known as dense-cored cells and reticulate cells. The ApxR and EcxR transcription factors are unique to the family Anaplasmataceae, and three two-component systems are involved in regulating the intracellular development of the species in this family.

  • Expression of the type IV secretion system is developmentally regulated, and two secreted effectors have been shown to regulate protein tyrosine kinases and cellular apoptosis.

Abstract

Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A phylogram of the family Anaplasmataceae, based on 16S ribosomal RNA gene sequences.
Figure 2: The Anaplasma phagocytophilum and Ehrlichia chaffeensis infection cycles.
Figure 3: The intracellular niches of Anaplasma phagocytophilum and Ehrlichia chaffeensis in human cells.
Figure 4: The p44 and omp1–p28 loci.
Figure 5: Proposed intracellular development cycle of Ehrlichia chaffeensis.

Similar content being viewed by others

References

  1. Theiler, A. Anaplasma marginale (gen. and spec. nov.) The marginal points in the blood of cattle suffering from specific disease. Transvaal S. Afr. Rep.Vet. Bacteriol. Dept. Agr. 1908–1909, 7–64 (1910).

  2. Thomas, R. J., Dumler, J. S. & Carlyon, J. A. Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Rev. Anti Infect. Ther. 7, 709–722 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Paddock, C. D. & Childs, J. E. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin. Microbiol. Rev. 16, 37–64 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bakken, J. S. & Dumler, S. Human granulocytic anaplasmosis. Infect. Dis. Clin. North Am. 22, 433–448 (2008).

    Article  PubMed  Google Scholar 

  5. Olano, J. P. & Walker, D. H. Human ehrlichioses. Med. Clin. North Am. 86, 375–392 (2002).

    Article  PubMed  Google Scholar 

  6. Gardner, S. L., Holman, R. C., Krebs, J. W., Berkelman, R. & Childs, J. E. National surveillance for the human ehrlichioses in the United States, 1997–2001, and proposed methods for evaluation of data quality. Ann. N.Y. Acad. Sci. 990, 80–89 (2003).

    Article  PubMed  Google Scholar 

  7. Newton, P. N. et al. Sennetsu neorickettsiosis: a probable fish-borne cause of fever rediscovered in Laos. Am. J. Trop. Med. Hyg. 81, 190–194 (2009).

    Article  PubMed  Google Scholar 

  8. Perez, M., Bodor, M., Zhang, C., Xiong, Q. & Rikihisa, Y. Human infection with Ehrlichia canis accompanied by clinical signs in Venezuela. Ann. N.Y. Acad. Sci. 1078, 110–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Perez, M., Rikihisa, Y. & Wen, B. Ehrlichia canis-like agent isolated from a man in Venezuela: antigenic and genetic characterization. J. Clin. Microbiol. 34, 2133–2139 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Allsopp, M. T., Louw, M. & Meyer, E. C. Ehrlichia ruminantium: an emerging human pathogen? Ann. N.Y. Acad. Sci. 1063, 358–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Rikihisa, Y. Ehrlichia subversion of host innate responses. Curr. Opin. Microbiol. 9, 95–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Rikihisa, Y. Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet. Parasitol. 167, 155–166 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Winslow, G. M. & Bitsaktsis, C. Immunity to the ehrlichiae: new tools and recent developments. Curr. Opin. Infect. Dis. 18, 217–221 (2005).

    Article  PubMed  Google Scholar 

  14. Carlyon, J. A. & Fikrig, E. Mechanisms of evasion of neutrophil killing by Anaplasma phagocytophilum. Curr. Opin. Hematol. 13, 28–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Rikihisa, Y. in Intracellular Niches of Microbes. A Pathogen's Guide Through the Host Cell (eds Schaible, U. & Haas, A.) 301–314 (Wiley-VCH, Weinheim, 2009).

    Book  Google Scholar 

  16. Ewing, S. A. et al. Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 32, 368–374 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Telford, S. R. 3rd et al. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc. Natl Acad. Sci. USA 93, 6209–6214 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gieg, J., Rikihisa, Y. & Wellman, M. Diagnosis of Ehrlichia ewingii infection by PCR in a puppy from Ohio. Vet. Clin. Pathol. 38, 406–410 (2009).

    Article  PubMed  Google Scholar 

  19. Buller, R. S. et al. Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. N. Engl. J. Med. 341, 148–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Steiert, J. G. & Gilfoy, F. Infection rates of Amblyomma americanum and Dermacentor variabilis by Ehrlichia chaffeensis and Ehrlichia ewingii in southwest Missouri. Vector Borne Zoonotic Dis. 2, 53–60 (2002).

    Article  PubMed  Google Scholar 

  21. Anziani, O. S., Ewing, S. A. & Barker, R. W. Experimental transmission of a granulocytic form of the tribe Ehrlichieae by Dermacentor variabilis and Amblyomma americanum to dogs. Am. J. Vet. Res. 51, 929–931 (1990).

    CAS  PubMed  Google Scholar 

  22. Zhang, L. et al. Nosocomial transmission of human granulocytic anaplasmosis in China. JAMA 300, 2263–2270 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Krause, P. J. & Wormser, G. P. Nosocomial transmission of human granulocytic anaplasmosis? JAMA 300, 2308–2309 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, M. & Rikihisa, Y. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect. Immun. 71, 5324–5331 (2003). The work described in this article shows that E. chaffeensis and A. phagocytophilum lack lipid A and peptidoglycan and that incorporation of host cholesterol is essential for their survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herron, M. J. et al. Intracellular parasitism by the human granulocytic ehrlichiosis bacterium through the P-selectin ligand, PSGL-1. Science 288, 1653–1656 (2000). The authors show that PSGL1-specific antibody blocks A. phagocytophilum binding and infection of host cells and that dual transfection of non-permissive cells with PSGL1 and sialyl LewisX confers the ability to bind A. phagocytophilum and become infected.

    Article  CAS  PubMed  Google Scholar 

  26. Reneer, D. V. et al. Characterization of a sialic acid- and P-selectin glycoprotein ligand-1-independent adhesin activity in the granulocytotropic bacterium Anaplasma phagocytophilum. Cell. Microbiol. 8, 1972–1984 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Munderloh, U. G. et al. Infection of endothelial cells with Anaplasma marginale and A. phagocytophilum. Vet. Microbiol. 101, 53–64 (2004).

    Article  PubMed  Google Scholar 

  28. Carlyon, J. A. et al. Murine neutrophils require α1,3-fucosylation but not PSGL-1 for productive infection with Anaplasma phagocytophilum. Blood 102, 3387–3395 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, M. & Rikihisa, Y. Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell. Microbiol. 5, 809–820 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Mott, J., Rikihisa, Y. & Tsunawaki, S. Effects of Anaplasma phagocytophila on NADPH oxidase components in human neutrophils and HL-60 cells. Infect. Immun. 70, 1359–1366 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carlyon, J. A., Abdel-Latif, D., Pypaert, M., Lacy, P. & Fikrig, E. Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect. Immun. 72, 4772–4783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. IJdo, J. & Mueller, A. C. Neutrophil NADPH oxidase is reduced at the Anaplasma phagocytophilum phagosome. Infect. Immun. 72, 5392–5401 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin, M. & Rikihisa, Y. Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes. Cell. Microbiol. 9, 861–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Webster, P., IJdo, J. W., Chicoine, L. M. & Fikrig, E. The agent of Human Granulocytic Ehrlichiosis resides in an endosomal compartment. J. Clin. Invest. 101, 1932–1941 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mott, J., Barnewall, R. E. & Rikihisa, Y. Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells. Infect. Immun. 67, 1368–1378 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Niu, H., Yamaguchi, M. & Rikihisa, Y. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell. Microbiol. 10, 593–605 (2008). This study shows that A. phagocytophilum subverts autophagy to establish itself in an early- autophagosome-like compartment that is segregated from lysosomes and that the induction of autophagy is required for bacterial growth.

    Article  CAS  PubMed  Google Scholar 

  37. Dunning Hotopp, J. C. et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2, e21 (2006). A detailed analysis of the genomes of three human pathogens, A. phagocytophilum, E. chaffeensis and N. sennetsu.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Omsland, A. et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl Acad. Sci. USA 106, 4430–4434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Seshadri, R. et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl Acad. Sci. USA 100, 5455–5460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin, M., Zhang, C., Gibson, K. & Rikihisa, Y. Analysis of complete genome sequence of Neorickettsia risticii: causative agent of Potomac horse fever. Nucleic Acid Res. 37, 6076–6079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Foster, J. et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 3, e121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, e69 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brayton, K. A. et al. Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc. Natl Acad. Sci. USA 102, 844–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Collins, N. E. et al. The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. Proc. Natl Acad. Sci. USA 102, 838–843 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mavromatis, K. et al. The genome of the obligately intracellular bacterium Ehrlichia canis reveals themes of complex membrane structure and immune evasion strategies. J. Bacteriol. 188, 4015–4023 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ogata, H. et al. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293, 2093–2098 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Felsheim, R. F. et al. Transformation of Anaplasma phagocytophilum. BMC Biotechnol. 6, 42 (2006). This article describes the first transformation of A. phagocytophilum with the Himar transposase system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ge, Y. & Rikihisa, Y. Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J. Bacteriol. 189, 7819–7828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ge, Y. & Rikihisa, Y. Surface-exposed proteins of Ehrlichia chaffeensis. Infect. Immun. 75, 3833–3841 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Unver, A. et al. Western blot analysis of sera reactive to human monocytic ehrlichiosis and human granulocytic ehrlichiosis agents. J. Clin. Microbiol. 39, 3982–3986 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Unver, A. et al. Western and dot blotting analyses of Ehrlichia chaffeensis indirect fluorescent-antibody assay-positive and -negative human sera by using native and recombinant E. chaffeensis and E. canis antigens. J. Clin. Microbiol. 37, 3888–3895 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhi, N. et al. Cloning and expression of the 44-kilodalton major outer membrane protein gene of the human granulocytic ehrlichiosis agent and application of the recombinant protein to serodiagnosis. J. Clin. Microbiol. 36, 1666–1673 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhi, N., Rikihisa, Y., Kim, H. Y., Wormser, G. P. & Horowitz, H. W. Comparison of major antigenic proteins of six strains of the human granulocytic ehrlichiosis agent by Western immunoblot analysis. J. Clin. Microbiol. 35, 2606–2611 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. IJdo, J. W., Wu, C., Magnarelli, L. A. & Fikrig, E. Serodiagnosis of human granulocytic ehrlichiosis by a recombinant HGE-44-based enzyme-linked immunosorbent assay. J. Clin. Microbiol. 37, 3540–3544 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin, Q., Rikihisa, Y., Ohashi, N. & Zhi, N. Mechanisms of variable p44 expression by Anaplasma phagocytophilum. Infect. Immun. 71, 5650–5661 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, Q. et al. Analysis of sequences and loci of p44 homologs expressed by Anaplasma phagocytophila in acutely infected patients. J. Clin. Microbiol. 40, 2981–2988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhi, N., Ohashi, N. & Rikihisa, Y. Multiple p44 genes encoding major outer membrane proteins are expressed in the human granulocytic ehrlichiosis agent. J. Biol. Chem. 274, 17828–17836 (1999). This is the first study to show that there are many expressible p44 genes with the signature central hypervariable region in the A. phagocytophilum genome.

    Article  CAS  PubMed  Google Scholar 

  60. Barbet, A. F., Lundgren, A., Yi, J., Rurangirwa, F. R. & Palmer, G. H. Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics. Infect. Immun. 68, 6133–6138 (2000). The first paper about the msp2 expression locus, proposing the segmental gene conversion mechanism of expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barbet, A. F. et al. Expression of multiple outer membrane protein sequence variants from a single genomic locus of Anaplasma phagocytophilum. Infect. Immun. 71, 1706–1718 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, Q. & Rikihisa, Y. Establishment of cloned Anaplasma phagocytophilum and analysis of p44 gene conversion within an infected horse and infected SCID mice. Infect. Immun. 73, 5106–5114 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin, Q., Zhang, C. & Rikihisa, Y. Analysis of involvement of the RecF pathway in p44 recombination in Anaplasma phagocytophilum and in Escherichia coli by using a plasmid carrying the p44 expression and p44 donor loci. Infect. Immun. 74, 2052–2062 (2006). A description of RecF-dependent p44 recombination, showing a half-crossover structure in A. phagocytophilum and using a double-origin plasmid carrying p44ES and a donor p44 locus in RecF-active and RecF-inactive mutant strains of E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, X. et al. Rapid sequential changeover of expressed p44 genes during the acute phase of Anaplasma phagocytophilum infection in horses. Infect. Immun. 72, 6852–6859 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Granquist, E. G. et al. Variant-specific and diminishing immune responses towards the highly variable MSP2(P44) outer membrane protein of Anaplasma phagocytophilum during persistent infection in lambs. Vet. Immunol. Immunopathol. 133, 117–124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Granquist, E. G., Stuen, S., Lundgren, A. M., Braten, M. & Barbet, A. F. Outer membrane protein sequence variation in lambs experimentally infected with Anaplasma phagocytophilum. Infect. Immun. 76, 120–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Ladbury, G. A. et al. Dynamic transmission of numerous Anaplasma phagocytophilum genotypes among lambs in an infected sheep flock in an area of anaplasmosis endemicity. J. Clin. Microbiol. 46, 1686–1691 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sarkar, M. et al. Anaplasma phagocytophilum MSP2(P44)-18 predominates and is modified into multiple isoforms in human myeloid cells. Infect. Immun. 76, 2090–2098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Troese, M. J. et al. Differential expression and glycosylation of Anaplasma phagocytophilum major surface protein 2 paralogs during cultivation in sialyl Lewis x-deficient host cells. Infect. Immun. 77, 1746–1756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Scorpio, D. G., Caspersen, K., Ogata, H., Park, J. & Dumler, J. S. Restricted changes in major surface protein-2 (msp2) transcription after prolonged in vitro passage of Anaplasma phagocytophilum. BMC Microbiol. 4, 1 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhi, N. et al. Transcript heterogeneity of the p44 multigene family in a human granulocytic ehrlichiosis agent transmitted by ticks. Infect. Immun. 70, 1175–1184 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Felek, S., Telford, S. 3rd, Falco, R. C. & Rikihisa, Y. Sequence analysis of p44 homologs expressed by Anaplasma phagocytophilum in infected ticks feeding on naive hosts and in mice infected by tick attachment. Infect. Immun. 72, 659–666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barbet, A. F. et al. Structure of the expression site reveals global diversity in MSP2 (P44) variants in Anaplasma phagocytophilum. Infect. Immun. 74, 6429–6437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, X., Cheng, Z., Zhang, C., Kikuchi, T. & Rikihisa, Y. Anaplasma phagocytophilum p44 mRNA expression is differentially regulated in mammalian and tick host cells: involvement of the DNA binding protein ApxR. J. Bacteriol. 189, 8651–8659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, X., Kikuchi, T. & Rikihisa, Y. Proteomic identification of a novel Anaplasma phagocytophilum DNA binding protein that regulates a putative transcription factor. J. Bacteriol. 189, 4880–4886 (2007). This study identifies a novel transcription factor in A. phagocytophilum by proteomics, followed by DNA footprint analysis and a lacZ reporter assay.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nelson, C. M. et al. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 9, 364 (2008). The authors describe for the first time the whole-genome transcriptome of A. phagocytophilum in human cell and tick cell culture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ohashi, N., Rikihisa, Y. & Unver, A. Analysis of transcriptionally active gene clusters of major outer membrane protein multigene family in Ehrlichia canis and E. chaffeensis. Infect. Immun. 69, 2083–2091 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, C., Xiong, Q., Kikuchi, T. & Rikihisa, Y. Identification of 19 polymorphic major outer membrane protein genes and their immunogenic peptides in Ehrlichia ewingii for use in a serodiagnostic assay. Clin. Vaccine Immunol. 15, 402–411 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. van Heerden, H., Collins, N. E., Brayton, K. A., Rademeyer, C. & Allsopp, B. A. Characterization of a major outer membrane protein multigene family in Ehrlichia ruminantium. Gene 330, 159–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Miura, K. & Rikihisa, Y. Virulence potential of Ehrlichia chaffeensis strains of distinct genome sequences. Infect. Immun. 75, 3604–3613 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng, C., Paddock, C. D. & Reddy Ganta, R. Molecular heterogeneity of Ehrlichia chaffeensis isolates determined by sequence analysis of the 28-kilodalton outer membrane protein genes and other regions of the genome. Infect. Immun. 71, 187–195 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Long, S. W. et al. Antigenic variation of Ehrlichia chaffeensis resulting from differential expression of the 28-kilodalton protein gene family. Infect. Immun. 70, 1824–1831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu, X. J., McBride, J. W. & Walker, D. H. Genetic diversity of the 28-kilodalton outer membrane protein gene in human isolates of Ehrlichia chaffeensis. J. Clin. Microbiol. 37, 1137–1143 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Unver, A., Rikihisa, Y., Stich, R. W., Ohashi, N. & Felek, S. The omp-1 major outer membrane multigene family of Ehrlichia chaffeensis is differentially expressed in canine and tick hosts. Infect. Immun. 70, 4701–4704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, J. Z., Guo, H., Winslow, G. M. & Yu, X. J. Expression of members of the 28-kilodalton major outer membrane protein family of Ehrlichia chaffeensis during persistent infection. Infect. Immun. 72, 4336–4343 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Singu, V., Liu, H., Cheng, C. & Ganta, R. R. Ehrlichia chaffeensis expresses macrophage- and tick cell-specific 28-kilodalton outer membrane proteins. Infect. Immun. 73, 79–87 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Unver, A. et al. Transcriptional analysis of p30 major outer membrane multigene family of Ehrlichia canis in dogs, ticks, and cell culture at different temperatures. Infect. Immun. 69, 6172–6178 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, H. Y. & Rikihisa, Y. Characterization of monoclonal antibodies to the 44-kilodalton major outer membrane protein of the human granulocytic ehrlichiosis agent. J. Clin. Microbiol. 36, 3278–3284 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, X., Kikuchi, T. & Rikihisa, Y. Two monoclonal antibodies with defined epitopes of P44 major surface proteins neutralize Anaplasma phagocytophilum by distinct mechanisms. Infect. Immun. 74, 1873–1882 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park, J., Choi, K. S. & Dumler, J. S. Major surface protein 2 of Anaplasma phagocytophilum facilitates adherence to granulocytes. Infect. Immun. 71, 4018–4025 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ohashi, N., Zhi, N., Zhang, Y. & Rikihisa, Y. Immunodominant major outer membrane proteins of Ehrlichia chaffeensis are encoded by a polymorphic multigene family. Infect. Immun. 66, 132–139 (1998). The first description of the major outer-membrane OMP1–P28 family proteins of E. chaffeensis , whichare encoded by a multigene family.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, J. S., Chu, F., Reilly, A. & Winslow, G. M. Antibodies highly effective in SCID mice during infection by the intracellular bacterium Ehrlichia chaffeensis are of picomolar affinity and exhibit preferential epitope and isotype utilization. J. Immunol. 169, 1419–1425 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Winslow, G. M. et al. Antibody-mediated elimination of the obligate intracellular bacterial pathogen Ehrlichia chaffeensis during active infection. Infect. Immun. 68, 2187–2195 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kumagai, Y., Huang, H. & Rikihisa, Y. Expression and porin activity of P28 and OMP-1F during intracellular Ehrlichia chaffeensis development. J. Bacteriol. 190, 3597–3605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang, H., Wang, X., Kikuchi, T., Kumagai, Y. & Rikihisa, Y. Porin activity of Anaplasma phagocytophilum outer membrane fraction and purified P44. J. Bacteriol. 189, 1998–2006 (2007). The first study to show porin activity of the major outer-membrane protein of a rickettsial pathogen.

    Article  CAS  PubMed  Google Scholar 

  96. Gentle, I. E., Burri, L. & Lithgow, T. Molecular architecture and function of the Omp85 family of proteins. Mol. Microbiol. 58, 1216–1225 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Popov, V. L., Yu, X. & Walker, D. H. The 120 kDa outer membrane protein of Ehrlichia chaffeensis: preferential expression on dense-core cells and gene expression in Escherichia coli associated with attachment and entry. Microb. Pathog. 28, 71–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Doyle, C. K., Nethery, K. A., Popov, V. L. & McBride, J. W. Differentially expressed and secreted major immunoreactive protein orthologs of Ehrlichia canis and E. chaffeensis elicit early antibody responses to epitopes on glycosylated tandem repeats. Infect. Immun. 74, 711–720 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Luo, T., Zhang, X., Wakeel, A., Popov, V. L. & McBride, J. W. A variable-length PCR target protein of Ehrlichia chaffeensis contains major species-specific antibody epitopes in acidic serine-rich tandem repeats. Infect. Immun. 76, 1572–1580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McBride, J. W., Yu, X. J. & Walker, D. H. A conserved, transcriptionally active p28 multigene locus of Ehrlichia canis. Gene 254, 245–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Yu, X. J., McBride, J. W., Diaz, C. M. & Walker, D. H. Molecular cloning and characterization of the 120-kilodalton protein gene of Ehrlichia canis and application of the recombinant 120-kilodalton protein for serodiagnosis of canine ehrlichiosis. J. Clin. Microbiol. 38, 369–374 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. McBride, J. W., Yu, X. J. & Walker, D. H. Glycosylation of homologous immunodominant proteins of Ehrlichia chaffeensis and Ehrlichia canis. Infect. Immun. 68, 13–18 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Luo, T., Zhang, X. & McBride, J. W. Major species-specific antibody epitopes of the Ehrlichia chaffeensis p120 and, E. canis p140 orthologs in surface-exposed tandem repeat regions. Clin. Vaccine Immunol. 16, 982–990 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huang, H. et al. Proteomic analysis of and immune responses to Ehrlichia chaffeensis lipoproteins. Infect. Immun. 76, 3405–3414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rikihisa, Y. The tribe Ehrlichieae and ehrlichial diseases. Clin. Microbiol. Rev. 4, 286–308 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reichard, M. V. et al. Inoculation of white-tailed deer (Odocoileus virginianus) with Ap-V1 or NY-18 strains of Anaplasma phagocytophilum and microscopic demonstration of Ap-V1 In Ixodes scapularis adults that acquired infection from deer as nymphs. Vector Borne Zoonotic Dis. 9, 565–568 (2009).

    Article  PubMed  Google Scholar 

  108. Woldehiwet, Z. & Scott, G. R. Stages in the development of Cytoecetes phagocytophila, the causative agent of tick-borne fever. J. Comp. Pathol. 92, 469–474 (1982).

    Article  CAS  PubMed  Google Scholar 

  109. Popov, V. L., Chen, S. M., Feng, H. M. & Walker, D. H. Ultrastructural variation of cultured Ehrlichia chaffeensis. J. Med. Microbiol. 43, 411–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Munderloh, U. G. et al. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J. Clin. Microbiol. 37, 2518–2524 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Troese, M. J. & Carlyon, J. A. Anaplasma phagocytophilum dense-cored organisms mediate cellular adherence through recognition of human P-selectin glycoprotein ligand 1. Infect. Immun. 77, 4018–4027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, J. Z., Popov, V. L., Gao, S., Walker, D. H. & Yu, X. J. The developmental cycle of Ehrlichia chaffeensis in vertebrate cells. Cell. Microbiol. 9, 610–618 (2007). An analysis of the E. chaffeensis intracellular developmental cycle and the associated differential expression of cell surface antigens.

    Article  CAS  PubMed  Google Scholar 

  113. Ito, S. & Rikihisa, Y. in Rickettsiae and Rickettsial Diseases (eds Burgdorfer, W. & Anacker, R. L.) 213–227 (Academic Press, New York, 1981).

    Google Scholar 

  114. Cheng, Z., Wang, X. & Rikihisa, Y. Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J. Bacteriol. 190, 2096–2105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lai, T. H., Kumagai, Y., Hyodo, M., Hayakawa, Y. & Rikihisa, Y. The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic di-GMP in host cell infection. J. Bacteriol. 191, 693–700 (2009). This article describes the PleCD two-component system and the importance of c-di-GMP for A. phagocytophilum infection.

    Article  CAS  PubMed  Google Scholar 

  116. Niu, H., Rikihisa, Y., Yamaguchi, M. & Ohashi, N. Differential expression of VirB9 and VirB6 during the life cycle of Anaplasma phagocytophilum in human leucocytes is associated with differential binding and avoidance of lysosome pathway. Cell. Microbiol. 8, 523–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Heinzen, R. A. & Hackstadt, T. A developmental stage-specific histone H1 homolog of Coxiella burnetii. J. Bacteriol. 178, 5049–5052 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hackstadt, T., Baehr, W. & Ying, Y. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc. Natl Acad. Sci. USA 88, 3937–3941 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cheng, Z., Kumagai, Y., Lin, M., Zhang, C. & Rikihisa, Y. Intra-leukocyte expression of two-component systems in Ehrlichia chaffeensis and Anaplasma phagocytophilum and effects of the histidine kinase inhibitor closantel. Cell. Microbiol. 8, 1241–1252 (2006). Analysis of the three pairs of two-component systems, their potential downstream effectors and their requirement for E. chaffeensis infection.

    Article  CAS  PubMed  Google Scholar 

  120. Kumagai, Y., Cheng, Z., Lin, M. & Rikihisa, Y. Biochemical activities of three pairs of Ehrlichia chaffeensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect. Immun. 74, 5014–5022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Romling, U. Cyclic di-GMP (c-di-GMP) goes into host cells—c-di-GMP signaling in the obligate intracellular pathogen Anaplasma phagocytophilum. J. Bacteriol. 191, 683–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Alvarez-Marinez, C. E. & Christie, P. J. C. Biological diversities of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775–808 (2009).

    Article  CAS  Google Scholar 

  123. Rikihisa, Y. & Lin, M. Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr. Opin. Microbiol. 13, 59–66 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bao, W. et al. Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J. Bacteriol. 191, 278–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Lin, M., den Dulk-Ras, A., Hooykaas, P. J. & Rikihisa, Y. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell. Microbiol. 9, 2644–2657 (2007). This study shows that A. phagocytophilum AnkA can be delivered into host cells by a T4SS and binds to ABI1 to activate the tyrosine kinase ABL1and that ABL1 is required for A. phagocytophilum infection.

    Article  CAS  PubMed  Google Scholar 

  126. IJdo, J., Carlson, A. C. & Kennedy, E. L. Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell. Microbiol. 9, 1284–1296 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Park, J., Kim, K. J., Choi, K. S., Grab, D. J. & Dumler, J. S. Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell. Microbiol. 6, 743–751 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Garcia-Garcia, J. C., Rennoll-Bankert, K. E., Pelly, S., Milstone, A. M. & Dumler, J. S. Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect. Immun. 77, 2385–2391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garcia-Garcia, J. C., Barat, N. C., Trembley, S. J. & Dumler, J. S. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Path. 5, e1000488 (2009). The authors show that host chromatin modifications by histone deacetylase 1 are linked to the downregulation of host defence genes during A. phagocytophilum infection.

    Article  CAS  Google Scholar 

  130. Zhu, B. et al. Nuclear translocated Ehrlichia chaffeensis ankyrin protein interacts with a specific adenine-rich motif of host promoter and intronic Alu elements. Infect. Immun. 77, 4243–4255 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pan, X., Luhrmann, A., Satoh, A., Laskowski-Arce, M. A. & Roy., C. R. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320, 1651–1654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wakeel, A., Kuriakose, J. A. & McBride, J. W. An Ehrlichia chaffeensis tandem repeat protein interacts with multiple host targets involved in cell signaling, transcriptional regulation, and vesicle trafficking. Infect. Immun. 77, 1734–1745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yoshiie, K., Kim, H. Y., Mott, J. & Rikihisa, Y. Intracellular infection by the human granulocytic ehrlichiosis agent inhibits human neutrophil apoptosis. Infect. Immun. 68, 1125–1133 (2000). The first demonstration that A. phagocytophilum blocks the spontaneous apoptosis of human neutrophils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ge, Y., Yoshiie, K., Kuribayashi, F., Lin, M. & Rikihisa, Y. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation. Cell. Microbiol. 7, 29–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Scaife, H., Woldehiwet, Z., Hart, C. A. & Edwards, S. W. Anaplasma phagocytophilum reduces neutrophil apoptosis in vivo. Infect. Immun. 71, 1995–2001 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Borjesson, D. L. et al. Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J. Immunol. 174, 6364–6372 (2005). This study shows that A. phagocytophilum fails to induce apoptotic differentiation of human neutrophils in cell culture by global microarray analysis.

    Article  CAS  PubMed  Google Scholar 

  137. Choi, K. S., Park, J. T. & Dumler, J. S. Anaplasma phagocytophilum delay of neutrophil apoptosis through the p38 mitogen-activated protein kinase signal pathway. Infect. Immun. 73, 8209–8218 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee, H. C. & Goodman, J. L. Anaplasma phagocytophilum causes global induction of antiapoptosis in human neutrophils. Genomics 88, 496–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Ge, Y. & Rikihisa, Y. Anaplasma phagocytophilum delays spontaneous human neutrophil apoptosis by modulation of multiple apoptotic pathways. Cell. Microbiol. 8, 1406–1416 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Pedra, J. H., Sukumaran, B., Carlyon, J. A., Berliner, N. & Fikrig, E. Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum. Genomics 86, 365–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, J. Z., Sinha, M., Luxon, B. A. & Yu, X. J. Survival strategy of obligately intracellular Ehrlichia chaffeensis: novel modulation of immune response and host cell cycles. Infect. Immun. 72, 498–507 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Niu, H., Kozjak-Pavlovic, V., Rudel, T. & Rikihisa, Y. Anaplasma phagocytophilum Ats-1 is Imported into host cell mitochondria. PLoS Path. 6, e1000774 (2010). This work finds that A. phagocytophilum Ats1 is translocated into the mitochondrial matrix of host cells and inhibits apoptosis.

    Article  CAS  Google Scholar 

  143. Amano, A., Nakagawa, I. & Yoshimori, T. Autophagy in innate immunity against intracellular bacteria. J. Biochem. 140, 161–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Ling, Y. M. et al. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J. Exp.Med. 203, 2063–2071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schmid, D., Dengjel, J., Schoor, O., Stevanovic, S. & Munz, C. Autophagy in innate and adaptive immunity against intracellular pathogens. J. Mol. Med. 84, 194–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Xiong, Q., Lin, M. & Rikihisa, Y. Cholesterol-dependent Anaplasma phagocytophilum exploits the low-density lipoprotein uptake pathway. PLoS Path. 5, e1000329 (2009). This article shows that A. phagocytophilum acquires cholesterol from the host low-density-lipoprotein uptake pathway by upregulating the low-density-lipoprotein receptor and increasing host cell cholesterol homeostasis.

    Article  CAS  Google Scholar 

  147. Berry, D. S. et al. Ehrlichial meningitis with cerebrospinal fluid morulae. Pediatr. Infect. Dis. J. 18, 552–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Dunn, B. E. et al. Identification of Ehrlichia chaffeensis morulae in cerebrospinal fluid mononuclear cells. J. Clin. Microbiol. 30, 2207–2210 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ratnasamy, N., Everett, E. D., Roland, W. E., McDonald, G. & Caldwell, C. W. Central nervous system manifestations of human ehrlichiosis. Clin. Infect. Dis. 23, 314–319 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank all former and current members of my laboratory for their scientific contributions, T. Vojt for preparing the figures, V. L. Popov for the electron micrographs and K. Hayes-Ozello for editorial assistance. I also acknowledge grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Supplementary information

41579_2010_BFnrmicro2318_MOESM1_ESM.pdf

Supplementary information S1 | Selected surface proteins from Anaplasma phagocytophilum and Ehrlichia chaffeensis (PDF 267 kb)

Glossary

Caveola

A specialized lipid raft region of the plasma membrane that contains the protein caveolin and forms flask-shaped, cholesterol-rich invaginations of the membrane.

Autophagosome

An intracytoplasmic, membrane-bound vacuole containing elements of a cell's own cytoplasm and membrane proteins that are distinct from phagosomes or other intracellular vesicles. It usually fuses with a lysosome.

Type IV secretion system

A multiprotein complex that mediates the translocation of macromolecules (that is, proteins, DNA or DNA–protein complexes) across the bacterial cell envelope into the extracellular medium or directly into recipient cells.

Himar transposase system

A DNA insertion system using Himar1, which belongs to the mariner family of transposable elements. Himar1 requires no host-specific factors for transposition and has been frequently used as a prokaryotic genetic tool.

Alternative σ-factor

A σ-factor that is produced under specific conditions, allowing the RNA polymerase to transcribe a different set of genes than the housekeeping σ factor, σ70, allows.

Alu elements

Short interspersed DNA elements that are abundant in the human genome.

Apoptosis

Programmed cell death. In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis usually confers advantages during an organism's life cycle.

Autophagy

A catabolic process involving the degradation of a cell's own components through the lysosomal machinery. It is a tightly regulated process that plays a normal part in cell growth, development and homeostasis, helping to maintain a balance between the synthesis, degradation and subsequent recycling of cellular products.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikihisa, Y. Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 8, 328–339 (2010). https://doi.org/10.1038/nrmicro2318

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing