Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prions of fungi: inherited structures and biological roles

Key Points

  • There are six fungal prions: four are self-propagating amyloids and two are self-activating enzymes.

  • [URE3] is a prion of the nitrogen catabolism regulator Ure2p; [PSI+] is a prion of the translation-termination factor Sup35p; [PIN+] is a prion of Rnq1p (function unknown); [Het-s] is a prion of the heterokaryon incompatibility protein HETs; [β] is a prion of vacuolar protease B; and [C] is a prion of a mitogen-activated protein kinase kinase kinase.

  • The infectious amyloid of Sup35p has a parallel in-register β-sheet structure.

  • The [Het-s] prion of Podospora anserina apparently benefits its host, but the [URE3] and [PSI+] prions of Saccharomyces cerevisiae are detrimental.

  • Chaperones catalyse amyloid filament breakage to form new seeds, and probably have other roles in prion propagation and generation as well.

  • Different prion variants, with the same protein sequence, have different amyloid structures. Variants can determine host range and chaperone effects.

Abstract

The term 'prion' means an infectious protein that does not need an accompanying nucleic acid. There are six fungal prions, including four self-propagating amyloids and two enzymes that are necessary to activate their inactive precursors. Here we explore the scope of the prion phenomenon, the biological and evolutionary roles of prions, the structural basis of the amyloid prions and the prominent role of chaperones (proteins that affect the folding of other proteins) and other cellular components in prion generation and propagation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Yeast and fungal amyloid prions.
Figure 2: Sup35NM structure model.
Figure 3: Chaperones and prions.
Figure 4: Prion variants and the species barrier.

Similar content being viewed by others

References

  1. M'Gowan, J. P. Investigation into the disease of sheep called 'scrapie' (Blackwood, Edinburgh, 1914).

    Google Scholar 

  2. Wickner, R. B. Scrapie in ancient China? Science 309, 874 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Prusiner, S. B. (ed.) Prion Biology and Diseases (Cold Spring Harbor Laboratory Press, New York, 2004).

    Google Scholar 

  4. Chesebro, B. Introduction to the transmissible spongiform encephalopathies or prion diseases. Br. Med. Bull. 66, 1–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in S. cerevisiae. Science 264, 566–569 (1994). The original description of yeast prions, including the genetic criteria that distinguish prions from nucleic-acid replicons.

    Article  CAS  PubMed  Google Scholar 

  6. Wickner, R. B. in Fields Virology 5th edn (eds Knipe, D. M. & Howley, P. M.) 737–768 (Lippincott, Williams & Wilkins, 2006).

    Google Scholar 

  7. Cox, B. S. PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20, 505–521 (1965).

    Article  Google Scholar 

  8. Lacroute, F. Non-mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cooper, T. G. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Revs. 26, 223–238 (2002).

    Article  CAS  Google Scholar 

  10. Turoscy, V. & Cooper, T. G. Ureidosuccinate is transported by the allantoate transport system in Saccharomyces cerevisiae. J. Bacteriol. 169, 2598–2600 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schlumpberger, M., Prusiner, S. B. & Herskowitz, I. Induction of distinct [URE3] yeast prion strains. Mol. Cell. Biol. 21, 7035–7046 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brachmann, A., Baxa, U. & Wickner, R. B. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J. 24, 3082–3092 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O. & Liebman, S. W. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147, 507–519 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Derkatch, I. L., Bradley, M. E., Hong, J. Y. & Liebman, S. W. Prions affect the appearance of other prions: the story of [PIN]. Cell 106, 171–182 (2001). This report showed that Q/N-rich protein aggregates can prime [ PSI+] prion generation.

    Article  CAS  PubMed  Google Scholar 

  15. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Molec. Cell 5, 163–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Rizet, G. Les phenomenes de barrage chez Podospora anserina: analyse genetique des barrages entre les souches s et S. Rev. Cytol. Biol. Veg. 13, 51–92 (1952).

    Google Scholar 

  17. Saupe, S. J. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Revs 64, 489–502 (2000).

    Article  CAS  Google Scholar 

  18. Benkemoun, L. & Saupe, S. J. Prion proteins as genetic material in fungi. Fungal Genet. Biol. 43, 789–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA 94, 9773–9778 (1997). The original identification of [Het-s] as a prion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberts, B. T. & Wickner, R. B. A class of prions that propagate via covalent auto-activation. Genes Dev. 17, 2083–2087 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, E. W. Three proteolytic systems in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 266, 7963–7966 (1991).

    CAS  PubMed  Google Scholar 

  22. Zubenko, G. S., Park, F. J. & Jones, E. W. Genetic properties of mutations at the PEP4 locus in Saccharomyces cerevisiae. Genetics 102, 679–690 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kicka, S., Bonnet, C., Sobering, A. K., Ganesan, L. P. & Silar, P. A mitotically inheritable unit containing a MAP kinase module. Proc. Natl Acad. Sci. USA 103, 13445–13450 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wickner, R. B. et al. Prions: proteins as genes and infectious entities. Genes Dev. 18, 470–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA 99, 7402–7407 (2002). The first demonstrated transmission of a prion by an amyloid of recombinant protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004). References 26 and 27 showed that amyloid structure determines prion variant.

    Article  CAS  PubMed  Google Scholar 

  28. Patel, B. K. & Liebman, S. W. “Prion proof” for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132–405) induces [PIN+]. J. Mol. Biol. 365, 773–782 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Masison, D. C. & Wickner, R. B. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270, 93–95 (1995). The first biochemical evidence for yeast prions and prion domains.

    Article  CAS  PubMed  Google Scholar 

  30. Pierce, M. M., Baxa, U., Steven, A. C., Bax, A. & Wickner, R. B. Is the prion domain of soluble Ure2p unstructured? Biochemistry 44, 321–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. TerAvanesyan, A., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676 (1994).

    CAS  Google Scholar 

  32. Doel, S. M., McCready, S. J., Nierras, C. R. & Cox, B. S. The dominant PNM2 mutation which eliminates the [PSI] factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Mead, S. et al. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science 300, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Kochneva-Pervukhova, N. V. et al. Mechanism of inhibition of Ψ+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 17, 5805–5810 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prusiner, S. B. et al. Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Priola, S. A., Caughey, B., Race, R. E. & Chesebro, B. Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J. Virol. 68, 4873–4878 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ross, E. D., Minton, A. P. & Wickner, R. B. Prion domains: sequences, structures and interactions. Nature Cell Biol. 7, 1039–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ross, E. D., Baxa, U. & Wickner, R. B. Scrambled prion domains form prions and amyloid. Mol. Cell. Biol. 24, 7206–7213 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ross, E. D., Edskes, H. K., Terry, M. J. & Wickner, R. B. Primary sequence independence for prion formation. Proc. Natl Acad. Sci. USA 102, 12825–12830 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chan, J. C. C., Oyler, N. A., Yau, W. M. & Tycko, R. Parallel β-sheets and polar zippers in amyloid fibrils formed by residues 10–39 of the yeast prion protein Ure2p. Biochemistry 44, 10669–10680 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Tycko, R. Molecular structure of amyloid fibrils: insights from solid-state NMR. Quart. Revs. Biophys. 1, 1–55 (2006).

    Article  CAS  Google Scholar 

  43. Shewmaker, F., Wickner, R. B. & Tycko, R. Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc. Natl Acad. Sci. USA 103, 19754–19759 (2006). The first evidence-based prion amyloid structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krishnan, R. & Lindquist, S. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Diaz-Avalos, R., King, C. Y., Wall, J. S., Simon, M. & Caspar, D. L. D. Strain-specific morphologies of yeast prion amyloids. Proc. Natl Acad. Sci. USA 102, 10165–10170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balguerie, A. et al. Domain organization and structure–function relationship of the HET-s prion protein of Podospora anserina. EMBO J. 22, 2071–2081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ritter, C. et al. Correlation of structural elements and infectivity of the HET-s prion. Nature 435, 844–848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chernoff, Y. O. & Ono, B. I. in Protein Synthesis and Targeting in Yeast (eds Brown, A. J. P., Tuite, M. F. & McCarthy, J. E. G.) 101–107 (Springer, Berlin, 1992).

    Google Scholar 

  50. Chernoff, Y. O., Lindquist, S. L., Ono, B. I., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995). The first demonstration of chaperone involvement in prion propagation.

    Article  CAS  PubMed  Google Scholar 

  51. Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L. & Chernoff, Y. O. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jung, G., Jones, G., Wegrzyn, R. D. & Masison, D. C. A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress. Genetics 156, 559–570 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kushnirov, V. V., Kryndushkin, D. S., Boguta, M., Smirnov, V. N. & Ter-Avanesyan, M. D. Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr. Biol. 10, 1443–1446 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Moriyama, H., Edskes, H. K. & Wickner, R. B. [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell. Biol. 20, 8916–8922 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jung, G. & Masison, D. C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr. Microbiol. 43, 7–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Sondheimer, N., Lopez, N., Craig, E. A. & Lindquist, S. The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J. 20, 2435–2442 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones, G. W. & Masison, D. C. Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]. Genetics 163, 495–506. (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones, G., Song, Y., Chung, S. & Masison, D. C. Propagation of yeast [PSI+] prion impaired by factors that regulate Hsp70 substrate binding. Mol. Cell. Biol. 24, 3928–3937 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tuite, M. F., Mundy, C. R. & Cox, B. S. Agents that cause a high frequency of genetic change from [psi+] to [psi] in Saccharomyces cerevisiae. Genetics 98, 691–711 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferreira, P. C., Ness, F., Edwards, S. R., Cox, B. S. & Tuite, M. F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40, 1357–1369 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Jung, G., Jones, G. & Masison, D. C. Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc. Natl Acad. Sci. USA 99, 9936–9941 (2002). This report demonstrated that uanidine cures prions by inhibiting Hsp104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998). Reported that chaperones interact in disaggregating proteins.

    Article  CAS  PubMed  Google Scholar 

  63. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ness, F., Ferreira, P., Cox, B. S. & Tuite, M. F. Guanidine hydrochloride inhibits the generation of prion 'seeds' but not prion protein aggregation in yeast. Mol. Cell. Biol. 22, 5593–5605 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cox, B. S., Ness, F. & Tuite, M. F. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165, 23–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tuite, M. F. & Koloteva-Levin, N. Propagating prions in fungi and mammals. Mol. Cell 14, 541–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Schwimmer, C. & Masison, D. C. Antagonistic interactions between yeast [PSI+] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol. Cell. Biol. 22, 3590–3598 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hall, D. & Edskes, H. K. Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J. Mol. Biol. 336, 775–786 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, 1582–1590 (2004).

    Article  CAS  Google Scholar 

  70. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Bruce, M. E., McConnell, I., Fraser, H. & Dickinson, A. G. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J. Gen. Virol. 72, 595–603 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996). The original description of the [ PIN+] prion.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions among prions and prion 'strains' in yeast. Proc. Natl Acad. Sci. USA 99, 16392–16399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. King, C. Y. Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J. Mol. Biol. 307, 1247–1260 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Pattison, I. H. in Slow, Latent and Temperate Virus Infection (eds Gajdusek, D. C., Gibbs, C. J. & Alpers, M. P.) 249–257 (US Government Printing Office, Washington DC, 1965).

    Google Scholar 

  76. Collinge, J. Variant Creutzfeldt-Jakob disease. Lancet 354, 317–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Kushnirov, V. V., Kochneva-Pervukhova, N. V., Cechenova, M. B., Frolova, N. S. & Ter-Avanesyan, M. D. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 19, 324–331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Molec. Microbiol. 35, 865–876 (2000).

    Article  CAS  Google Scholar 

  79. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Nakayashiki, T., Ebihara, K., Bannai, H. & Nakamura, Y. Yeast [PSI+] 'prions' that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell 7, 1121–1130 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Osherovich, L. Z. & Weissman, J. S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106, 183–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Vitrenko, Y. A., Gracheva, E. O., Richmond, J. E. & Leibman, S. W. Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM. J. Biol. Chem. 282, 1779–1787 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Bradley, M. E. & Liebman, S. W. Destabilizing interactions among [PSI+] and [PIN+] yeast prion variants. Genetics 165, 1675–1685 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K. & Zink, A. D. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability and toxicity of the [PSI+] prion. Mol. Cell. Biol. 19, 8103–8112 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Allen, K. D., Chernova, T. A., Tennant, E. P., Wilkinson, K. D. & Chernoff, Y. O. Effects of ubiquitin system alterations on the formation and loss of a yeast prion. J. Biol. Chem. 282, 3004–3013 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Ganusova, E. E. et al. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol. Cell. Biol. 26, 617–629 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Podrabsky, J. E., Carpenter, J. F. & Hand, S. C. Survival of water stress in annual fish embryos: dehydration avoidance and egg amyloid fibers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R123–R131 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Wosten, H. A. & de Vocht, M. L. Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta 1469, 79–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Berson, J. F. et al. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 161, 521–533 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wickner, R. B. A new prion controls fungal cell fusion incompatibility. Proc. Natl Acad. Sci. USA 94, 10012–10014 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Partridge, L. & Barton, N. H. Evolving evolvability. Nature 407, 457–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Nakayashiki, T., Kurtzman, C. P., Edskes, H. K. & Wickner, R. B. Yeast prions [URE3] and [PSI+] are diseases. Proc. Natl Acad. Sci. USA 102, 10575–10580 (2005). Showed that [URE3] and [ PSI+] are disease agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Resende, C. G., Outeiro, T. F., Sands, L., Lindquist, S. & Tuite, M. F. Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol. Microbiol. 49, 1005–1017 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Dalstra, H. J. P., Swart, K., Debets, A. J. M., Saupe, S. J. & Hoekstra, R. F. Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc. Natl Acad. Sci. USA 100, 6616–6621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Edskes, H. K. & Wickner, R. B. Conservation of a portion of the Saccharomyces cerevisiae Ure2p prion domain that interacts with the full- length protein. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16384–16391 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Talarek, N., Maillet, L., Cullin, C. & Aigle, M. The [URE3] prion is not conserved among Saccharomyces species. Genetics 171, 23–54 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shewmaker, F., Mull, L., Nakayashiki, T., Masison, D. C. & Wickner, R. B. Ure2p function is enhanced by its prion domain in Saccharomyces cerevisiae. Genetics 16 May 2007 (doi:10.1534 genetics.107.074153).

  101. Gagny, B. & Silar, P. Identification of the genes encoding the cytosolic translation release factors from Podospora anserina and analysis of their role during the life cycle. Genetics 149, 1763–1775 (1988).

    Google Scholar 

  102. Urakov, V. N. et al. N-terminal region of Saccharomyces cerevisiae eRF3 is essential for the functioning of the eRF1/eRF3 complex beyond translation termination. BMC Mol. Biol. 7, 34–46 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bach, S. et al. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nature Biotechnol. 21, 1075–1081 (2003). This report used yeast to find drugs against prion diseases of mammals.

    Article  CAS  Google Scholar 

  104. Creutzfeldt, H. G. Uber eine eigenartige herdformige Erkrankung des Zentralnervensystems. Neurol. Psychiat. 57, 1–18 (1920).

    Article  Google Scholar 

  105. Jakob, A. Uber eigenartige Erkrankung des Zentalnervensystems mit bemerkenswertem anatomischen Befunde (Spastische Pseudosklarose-encephalomyopathie mit disseminierten Degenerationsherden). Neurol. Psychiatr. 64, 147–228 (1921).

    Article  Google Scholar 

  106. Cuille, J. & Chelle, P. L. Pathologie animale. La maladie dite tremblant du mouton est-elle inoculable? Compt. Rend. Acad. Sci. (Paris) 203, 1552–1554 (1936).

    Google Scholar 

  107. Cuille, J. & Chelle, P. L. Experimental transmission of trembling to the goat. C. R. Seances Acad. Sci. 208, 1058–1060 (1939).

    Google Scholar 

  108. Rizet, G. Les phenomenes de barrage chez Podospora anserina: analyse genetique des barrages entre les souches s et S. Rev. Cytol. Biol. Veg. 13, 51–92 (1952).

    Google Scholar 

  109. Zigas, V. & Gajdusek, D. C. Kuru: clinical study of a new syndrome resembling paralysis agitans in natives of the Eastern Highlands of Australian New Guinea. Med. J. Aust. 2, 745–754 (1957).

    Google Scholar 

  110. Hadlow, W. J. Scrapie and kuru. Lancet 2, 289–290 (1959).

    Article  Google Scholar 

  111. Chandler, R. L. Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1, 107–108 (1961).

    Google Scholar 

  112. Cox, B. S. PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20, 505–521 (1965).

    Article  Google Scholar 

  113. Gajdusek, D. C., Gibbs, C. J. & Alpers, M. Experimental transmission of a kuru-like syndrome to chimpanzees. Nature 209, 794–796 (1966).

    Article  CAS  PubMed  Google Scholar 

  114. Alper, T., Haig, D. A. & Clarke, M. C. The exceptionally small size of the scrapie agent. Biochem. Biophys. Res. Commun. 22, 278–284 (1966).

    Article  CAS  PubMed  Google Scholar 

  115. Griffith, J. S. Self-replication and scrapie. Nature 215, 1043–1044 (1967).

    Article  CAS  PubMed  Google Scholar 

  116. Dickinson, A. G., Meikle, V. M. H. & Fraser, H. Identification of a gene which controls the incubation period of some strains of scrapie in mice. J. Comp. Path. 78, 293–299 (1968).

    Article  CAS  PubMed  Google Scholar 

  117. Lacroute, F. Non-mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bolton, D. C., McKinley, M. P. & Prusiner, S. B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  119. Oesch, B. et al. A cellular gene encodes scrapie PrP 27–30 protein. Cell 40, 735–746 (1985).

    Article  CAS  PubMed  Google Scholar 

  120. Chesebro, B. et al. Identification of scrapie prion protein-specific mRNA in scrapie-infected brain. Nature 315, 331–333 (1985).

    Article  CAS  PubMed  Google Scholar 

  121. Carlson, G. A. et al. Linkagae of prion protein and scrapie incubation time genes. Cell 46, 503–511 (1986).

    Article  CAS  PubMed  Google Scholar 

  122. Wells, G. A. H. et al. A novel progressive spongiform encephalopathy in cattle. Vet. Rec. 121, 419–420 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Owen, F. et al. Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet 1, 51–52 (1989).

    Article  CAS  PubMed  Google Scholar 

  124. Hsiao, K. et al. Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 338, 342–345 (1989).

    Article  CAS  PubMed  Google Scholar 

  125. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Bueler, H. et al. Normal development and behavior of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  CAS  PubMed  Google Scholar 

  127. Britton, T. C., AlSarraj, S., Shaw, C., Campbell, T. & Collinge, J. Sporadic Creutzfeldt-Jakob disease in a 16-year-old in the UK. Lancet 346, 1155 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institutes of Health, The National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reed B. Wickner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Podospora anserina

Saccharomyces cerevisiae

Entrez Protein

Hsp104

Hsp70

[PSI+]

[PIN+]

[URE3]

Glossary

Prion

An infectious protein that does not require a nucleic acid for infectivity.

Amyloid

A filamentous form of protein with a cross β-sheet structure, meaning that the β-strands are perpendicular to the long axis of the filaments.

Non-chromosomal (cytoplasmic) genetic element

A gene or replicon that is inherited or transmitted independently of the chromosomes, such as the mitochondrial genome, the 2 μm plasmid, a yeast virus or a prion.

Gene gun

A device that uses a pneumatic gun to propel gold particles coated with DNA or protein into cells to genetically transform them.

Prion seed

An amyloid fragment that can grow, become fragmented again and thus propagate the prion. Similarly, active enzyme molecules of the [β] and [C] prions can act as seeds.

Parallel in-register β-sheet

A β-sheet in which each residue is aligned with the same residue of the adjacent strand.

Nuclear magnetic resonance

(NMR). A technique in which the distances between labelled nuclei can be measured by the rate of decay of the magnetic signal due to dipole–dipole coupling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wickner, R., Edskes, H., Shewmaker, F. et al. Prions of fungi: inherited structures and biological roles. Nat Rev Microbiol 5, 611–618 (2007). https://doi.org/10.1038/nrmicro1708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing