Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The 3′–5′ exonucleases

Key Points

  • This review summarizes the 3′–5′ exonucleases and their possible roles in DNA-synthetic events.

  • DNA polymerases are required to maintain the integrity of the genome during processes such as DNA replication, DNA repair, translesion DNA synthesis, DNA recombination, cell-cycle control and DNA-damage-checkpoint function.

  • An associated 3′–5′ exonuclease activity allows a polymerase to remove misincorporated nucleotides, and ensures the high-fidelity DNA synthesis that is required for faithful replication.

  • Proofreading 3′–5′ exonucleases can be divided into intrinsic, polymerase-associated enzymes, or independent autonomous enzymes. Polymerase-associated enzymes include Escherichia coli pol I, bacteriophage polymerases, and eukaryotic pols δ, ɛ and γ. Autonomous exonucleases include the mammalian TREX1 and TREX2 enzymes.

  • As well as the proofreading 3′–5′ exonucleases, several new exonucleases have recently been discovered. These include the Werner syndrome (WRN) protein; p53; MRE11 (which is involved in double-strand break repair); two checkpoint proteins, RAD1 and RAD9; APE1 (involved in base-excision repair); and the VDJP protein, which acts in V(D)J recombination.

Abstract

Over the past few years, several new 3′–5′ exonucleases have been identified. In vitro studies of these enzymes have uncovered much about their potential functions in vivo, and certain organisms with a defect in 3′–5′ exonucleases have an increased susceptibility to cancer, especially under conditions of stress. Here, we look at not only the newly discovered enzymes, but also at the roles of other 3′–5′ exonucleases in the quality control of DNA synthesis, where they act as proofreading exonucleases for DNA polymerases during DNA replication, repair and recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of a DNA polymerase polypeptide that contains a 3′–5′ proofreading exonuclease.
Figure 2: Functional domains of selected 3′–5′ exonucleases.
Figure 3: Intra- and intermolecular proofreading.
Figure 4: Architecture of the replicative DNA polymerase III holoenzyme from E. coli.

Similar content being viewed by others

References

  1. Nakamura, J. et al. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemical induced depurination under physiological conditions. Cancer Res. 58, 222–225 (1998).

    CAS  PubMed  Google Scholar 

  2. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Hübscher, U., Maga, G. & Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71, 133–163 (2002).

    PubMed  Google Scholar 

  4. Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. Genetics 148, 1483–1490 (1998).Here, and in reference 40 , the authors provide a mutator phenotype of a cancer cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fijalkowska, I. J. & Schaaper, R. M. Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. Proc. Natl Acad. Sci. USA 93, 2856–2861 (1996).The first demonstration that a defective proofreading function of an autonomous 3′–5′ exonuclease leads to cell inviability in bacteria.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Morrison, A., Johnston, A. L., Johnston, L. H. & Sugino, A. Pathway correction DNA replication errors in Saccharomyces cerevisiae. EMBO J. 12, 1467–1473 (1993).This (and references 38, 39 and 101 ) describes the strong mutator phenotype and inviability owing to defective proofreading and/or mismatch repair in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldsby, R. E. et al. Defective DNA polymerase-δ proofreading causes cancer susceptibility in mice. Nature Med. 7, 638–639 (2001).The first demonstration that the loss of pol δ proofreading function alone can lead to cancer in mice.

    CAS  PubMed  Google Scholar 

  8. Morley, A. A. The somatic mutation theory of ageing. Mutat. Res. 338, 19–23 (1995).

    CAS  PubMed  Google Scholar 

  9. Derbyshire, V., Grindley, N. D. F. & Joyce, C. M. The 3′–5′ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J. 10, 17–24 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Reha-Krantz, L. J. & Nonay, R. L. Genetic and biochemical studies of bacteriophage T4 DNA polymerase 3′–5′ exonuclease activity. Genomics 36, 449–458 (1993).

    Google Scholar 

  11. Esteban, J. A., Soengas, M. S., Salas, M. & Blanco, L. 3′–5′ exonuclease active site of ϕ29 DNA polymerase. J. Biol. Chem. 269, 31946–31954 (1994).

    CAS  PubMed  Google Scholar 

  12. Bernard, A., Blanco, L., Lazaro, J. M., Martin, G. & Salas, M. A conserved 3′–5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59, 219–228 (1989).

    Google Scholar 

  13. Derbyshire, V., Pinsonneault, J. K. & Joyce, C. M. Structure–function analysis of 3′→5′ exonuclease of DNA polymerases. Methods Enzymol. 262, 363–385 (1995).

    CAS  PubMed  Google Scholar 

  14. Shafritz, K.-M., Sandigursky, M. & Franklin, W. A. Exonuclease IX of Escherichia coli. Nucleic Acids Res. 26, 2593–2597 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Viswanathan, M. & Lovett, S. T. Exonuclease X of Escherichia coli. J. Biol. Chem. 274, 30094–30100 (1999).

    CAS  PubMed  Google Scholar 

  16. Mazur, D. J. & Perrino, F. W. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′–5′ exonucleases. J. Biol. Chem. 274, 19655–19660 (1999).This, and reference 51 , describes the identification of the main autonomous 3′–5′ exonuclease activities in mammalian cells.

    CAS  PubMed  Google Scholar 

  17. Viswanathan, M., Dower, K. W. & Lovett, S. Identification of protein DNase activity associated with RNase T of Escherichia coli. J. Biol. Chem. 273, 35126–35131 (1998).

    CAS  PubMed  Google Scholar 

  18. Huang, S. et al. The premature ageing syndrome protein, WRN, is a 3′→5′ exonuclease. Nature Genet. 20, 114–116 (1998).This paper identifies a 3′–5′ exonuclease activity in the Werner syndrome (WRN) protein.

    CAS  PubMed  Google Scholar 

  19. Kunkel, T. A. Exonucleolytic proofreading. Cell 53, 837–840 (1988).

    CAS  PubMed  Google Scholar 

  20. Shevelev, I. V., Kravetskaya, T. P., Legina, O. K. & Krutyakov, V. M. External proofreading of DNA replication errors and mammalian autonomous 3′–5′ exonucleases. Mutat. Res. 352, 51–55 (1996).

    PubMed  Google Scholar 

  21. Reddy, M. K., Weitzel, S. E. & von Hippel, P. H. Processive proofreading is intrinsic to T4 DNA polymerase. J. Biol. Chem. 267, 14157–14166 (1992).

    CAS  PubMed  Google Scholar 

  22. Wang, J., Sattar, A. K. M. A., Wong, C. C., Karam, J. D. & Steitz, T. A. Crystal structure of a pol α family replication DNA polymerase from bacteriophage RB69. Cell 89, 1087–1099 (1997).

    CAS  PubMed  Google Scholar 

  23. Donlin, M. J., Patel, S. S. & Johnson, K. A. Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry 30, 538–546 (1991).

    CAS  PubMed  Google Scholar 

  24. deVega, M., Blanco, L. & Salas, M. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage ϕ29 DNA polymerase. J. Mol. Biol. 292, 39–51 (1999).

    CAS  Google Scholar 

  25. Joyce, C. M. How DNA travels between the separate polymerase and 3′–5′ exonuclease sites of DNA polymerase I (Klenow fragment). J. Biol. Chem. 264, 10858–10866 (1989).This work provides evidence for the mechanism of intermolecular proofreading.

    CAS  PubMed  Google Scholar 

  26. Olson, M. W. & Kaguni, L. S. 3′–5′ exonuclease in Drosophila mitochondrial DNA polymerase. J. Biol. Chem. 267, 23136–23142 (1992).

    CAS  PubMed  Google Scholar 

  27. Perrino, F. W. & Loeb, L. A. Hydrolysis of 3′-terminal mispairs in vitro by the 3′–5′ exonuclease of DNA polymerase δ permits subsequent extension by DNA polymerase α. Biochemistry 29, 5226–5231 (1990).

    CAS  PubMed  Google Scholar 

  28. Perrino, F. W. & Loeb, L. A. Proofreading by the ɛ subunit of Escherichia coli DNA polymerase III increases the fidelity of calf thymus DNA polymerase α. Proc. Natl Acad. Sci. USA 86, 3085–3088 (1989).This work provides evidence that external proofreading is possible.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shevelev, I. V., Belyakova, N. V., Kravetskaya, T. P. & Krutyakov, V. M. Autonomous 3′–5′ exonucleases can proofread for DNA polymerase β from rat liver. Mutat. Res. 459, 237–242 (2000).

    CAS  PubMed  Google Scholar 

  30. Fijalkowska, I. J., Jonczyc, P., Tkaczhyk, M. M., Bialoskorska, M. & Schaaper, R. M. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc. Natl Acad. Sci. USA 95, 10020–10025 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Roberts, J. D., Thomas, D. C. & Kunkel, T. A. Exonucleolytic proofreading of leading and lagging strand DNA replication errors. Proc. Natl Acad. Sci. USA 88, 3465–3469 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mozzherin, D. J. et al. Proliferating cell nuclear antigen promotes misincorporation catalyzed by calf thymus DNA polymerase δ. J. Biol. Chem. 271, 31711–31717 (1996).

    CAS  PubMed  Google Scholar 

  33. Perrino, F. W. & Loeb, L. A. Differential extension of 3′ mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase α. J. Biol. Chem. 264, 2898–2905 (1989).

    CAS  PubMed  Google Scholar 

  34. Kelman, Z. & O' Donnell, M. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu. Rev. Biochem. 64, 171–200 (1995).

    CAS  PubMed  Google Scholar 

  35. Ciesla, Z., Jonczyk, P. & Fijalkowska, I. J. Effect of enhanced synthesis of the ɛ subunit of DNA polymerase III on spontaneous and UV-induced mutagenesis of the Escherichia coli glyU gene. Mol. Gen. Genet. 221, 251–255 (1990).The first evidence that increasing the cellular level of an autonomous 3′–5′ exonuclease has an antimutator effect.

    CAS  PubMed  Google Scholar 

  36. Hübscher, U., Nasheuer, H. P. & Syväoja, J. Eukaryotic DNA polymerases, a growing family. Trends Biochem. Sci. 25, 143–147 (2000).

    PubMed  Google Scholar 

  37. Karthikeyan, R. et al. Evidence from mutational specificity studies yeast DNA polymerases δ and ɛ replicate different DNA strands at an intracellular replication fork. J. Mol. Biol. 299, 405–419 (2000).

    CAS  PubMed  Google Scholar 

  38. Tran, H. T., Gordenin, D. A. & Resnick, M. A. The 3′→5′ exonucleases of DNA polymerases δ and ɛ and the 5′–3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 2000–2007 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vanderstraeten, S., Van den Brule, S., Hu, J. & Foury, F. The role of 3′–5′ exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J. Biol. Chem. 273, 23690–23697 (1998).

    CAS  PubMed  Google Scholar 

  40. Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).

    CAS  PubMed  Google Scholar 

  41. Chen, X., Zao, S., Kelman, Z., Hurwitz, J. & Goodman, M. F. Fidelity of eukaryotic DNA polymerase δ holoenzyme from Schizosaccharomyces pombe. J. Biol. Chem. 275, 17677–17685 (2000).

    CAS  PubMed  Google Scholar 

  42. Perrino, F. W., Mazur, D. J., Ward, H. & Harvey, S. Exonucleases and the incorporation of aranucleotides into DNA. Cell Biochem. Biophys. 30, 331–352 (1999).

    CAS  PubMed  Google Scholar 

  43. Perrino, F. W., Miller, H. & Ealey, K. A. Identification of a 3′–5′ exonuclease that removes cytosine arabinoside monophosphate from 3′ termini of DNA. J. Biol. Chem. 269, 16357–16363 (1994).

    CAS  PubMed  Google Scholar 

  44. Shevelev, I. V., Belyakova, N. V., Kravetskaya, T. P., Smirnova, E. A. & Krutyakov, V. M. High accuracy of DNA synthesis catalyzed by the complex of DNA polymerase α family in the presence of autonomous 3′–5′ exonucleases. Docl. Biochem. Biophys. (Russian) 378, 156–159 (2001).

    CAS  Google Scholar 

  45. Shevelev, I. V., Ramadan, K. & Hubscher, U. The TREX2 3′–5′ exonuclease physically interacts with DNA polymerase δ and increases its accuracy. The Scientific World Journal 2, 275–281 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hübscher, U. & Seo, Y. S. Replication of the lagging strand: a concert of at least 23 polypeptides. Mol. Cells 12, 149–157 (2001).

    PubMed  Google Scholar 

  47. Thomas, D. C. et al. Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry 30, 11751–11759 (1991).

    CAS  PubMed  Google Scholar 

  48. Wood, R. D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science 291, 1284–1289 (2001).The authors propose a classification for human DNA repair genes according to the function of their proteins.

    CAS  PubMed  Google Scholar 

  49. Lieber, M. R. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19, 233–240 (1997).

    CAS  PubMed  Google Scholar 

  50. Genschel, J., Bazemore, L. R. & Modrich, P. Human exonuclease I is required for 5′ and 3′ mismatch repair. J. Biol. Chem. 277, 13302–13311 (2002).

    CAS  PubMed  Google Scholar 

  51. Höss, M. et al. A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO J. 18, 3868–3875 (1999).

    PubMed  PubMed Central  Google Scholar 

  52. Mazur, D. J. & Perrino, F. W. Excision of 3′ termini by the TREX1 and TREX2 3′–5′' exonucleases. J. Biol. Chem. 276, 17022–17029 (2001).

    CAS  PubMed  Google Scholar 

  53. Lebel, M. Werner syndrome: genetic and molecular basis of a premature ageing disorder. Cell Mol. Life Sci. 58, 857–867 (2001).

    CAS  PubMed  Google Scholar 

  54. Huang, S. et al. Characterization of the human and mouse WRN 3′–5′ exonuclease. Nucleic Acids Res. 28, 2396–2405 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, B. & Comai, L. Requirements for the nucleolytic processing of DNA ends by the Werner syndrome protein–Ku70/80 complex. J. Biol. Chem. 276, 9896–9902 (2001).

    CAS  PubMed  Google Scholar 

  56. Vogel, H., Lim, D. S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA 96, 10770–10775 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Opresco, P. L., Laine, J.-P., Brosh, R. M., Seidman, M. M. & Bohr, V. A. Coordinate action of the helicase and 3′–5′ exonuclease of Werner syndrome protein. J. Biol. Chem. 276, 44677–44687 (2001).

    Google Scholar 

  58. Kamath-Loeb, A. S., Loeb, L. A., Johansson, E., Burgers, P. M. & Fry, M. Interactions between the Werner syndrome helicase and DNA polymerase δ specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J. Biol. Chem. 276, 16439–16446 (2001).

    CAS  PubMed  Google Scholar 

  59. Brosh, R. M. J. et al. p53 modulates the exonuclease activity of Werner syndrome protein. J. Biol. Chem. 276, 35093–35102 (2001).

    CAS  PubMed  Google Scholar 

  60. Lombard, D. B. et al. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol. Cell. Biol. 20, 3286–3291 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Janus, F. et al. The dual role for p53 in maintaining genomic integrity. Cell. Mol. Life Sci. 55, 12–27 (1999).

    CAS  PubMed  Google Scholar 

  62. Harvey, M. et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5, 225–229 (1993).

    CAS  PubMed  Google Scholar 

  63. Huang, P. Excision of mismatched nucleotides from DNA: a potential mechanism for enhancing DNA replication fidelity by the wild-type p53 protein. Oncogene 17, 261–270 (1998).

    CAS  PubMed  Google Scholar 

  64. Janus, F. et al. Different regulation of the p53 core domain activities 3′-to-5′ exonuclease and sequence-specific DNA binding. Mol. Cell. Biol. 19, 2155–2168 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Okorokov, A. L., Ponehel, F. & Milner, J. Induced N- and C-terminal cleavage of p53: a core fragment of p53, generated by interaction with damaged DNA, promotes cleavage of the N-terminus of full-length p53, whereas ssDNA induces C-terminal cleavage of p53. EMBO J. 16, 6008–6017 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou, J., Ahn, J., Wilson, S. H. & Prives, C. A role for p53 in base excision repair. EMBO J. 20, 914–923 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bakhanashvili, M. Exonucleolytic proofreading by p53 protein. Eur. J. Biochem. 268, 2047–2054 (2001).

    CAS  PubMed  Google Scholar 

  68. Wang, C., Bogue, M. A., Roth, D. B. & Meek, K. Normal junctional diversification of immune receptors in p53-deficient mice. J. Immunol. 159, 757–762 (1997).

    CAS  PubMed  Google Scholar 

  69. Cranston, A. et al. Female embryonic lethality in mice nullizygous for both Msh2 and p53. Nature Genet. 17, 114–118 (1997).

    CAS  PubMed  Google Scholar 

  70. Chen, C. & Kolodner, R. D. Cross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81–85 (1999).

    CAS  PubMed  Google Scholar 

  71. Paull, T. T. & Gellert, M. A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc. Natl Acad. Sci. USA 97, 6409–6414 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Volkmer, E. & Karnitz, I. M. Human homologs of Schizosaccharomyces pombe Rad1, Hus1 and Rad9 form a DNA damage-responsive protein complex. J. Biol. Chem. 274, 567–570 (1999).

    CAS  PubMed  Google Scholar 

  73. Hawn, M. T. et al. Evidence for a connection between the mismatch repair system and G2 cell cycle checkpoint. Cancer Res. 55, 3721–3725 (1995).

    CAS  PubMed  Google Scholar 

  74. Parker, A. E. et al. A human homologue of the Schizosaccharomyces pombe rad1+ checkpoint gene encodes an exonuclease. J. Biol. Chem. 273, 18332–18339 (1998).

    CAS  PubMed  Google Scholar 

  75. Onel, K., Thelen, M. P., Ferguson, D. O., Bennet, R. L. & Holloman, W. K. Mutation avoidance and DNA repair proficiency in Ustilago maydis are differentially lost with progressive truncation of the REC1 gene product. Mol. Cell. Biol. 15, 5329–5338 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bessho, T. & Sancar, A. Human DNA damage checkpoint protein hRad9 is a 3′ to 5′ exonuclease. J. Biol. Chem. 275, 7451–7454 (2000).

    CAS  PubMed  Google Scholar 

  77. Venclovas, C. & Thelen, M. P. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28, 2481–2493 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Udell, C. M., Lee, S. K. & Davey, S. HRAD1 and MRAD1 encode mammalian homolog of the fusion yeast rad1+ cell cycle checkpoint control gene. Nucleic Acids Res. 26, 3971–3976 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Robson, C. N. & Hickson, I. D. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in Escherichia coli xth (exonuclease III) mutants. Nucleic Acids Res. 19, 1087–1092 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ludwig, D. L. et al. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing sensitivity. Mutat. Res. 409, 17–29 (1998).

    CAS  PubMed  Google Scholar 

  81. Chou, K. M., Kukhanova, M. & Cheng, Y. C. A novel action of human apurinic/apyrimidinic endonuclease excision of L-configuration deoxyribonucleoside analogs from the 3′ termini of DNA. J. Biol. Chem. 275, 31009–31015 (2000).

    CAS  PubMed  Google Scholar 

  82. Chou, K. M. & Cheng, Y. C. An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3′ mispaired DNA. Nature 415, 655–659 (2002).This paper describes a new role for APE1 as the excision 3′–5′ exonuclease proofreader for DNA polymerase β, particularly for removing nucleotide analogues.

    CAS  PubMed  Google Scholar 

  83. Gulliams, T.-G., Teng, M. & Halligan, B. D. Site directed DNA binding. Biochimie 79, 13–22 (1997).

    Google Scholar 

  84. Zhu, L. & Halligan, B. D. Characterization of a 3′–5′ exonuclease associated with VDJP. Biochem. Biophys. Res. Commun. 259, 262–270 (1999).

    CAS  PubMed  Google Scholar 

  85. Halligan, B. D., Teng, M., Guilliams, T. G., Nauert, J. B. & Halligan, N. L. Cloning of the murine cDNA encoding VDJP, a protein homologous to the large subunit of replication factor C and bacterial DNA ligases. Gene 161, 217–222 (1995).

    CAS  PubMed  Google Scholar 

  86. McAlear, M. A., Tuffo, K. M. & Holm, C. Large subunit of replication factor C (Rfc 1p/Cdc44p) is required for DNA replication and DNA repair in Saccharomyces cerevisiae. Genetics 142, 65–78 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Viswanathan, M. & Lovett, S. T. Single-strand DNA-specific exonucleases in Escherichia coli: roles in repair and mutation avoidance. Genetics 149, 7–16 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Setlow, P. & Kornberg, A. Deoxyribonucleic acid polymerase: two distinct enzymes in one polypeptide. II. A proteolytic fragment containing the 5′ leads to 3′ exonuclease function. Restoration of intact enzyme function from the two proteolytic fragments. J. Biol. Chem. 247, 232–240 (1972).

    CAS  PubMed  Google Scholar 

  89. Mol, C. D., Kuo, C. F., Thayer, M.-M., Cunninghram, R. P. & Tainer, J. A. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381–386 (1995).

    CAS  PubMed  Google Scholar 

  90. Jorgensen, S. E. & Koerner, J. F. Separation and characterization of deoxyribonuclease of Escherichia coli B. Chromatographic separation and properties of two deoxyribo-oligonucleotidases. J. Biol. Chem. 241, 3090–3096 (1966).

    CAS  PubMed  Google Scholar 

  91. Goldmark, P. J. & Linn, S. Purification and properties of the recBC DNase of Escherichia coli K-12. J. Biol. Chem. 247, 1849–1860 (1972).

    CAS  PubMed  Google Scholar 

  92. Setlow, P., Brutlag, D. & Kornberg, A. Deoxyribonucleic acid polymerase: two distinct enzymes in one polypeptide. I. A proteolytic fragment containing the polymerase and 3′ leads to 5′ exonuclease functions. J. Biol. Chem. 247, 224–231 (1972).

    CAS  PubMed  Google Scholar 

  93. Kushner, S. R., Nagaishi, H. & Clark, A. J. Isolation of exonuclease VIII: the enzyme associated with sbcA indirect suppressor. Proc. Natl Acad. Sci. USA 71, 3593–3597 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Qiu, Z. & Goodman, M. F. The Escherichia coli polB locus is identical to dinA, the structural gene for DNA polymerase II. Characterization of Pol II purified from polB mutant. J. Biol. Chem. 272, 8611–8617 (1997).

    CAS  PubMed  Google Scholar 

  95. Lovett, S. T. & Clark, A. J. Genetic analysis of the recJ gene of Escherichia coli K-12. J. Bacteriol. 157, 190–196 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Connelly, J. C., deLeau, E. S., Okely, E. A. & Leach, D. R. F. Overexpression, purification, and characterization of the sbcCD protein from Escherichia coli. J. Biol. Chem. 272, 19819–19826 (1997).

    CAS  PubMed  Google Scholar 

  97. Chung, D. W. et al. Primary structure of the catalytic subunit of human DNA polymerase δ and chromosomal location of the gene. Proc. Natl Acad. Sci. USA 88, 11197–11201 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kesti, T., Frantti, H. & Syväoja, J. E. Molecular cloning of the cDNA for the catalytic subunit of human DNA polymerase ɛ. J. Biol. Chem. 268, 10238–10245 (1993).

    CAS  PubMed  Google Scholar 

  99. Ropp, P. A. & Copeland, W. C. Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase γ. Genomics 36, 449–458 (1996).

    CAS  PubMed  Google Scholar 

  100. Mummenbrauer, T. et al. p53 protein exhibits 3′-to–5′ exonuclease activity. Cell 85, 1089–1099 (1996).

    CAS  PubMed  Google Scholar 

  101. Morrison, A. & Sugino, A. The 3′ to 5′ exonucleases of both DNA polymerase δ and ɛ participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol. Gen. Genet. 242, 289–296 (1994).

    CAS  PubMed  Google Scholar 

  102. Stewart, G. S. et al. The DNA double-strand break repair gene hMre11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    CAS  PubMed  Google Scholar 

  103. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    CAS  PubMed  Google Scholar 

  104. Franklin, M. C., Wang, J. & Steitz, T. A. Structure of the replicating complex of a pol α family DNA polymerase. Cell 105, 657–667 (2001).

    CAS  PubMed  Google Scholar 

  105. Shamoo, Y. & Steitz, T. A. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99, 155–166 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Kalinin, V. Krutyakov, G. Villani, C. Bieri and U. Sheveleva for their critical reading of the manuscript; Ursi Hübscher, R. Hobi, P. Schrafll and N. Pirogova for their assistance with graphics; T. Steitz for permission to reproduce Figure 1; and K. Ramadan for his assistance on the manuscript. The work carried out in the authors' laboratories was supported by the Swiss National Science Foundation, the European Union TMR grant, the Kanton of Zürich and the Russian Foundation for Basic Research. We apologize to those researchers whose work could not be cited directly because of the strict limit on the number of references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Hübscher.

Related links

Related links

DATABASES

Interpro

3′–5′ proofreading exonuclease domain

LocusLink

pol α

pol β

pol δ

pol ɛ

pol γ

RAD1

RAD9

<i>Saccharomyces</i> Genome Database

Cdc6

Cdc7

Dbf4

Swiss-Prot

APE1

dnaE

dnaQ

DNA ligase I

FEN-1

holE

E. coli pol I

Exo I

Exo IX

Exo X

HUS1

Ku70

Ku80

large subunit of RF-C

Mre11

NBS1

p53

PCNA

RAD1

RAD9

rad17

Rad50

rec1

RNaseT

RP-A

topoisomerase I

TREX1

TREX2

WRN

Xrs2

Glossary

TRANSLESION DNA SYNTHESIS

DNA synthesis on a DNA molecule that contains altered or missing bases.

MISMATCH REPAIR

This repair process recognizes incorrectly paired bases after DNA replication has occurred. The mismatch repair complex can distinguish between the old and newly synthesized DNA strands.

PRIMASE

A special type of RNA polymerase that can synthesize an RNA primer of ten nucleotides, which is subsequently elongated by a DNA polymerase (such as DNA polymerase α in eukaryotes).

OKAZAKI FRAGMENTS

Short pieces of DNA that are synthesized on the lagging strand at the replication fork.

PROCESSIVE DNA SYNTHESIS

A processive DNA polymerase can synthesize from a few to several thousand nucleotides per binding event to DNA.

DISTRIBUTIVE DNA SYNTHESIS

A distributive DNA polymerase can synthesize only one nucleotide per binding event to DNA.

DNA POLYMERASE (POL) HOLOENZYME

A replicative DNA polymerase complex that consists of a DNA polymerase and several auxiliary proteins (for example, pol δ, proliferating cell nuclear antigen and replication factor-C).

ERROR CATASTROPHE

When mutations accumulate during the lifespan of a cell or organism, there is a point at which the mutations have accumulated to such an extent that the entire system breaks down.

SPONTANEOUS MUTATION FREQUENCY

Mutations that occur in a genome without an obvious influence from the environment (for example, oxidative damage).

ARANUCLEOTIDES

A class of chemical compounds that are analogous to dNTPs, but with an arabinose sugar instead of a deoxyribose (for example, cytosine arabinoside triphosphate). These compounds are widely used in anticancer and antiviral therapies.

ERROR-PRONE CONDITIONS

Conditions in a cell that tend to lead to errors in DNA replication (for example, an imbalance of substrate dNTPs).

ERROR-FREE CONDITIONS

Conditions in a cell that permit DNA replication to occur with a low frequency of errors.

BASE-EXCISION REPAIR

An essential repair mechanism that removes damaged bases from the DNA. The remaining abasic site is recognized by an apurinic/apyrimidinic endonuclease. The gap is then filled by DNA polymerase and sealed by DNA ligase.

KU70/80

An enzyme that is an essential part of the complex that is responsible for non-homologous end joining.

V(D)J RECOMBINATION

The site-specific recombination of immunoglobulin coding regions from multiple copies in the germ line to just one variable (V), one diversity (D) and one joining (J) region in the process of forming a functional immunoglobulin gene in B cells.

CAMPTOTHECIN

A specific inhibitor of DNA topoisomerase I, an enzyme that is responsible for the topology of DNA during replication. DNA topoisomerase I cuts DNA at one strand and subsequently reseals the nick. Camptothecin inhibits DNA topoisomerase I by freezing the enzyme at the nick, and this results in a replication defect.

SECONDARY STRUCTURE

The double helix can form secondary structures when, for instance, palindromic sequences occur. Such structures include stem–loops or 'cloverleafs'.

NON-HOMOLOGOUS END JOINING

A recombination event that allows DNA to be rejoined after double-strand breaks have occurred. This rejoining process does not require homologous DNA sequences.

HETEROLOGOUS DNA

A DNA molecule that has no homology to an existing one.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevelev, I., Hübscher, U. The 3′–5′ exonucleases. Nat Rev Mol Cell Biol 3, 364–376 (2002). https://doi.org/10.1038/nrm804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing