Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Navigating the epigenetic landscape of pluripotent stem cells

Key Points

  • Pluripotent stem cells use a complex network of genetic and epigenetic pathways to maintain a delicate balance between self-renewal and multilineage differentiation.

  • Novel DNA demethylation pathways have been shown to be important in somatic cell reprogramming. Actively manipulating these pathways may enhance the efficiency of induced pluripotent stem (iPS) cell generation.

  • Histone modifications are dynamically regulated during pluripotent stem cell differentiation. Recent studies identified mechanisms by which histone modifying proteins such as the Polycomb group (PcG) complex and Lys-specific demethylase 1 (LSD1) target different genes in the pluripotent and differentiated states.

  • Chromatin-remodelling factors such as the BRG- or BRM-associated factor (BAF) complex and the nucleosome remodelling and deacetylase (NuRD) complex regulate transcription by modulating target gene chromatin accessibility. Chromatin remodellers often function cooperatively with other epigenetic regulators including histone- and DNA-modifying activities in pluripotent stem cells.

  • High-resolution mapping of higher-order chromatin structure in embryonic stem (ES) cells and differentiated cells shows that the organization of the genome into topologically distinct domains is a fundamental feature of the mammalian genome.

  • The maintenance of pluripotency and the initiation of differentiation involve an orchestrated change of the composition, localization and activity of various nuclear lamina components and require a highly dynamic interaction between the nuclear envelope and the genome.

Abstract

Pluripotent stem cells, which include embryonic stem cells and induced pluripotent stem cells, use a complex network of genetic and epigenetic pathways to maintain a delicate balance between self-renewal and multilineage differentiation. Recently developed high-throughput genomic tools greatly facilitate the study of epigenetic regulation in pluripotent stem cells. Increasing evidence suggests the existence of extensive crosstalk among epigenetic pathways that modify DNA, histones and nucleosomes. Novel methods of mapping higher-order chromatin structure and chromatin–nuclear matrix interactions also provide the first insight into the three-dimensional organization of the genome and a framework in which existing genomic data of epigenetic regulation can be integrated to discover new rules of gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms by which epigenetic regulators control the switch from pluripotency to differentiation.
Figure 2: OCT4 and CTCF organize three-dimensional chromatin loops in ES cells.
Figure 3: Model for the organization of topological domains in the genome.
Figure 4: Dynamic interplay between the nuclear envelope and chromatin during reprogramming and differentiation.

Similar content being viewed by others

References

  1. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    CAS  PubMed  Google Scholar 

  2. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  3. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  6. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  7. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  PubMed  Google Scholar 

  8. Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594–5605 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–814 (2006).

    CAS  PubMed  Google Scholar 

  10. Meissner, A. Epigenetic modifications in pluripotent and differentiated cells. Nature Biotech. 28, 1079–1088 (2010).

    CAS  Google Scholar 

  11. Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001).

    CAS  PubMed  Google Scholar 

  12. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Foshay, K. M. et al. Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming. Mol. Cell 46, 159–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu, T. P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    CAS  PubMed  Google Scholar 

  17. Gaspar-Maia, A., Alajem, A., Meshorer, E. & Ramalho-Santos, M. Open chromatin in pluripotency and reprogramming. Nature Rev. Mol. Cell Biol. 12, 36–47 (2011).

    CAS  Google Scholar 

  18. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones, A. & Wang, H. Polycomb repressive complex 2 in embryonic stem cells: an overview. Protein Cell 1, 1056–1062 (2010).

    CAS  PubMed  Google Scholar 

  20. Morey, L. et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10, 47–62 (2012).

    CAS  PubMed  Google Scholar 

  21. O'Loghlen, A. et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 10, 33–46 (2012). Shows, together with reference 20, that differential incorporation of alternative PRC1 subunits allows PRC1 to target different genes in ES cells and differentiated cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007).

    CAS  PubMed  Google Scholar 

  23. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    CAS  PubMed  Google Scholar 

  24. Christensen, J. et al. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128, 1063–1076 (2007).

    CAS  PubMed  Google Scholar 

  25. Pasini, D. et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-repressive complex 2. Genes Dev. 22, 1345–1355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Adamo, A. et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nature Cell Biol. 13, 652–659 (2011).

    CAS  PubMed  Google Scholar 

  27. Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fussner, E. et al. Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J. 30, 1778–1789 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao, Q. et al. Telomeric transgenes are silenced in adult mouse tissues and embryo fibroblasts but are expressed in embryonic stem cells. Stem Cells 25, 3085–3092 (2007).

    CAS  PubMed  Google Scholar 

  31. Ma, D. K., Chiang, C. H., Ponnusamy, K., Ming, G. L. & Song, H. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 2131–2141 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574 (2008).

    CAS  PubMed  Google Scholar 

  33. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Struct. Mol. Biol. 15, 1176–1183 (2008).

    CAS  Google Scholar 

  34. Lienert, F. et al. Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet. 7, e1002090 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Davie, J. R. & Chadee, D. N. Regulation and regulatory parameters of histone modifications. J. Cell Biochem. Suppl. 30–31, 203–213 (1998).

    PubMed  Google Scholar 

  36. Kidder, B. L., Palmer, S. & Knott, J. G. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27, 317–328 (2009).

    CAS  PubMed  Google Scholar 

  37. Yan, Z. et al. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 26, 1155–1165 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, X. et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc. Natl Acad. Sci. USA 105, 6656–6661 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ho, L. et al. esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nature Cell Biol. 13, 903–913 (2011).

    CAS  PubMed  Google Scholar 

  40. Fazzio, T. G. & Panning, B. Control of embryonic stem cell identity by nucleosome remodeling enzymes. Curr. Opin. Genet. Dev. 20, 500–504 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yildirim, O. et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147, 1498–1510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).

    CAS  PubMed  Google Scholar 

  43. Palstra, R. J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nature Genet. 35, 190–194 (2003).

    CAS  PubMed  Google Scholar 

  44. Levasseur, D. N., Wang, J., Dorschner, M. O., Stamatoyannopoulos, J. A. & Orkin, S. H. Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes Dev. 22, 575–580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Donohoe, M. E., Silva, S. S., Pinter, S. F., Xu, N. & Lee, J. T. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460, 128–132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, Y. J., Cecchini, K. R. & Kim, T. H. Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus. Proc. Natl Acad. Sci. USA 108, 7391–7396 (2011). Finds that OCT4 regulates the formation of chromatin loop domains by modulating the binding of cohesin, and that perturbation of higher-order chromatin structure results in dramatic locus-wide gene expression changes.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bertani, S., Sauer, S., Bolotin, E. & Sauer, F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol. Cell 43, 1040–1046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Morey, C., Da Silva, N. R., Perry, P. & Bickmore, W. A. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134, 909–919 (2007).

    CAS  PubMed  Google Scholar 

  53. Chambeyron, S., Da Silva, N. R., Lawson, K. A. & Bickmore, W. A. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132, 2215–2223 (2005).

    CAS  PubMed  Google Scholar 

  54. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bartova, E., Krejci, J., Harnicarova, A. & Kozubek, S. Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation 76, 24–32 (2008).

    CAS  PubMed  Google Scholar 

  56. Wiblin, A. E., Cui, W., Clark, A. J. & Bickmore, W. A. Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. J. Cell Sci. 118, 3861–3868 (2005).

    CAS  PubMed  Google Scholar 

  57. Harewood, L. et al. The effect of translocation-induced nuclear reorganization on gene expression. Genome Res. 20, 554–564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Morey, C., Kress, C. & Bickmore, W. A. Lack of bystander activation shows that localization exterior to chromosome territories is not sufficient to up-regulate gene expression. Genome Res. 19, 1184–1194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Morey, C., Da Silva, N. R., Kmita, M., Duboule, D. & Bickmore, W. A. Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into Hoxd. J. Cell Sci. 121, 571–577 (2008).

    CAS  PubMed  Google Scholar 

  60. Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA interactions. Nature Methods 4, 895–901 (2007).

    CAS  PubMed  Google Scholar 

  61. Handoko, L. et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nature Genet. 43, 630–638 (2011). Maps genome-wide CTCF-mediated chromatin interactions in mouse ES cells by using ChIA-PET. Identifies five types of distinct CTCF-associated chromatin domains and a surprising role of CTCF in bridging enhancers and promoters.

    CAS  PubMed  Google Scholar 

  62. de Wit, E. & de Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012). Investigates the spatial genome organization of the XIC using 5C in mouse ES cells, neuronal progenitors and MEFs. Reveals several of topologically distinct domains, termed topologically associating domains.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012). Reveals that the genome is organized into large, discrete, self-interacting topological domains by using Hi-C analysis in ES cells and differentiated cells. Topological domains are evolutionarily conserved.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010). Shows that expression levels of pluripotency or lineage-specific genes are negatively correlated to the interaction strengths between these gene loci and the nuclear lamina during mouse ES cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, Y. et al. Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334, 1706–1710 (2011). Shows that lamin proteins are not required for self-renewal and pluripotency of mouse ES cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Meshorer, E. & Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation. Nature Rev. Mol. Cell Biol. 7, 540–546 (2006).

    CAS  Google Scholar 

  70. Tilgner, K., Wojciechowicz, K., Jahoda, C., Hutchison, C. & Markiewicz, E. Dynamic complexes of A-type lamins and emerin influence adipogenic capacity of the cell via nucleocytoplasmic distribution of β-catenin. J. Cell Sci. 122, 401–413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, X. et al. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64, 173–187 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dauer, W. T. & Worman, H. J. The nuclear envelope as a signaling node in development and disease. Dev. Cell 17, 626–638 (2009).

    CAS  PubMed  Google Scholar 

  73. Asally, M. et al. Nup358, a nucleoporin, functions as a key determinant of the nuclear pore complex structure remodeling during skeletal myogenesis. FEBS J. 278, 610–621 (2011).

    CAS  PubMed  Google Scholar 

  74. Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011). Shows that premature ageing-associated nuclear envelope defects and epigenetic abnormalities are reset during reprogramming of HGPS fibroblasts towards iPS cells, and that they reoccur after differentiation towards mesodermal cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Verstraeten, V. L. et al. Reorganization of the nuclear lamina and cytoskeleton in adipogenesis. Histochem. Cell Biol. 135, 251–261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. & Csoka, A. B. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177–185 (2006).

    CAS  PubMed  Google Scholar 

  77. Zhang, J. et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31–45 (2011).

    CAS  PubMed  Google Scholar 

  78. Liu, G. H. et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8, 688–694 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bhattacharya, D., Talwar, S., Mazumder, A. & Shivashankar, G. V. Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis. Biophys. J. 96, 3832–3839 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith, E. R., Zhang, X. Y., Capo-Chichi, C. D., Chen, X. & Xu, X. X. Increased expression of Syne1/nesprin-1 facilitates nuclear envelope structure changes in embryonic stem cell differentiation. Dev. Dyn. 240, 2245–2255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, W. et al. Decreased bone formation and osteopenia in lamin a/c-deficient mice. PLoS ONE 6, e19313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Marchetto, M. C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Samaco, R. C. & Neul, J. L. Complexities of Rett syndrome and MeCP2. J. Neurosci. 31, 7951–7959 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ho, J. C. et al. Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 3, 380–390 (2011).

    CAS  Google Scholar 

  88. Soldner, F. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hockemeyer, D. & Jaenisch, R. Gene targeting in human pluripotent cells. Cold Spring Harb. Symp. Quant. Biol. 75, 201–209 (2010).

    CAS  PubMed  Google Scholar 

  90. Liu, G. H., Sancho-Martinez, I. & Izpisua Belmonte, J. C. Cut and paste: restoring cellular function by gene correction. Cell Res. 22, 283–284 (2012).

    PubMed  Google Scholar 

  91. Sancho-Martinez, I., Li, M. & Izpisua Belmonte, J. C. Disease correction the iPSC way: advances in iPSC-based therapy. Clin. Pharmacol. Ther. 89, 746–749 (2011).

    CAS  PubMed  Google Scholar 

  92. Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotech. 29, 731–734 (2011).

    CAS  Google Scholar 

  93. Li, M. et al. Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res. 21, 1740–1744 (2011). Describes, together with references 80 and 94, two novel gene-editing technologies, which can be used to efficiently engineer human pluripotent stem cells to manipulate and study epigenetic pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Guenther, M. G. et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7, 249–257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol. 9, 1428–1435 (2007).

    CAS  PubMed  Google Scholar 

  96. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Leeb, M. et al. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 24, 265–276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chamberlain, S. J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pasini, D. et al. Regulation of stem cell differentiation by histone methyltransferases and demethylases. Cold Spring Harb. Symp. Quant. Biol. 73, 253–263 (2008).

    CAS  PubMed  Google Scholar 

  100. Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    CAS  PubMed  Google Scholar 

  101. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  104. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  105. Schneider, R. & Grosschedl, R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 21, 3027–3043 (2007).

    CAS  PubMed  Google Scholar 

  106. Dechat, T. et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Masny, P. S. et al. Localization of 4q35.2 to the nuclear periphery: is FSHD a nuclear envelope disease? Hum. Mol. Genet. 13, 1857–1871 (2004).

    CAS  PubMed  Google Scholar 

  108. Nikolova, V. et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113, 357–369 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those colleagues whose work could not be cited due to space constraint. We would like to thank M. J. Barrero, N.Y. Kim, M. Schwarz, P. Schwarz and I. Dubova for critical reading of the manuscript. We thank N.Y. Kim for rendering the schematic model of topological domains. G.H.L. was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences. This study was supported by grants from the G. Harold and Leila Y. Mathers Charitable Foundation, Sanofi, Ellison Medical Foundation, The Leona M. and Harry B. Helmsley Charitable Trust, the Glenn Foundation for Medical Research, Ministerio de Economía y Competitividad (MINECO) and Fundacion Cellex (J.C.I.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisua Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Juan Carlos Izpisua Belmonte's homepage

Glossary

Induced pluripotent stem cells

(iPS cells). Somatic cells that have been reprogrammed to a pluripotent state, which is highly similar to that of embryonic stem cells. iPS cells were first generated by the Yamanaka group in 2006 from mouse somatic cells by enforced expression of OCT4, SOX2, KLF4 (Krüppel-like factor 4) and c-MYC. iPS cells have been successfully derived from somatic cells of different species through overexpression of various combinations of factors.

Somatic reprogramming

Specifically referred to as reprogramming of somatic cells towards pluripotency, which entails the erasure of epigenetic marks of somatic cell origin and re-establishment of pluripotency-specific transcriptional and epigenetic programmes. The three major approaches for somatic reprogramming are somatic cell nuclear transfer, cell fusion-based reprogramming and transcription factor-based reprogramming.

Inner cell mass

(ICM). Refers to a population of cells inside the early embryo (the blastocyst), which ultimately give rise to all fetal tissues. The ICM is located at the embryonic pole of the blastocyst and is surrounded by a monolayer of trophoblast cells. Mouse embryonic stem cells were initially isolated from ICM.

Blastomeres

Cells formed by cleavage (which is the initial rapid cell divisions after fertilization) during early embryonic development.

Primordial germ cells

(PGCs). The precursors of sperms and eggs. During development, PGCs are specified far from their somatic niche and have to actively migrate to the gonadal ridge to become mature germ cells.

Activation-induced cytidine deaminase

(AID). A factor required for generating antibody diversity by introducing mutations into the immunoglobulin loci in B cells. AID enzymatically converts cytidines into uracils, thus creating mismatches that initiate downstream repair pathways, which produce diversified immunoglobulin sequences. AID can also convert 5mC into thymidine through deamination.

Heterokaryon-based reprogramming

A reprogramming strategy in which somatic cells are reprogrammed by fusion with pluripotent stem cells to create hybrid cells (also known as heterokaryons). Heterokaryon-based reprogramming is rapid, efficient and independent of cell division.

LIF–STAT3 signalling

(leukaemia inhibitory factor – signal transducer and activator of transcription 3 signalling). In mouse embryonic stem cells, the binding of LIF to its receptor leads to the activation of the transcription factor STAT3, which is important for the maintenance of self-renewal. The LIF–STAT3 pathway activates many downstream targets, including the pluripotency factors c-MYC, SALL4 and KLF4 (Kürppel-like factor 4), to form a pluripotency transcriptional network.

Trophectoderm

The cell layer from which the trophoblast differentiates. Trophoblasts are the peripheral cells of the blastocyst that develop into a large part of the placenta and the membranes that nourish and protect the developing embryo.

Insulator protein

Regulatory protein that binds to insulator elements in the DNA. DNA-bound insulators can block the communication between enhancers and gene promoters when situated between them. They can act as a barrier to the spread of heterochromatin.

Cohesin

A multiprotein complex that mediates sister chromatid cohesion during cell division. Cohesin is also involved in other processes including DNA double-strand break repair and transcription. Recently, cohesin has been implicated in organizing higher-order chromatin structure.

Centromeres

The sites of sister chromatid cohesion on the chromosome after DNA replication, and the sites of chromosome binding to the mitotic spindle. Eukaryotic centromeres mainly consist of repetitive DNA and are in a heterochromatin state.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Liu, GH. & Belmonte, J. Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 13, 524–535 (2012). https://doi.org/10.1038/nrm3393

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing