Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Axis of ageing: telomeres, p53 and mitochondria

Abstract

Progressive DNA damage and mitochondrial decline are both considered to be prime instigators of natural ageing. Traditionally, these two pathways have been viewed largely in isolation. However, recent studies have revealed a molecular circuit that directly links DNA damage to compromised mitochondrial biogenesis and function via p53. This axis of ageing may account for both organ decline and disease development associated with advanced age and could illuminate a path for the development of relevant therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed causes of ageing.
Figure 2: Telomere–p53–PGC pathway.
Figure 3: A unified theory of ageing.

Similar content being viewed by others

References

  1. Christensen, K., Doblhammer, G., Rau, R. & Vaupel, J. W. Ageing populations: the challenges ahead. Lancet 374, 1196–1208 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    CAS  PubMed  Google Scholar 

  3. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  Google Scholar 

  4. Deelen, J. et al. Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways. Age (Dordr.) 24 Nov 2011 (doi:10.1007/s11357-011-9340-3).

    PubMed  PubMed Central  Google Scholar 

  5. Ziv, E. & Hu, D. Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res. Rev. 10, 201–204 (2011).

    CAS  PubMed  Google Scholar 

  6. Guarente, L. Mitochondria — a nexus for aging, calorie restriction, and sirtuins? Cell 132, 171–176 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sahin, E. & Depinho, R. A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464, 520–528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  PubMed  Google Scholar 

  9. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CAS  PubMed  Google Scholar 

  10. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    CAS  PubMed  Google Scholar 

  12. Harley, C. B. Telomere loss: mitotic clock or genetic time bomb? Mutat. Res. 256, 271–282 (1991).

    CAS  PubMed  Google Scholar 

  13. Vaziri, H. & Benchimol, S. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp. Gerontol. 31, 295–301 (1996).

    CAS  PubMed  Google Scholar 

  14. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    CAS  PubMed  Google Scholar 

  15. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    CAS  PubMed  Google Scholar 

  16. Wong, K. K. et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421, 643–648 (2003).

    CAS  PubMed  Google Scholar 

  17. Ferron, S. et al. Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131, 4059–4070 (2004).

    CAS  PubMed  Google Scholar 

  18. Flores, I. & Blasco, M. A. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS ONE 4, e4934 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiacchiera, F. & Simone, C. The AMPK—FoxO3A axis as a target for cancer treatment. Cell Cycle 9, 1091–1096 (2010).

    CAS  PubMed  Google Scholar 

  22. Canto, C. & Auwerx, J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98–105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Daitoku, H., Yamagata, K., Matsuzaki, H., Hatta, M. & Fukamizu, A. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52, 642–649 (2003).

    CAS  PubMed  Google Scholar 

  24. Olmos, Y. et al. Mutual dependence of Foxo3a and PGC-1α in the induction of oxidative stress genes. J. Biol. Chem. 284, 14476–14484 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423, 550–555 (2003).

    CAS  PubMed  Google Scholar 

  26. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    CAS  PubMed  Google Scholar 

  27. Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    CAS  PubMed  Google Scholar 

  28. Feng, Z. & Levine, A. J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 20, 427–434 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Haigis, M. C. & Yankner, B. A. The aging stress response. Mol. Cell 40, 333–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sadagurski, M. et al. IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. J. Clin. Invest. 121, 4070–4081 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brown-Borg, H. M., Johnson, W. T. & Rakoczy, S. G. Expression of oxidative phosphorylation components in mitochondria of long-living Ames dwarf mice. Age (Dordr.) 34, 43–57 (2011).

    Google Scholar 

  32. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    CAS  PubMed  Google Scholar 

  33. Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Paik, J. H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540–553 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  39. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    CAS  PubMed  Google Scholar 

  40. Dai, D. F. et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119, 2789–2797 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dai, D. F. et al. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9, 536–544 (2010).

    CAS  PubMed  Google Scholar 

  42. Perez, V. I. et al. Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790, 1005–1014 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hekimi, S., Lapointe, J. & Wen, Y. Taking a “good” look at free radicals in the aging process. Trends Cell Biol. 21, 569–576 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Safdar, A. et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc. Natl Acad. Sci. USA 108, 4135–4140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    CAS  PubMed  Google Scholar 

  46. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33, 40–48 (2003).

    CAS  PubMed  Google Scholar 

  47. Kirchman, P. A., Kim, S., Lai, C. Y. & Jazwinski, S. M. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152, 179–190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dell'agnello, C. et al. Increased longevity and refractoriness to Ca2+-dependent neurodegeneration in Surf1 knockout mice. Hum. Mol. Genet. 16, 431–444 (2007).

    CAS  PubMed  Google Scholar 

  49. Liu, X. et al. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19, 2424–2434 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vigneron, A. & Vousden, K. H. p53, ROS and senescence in the control of aging. Aging (Albany NY) 2, 471–474 (2010).

    CAS  Google Scholar 

  51. Sung, J. Y., Woo, C. H., Kang, Y. J., Lee, K. Y. & Choi, H. C. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway. Biochem. Biophys. Res. Commun. 413, 143–148 (2011).

    CAS  PubMed  Google Scholar 

  52. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    CAS  PubMed  Google Scholar 

  53. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    CAS  PubMed  Google Scholar 

  54. Shay, J. W. & Wright, W. E. Hallmarks of telomeres in ageing research. J. Pathol. 211, 114–123 (2007).

    CAS  PubMed  Google Scholar 

  55. Chan, S. R. & Blackburn, E. H. Telomeres and telomerase. Phil. Trans. R. Soc. Lond. B 359, 109–121 (2004).

    CAS  Google Scholar 

  56. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    CAS  PubMed  Google Scholar 

  57. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CAS  PubMed  Google Scholar 

  58. Aikata, H. et al. Telomere reduction in human liver tissues with age and chronic inflammation. Exp. Cell Res. 256, 578–582 (2000).

    CAS  PubMed  Google Scholar 

  59. Aubert, G. & Lansdorp, P. M. Telomeres and aging. Physiol. Rev. 88, 557–579 (2008).

    CAS  PubMed  Google Scholar 

  60. Chimenti, C. et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ. Res. 93, 604–613 (2003).

    CAS  PubMed  Google Scholar 

  61. Chen, J. Hematopoietic stem cell development, aging and functional failure. Int. J. Hematol. 94, 3–10 (2011).

    CAS  PubMed  Google Scholar 

  62. Blasco, M. A. Telomeres and human disease: ageing, cancer and beyond. Nature Rev. Genet. 6, 611–622 (2005).

    CAS  PubMed  Google Scholar 

  63. Calado, R. T. & Young, N. S. Telomere diseases. N. Engl. J. Med. 361, 2353–2365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Martin, G. M. Genetic modulation of senescent phenotypes in Homo sapiens. Cell 120, 523–532 (2005).

    CAS  PubMed  Google Scholar 

  65. Armanios, M. Syndromes of telomere shortening. Annu. Rev. Genom. Hum. Genet. 10, 45–61 (2009).

    CAS  Google Scholar 

  66. Flores, I. et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 22, 654–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Commun. 3, 708 (2012).

    Google Scholar 

  68. Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    CAS  PubMed  Google Scholar 

  69. Hao, L. Y. et al. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell 123, 1121–1131 (2005).

    CAS  PubMed  Google Scholar 

  70. Tomas-Loba, A. et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135, 609–622 (2008).

    CAS  PubMed  Google Scholar 

  71. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    CAS  PubMed  Google Scholar 

  72. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    CAS  PubMed  Google Scholar 

  73. Du, X. et al. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol. Cell. Biol. 24, 8437–8446 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nature Genet. 36, 877–882 (2004).

    CAS  PubMed  Google Scholar 

  75. Jaskelioff, M. et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102–106 (2011).

    CAS  PubMed  Google Scholar 

  76. Vulliamy, T. J. & Dokal, I. Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 90, 122–130 (2008).

    CAS  PubMed  Google Scholar 

  77. Muftuoglu, M. et al. The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum. Genet. 124, 369–377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Perlman, S., Becker-Catania, S. & Gatti, R. A. Ataxia-telangiectasia: diagnosis and treatment. Semin. Pediatr. Neurol. 10, 173–182 (2003).

    PubMed  Google Scholar 

  79. Sharpless, N. E. & DePinho, R. A. Telomeres, stem cells, senescence, and cancer. J. Clin. Invest. 113, 160–168 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet. 39, 99–105 (2007).

    CAS  PubMed  Google Scholar 

  81. Leri, A. et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 22, 131–139 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, J. W., Harrigan, J., Opresko, P. L. & Bohr, V. A. Pathways and functions of the Werner syndrome protein. Mech. Ageing Dev. 126, 79–86 (2005).

    CAS  PubMed  Google Scholar 

  83. Yang, D. Q., Halaby, M. J., Li, Y., Hibma, J. C. & Burn, P. Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov. Today 16, 332–338 (2011).

    CAS  PubMed  Google Scholar 

  84. Basel-Vanagaite, L. et al. Expanding the clinical phenotype of autosomal dominant dyskeratosis congenita caused by TERT mutations. Haematologica 93, 943–944 (2008).

    CAS  PubMed  Google Scholar 

  85. Mercer, J. R. et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ. Res. 107, 1021–1031 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Kovalenko, O. A. et al. A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell 9, 203–219 (2010).

    CAS  PubMed  Google Scholar 

  88. Haendeler, J. et al. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler. Thromb. Vasc. Biol. 29, 929–935 (2009).

    CAS  PubMed  Google Scholar 

  89. Guo, N. et al. Short telomeres compromise β-cell signaling and survival. PLoS ONE 6, e17858 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sarin, K. Y. et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436, 1048–1052 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee, J. et al. TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27, 3754–3760 (2008).

    CAS  PubMed  Google Scholar 

  92. Choi, J. et al. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet. 4, e10 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. Cong, Y. & Shay, J. W. Actions of human telomerase beyond telomeres. Cell Res. 18, 725–732 (2008).

    CAS  PubMed  Google Scholar 

  94. Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005).

    CAS  PubMed  Google Scholar 

  95. Vidal-Cardenas, S. L. & Greider, C. W. Comparing effects of mTR and mTERT deletion on gene expression and DNA damage response: a critical examination of telomere length maintenance-independent roles of telomerase. Nucleic Acids Res. 38, 60–71 (2010).

    CAS  PubMed  Google Scholar 

  96. Santos, J. H., Meyer, J. N., Skorvaga, M., Annab, L. A. & Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3, 399–411 (2004).

    CAS  PubMed  Google Scholar 

  97. Sharma, N. K. et al. Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria. Nucleic Acids Res. 40, 712–725 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. Ahmed, S. et al. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 121, 1046–1053 (2008).

    CAS  PubMed  Google Scholar 

  99. Park, J. I. et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460, 66–72 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Strong, M. A. et al. Phenotypes in mTERT+/− and mTERT−/− mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol. Cell. Biol. 31, 2369–2379 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Patel, A. Y., McDonald, T. M., Spears, L. D., Ching, J. K. & Fisher, J. S. Ataxia telangiectasia mutated influences cytochrome c oxidase activity. Biochem. Biophys. Res. Commun. 405, 599–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ambrose, M., Goldstine, J. V. & Gatti, R. A. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum. Mol. Genet. 16, 2154–2164 (2007).

    CAS  PubMed  Google Scholar 

  103. Pallardo, F. V. et al. Mitochondrial dysfunction in some oxidative stress-related genetic diseases: ataxia-telangiectasia, down syndrome, Fanconi anaemia and Werner syndrome. Biogerontology 11, 401–419 (2010).

    CAS  PubMed  Google Scholar 

  104. Varela, I. et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 564–568 (2005).

    CAS  PubMed  Google Scholar 

  105. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    CAS  PubMed  Google Scholar 

  106. Wenz, T. Mitochondria and PGC-1α in aging and age-associated diseases. J. Aging Res. 2011, 810619 (2011).

    PubMed  PubMed Central  Google Scholar 

  107. Liu, J. et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459, 387–392 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Salih, D. A. & Brunet, A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 20, 126–136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    CAS  PubMed  Google Scholar 

  110. von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27, 339–344 (2002).

    CAS  PubMed  Google Scholar 

  111. Passos, J. F., Saretzki, G. & von Zglinicki, T. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res. 35, 7505–7513 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nature Med. 11, 1306–1313 (2005).

    CAS  PubMed  Google Scholar 

  113. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    CAS  PubMed  Google Scholar 

  114. Bae, B. I. et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 47, 29–41 (2005).

    CAS  PubMed  Google Scholar 

  115. Saleem, A., Adhihetty, P. J. & Hood, D. A. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol. Genom. 37, 58–66 (2009).

    CAS  Google Scholar 

  116. Mendrysa, S. M. et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 20, 16–21 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448, 375–379 (2007).

    CAS  PubMed  Google Scholar 

  118. Ventura, N. et al. p53/CEP-1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stress. Aging Cell 8, 380–393 (2009).

    CAS  PubMed  Google Scholar 

  119. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    CAS  PubMed  Google Scholar 

  120. Hinkal, G. & Donehower, L. A. How does suppression of IGF-1 signaling by DNA damage affect aging and longevity? Mech. Ageing Dev. 129, 243–253 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Devin, J. K. & Young, P. P. The effects of growth hormone and insulin-like growth factor-1 on the aging cardiovascular system and its progenitor cells. Curr. Opin. Investig. Drugs 9, 983–992 (2008).

    CAS  PubMed  Google Scholar 

  122. Keyes, W. M. & Mills, A. A. p63: a new link between senescence and aging. Cell Cycle 5, 260–265 (2006).

    CAS  PubMed  Google Scholar 

  123. Su, X. & Flores, E. R. TAp63: the fountain of youth. Aging (Albany NY) 1, 866–869 (2009).

    CAS  PubMed Central  Google Scholar 

  124. Finkel, T., Deng, C. X. & Mostoslavsky, R. Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Passos, J. F. et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5, e110 (2007).

    PubMed  PubMed Central  Google Scholar 

  127. Nautiyal, S., DeRisi, J. L. & Blackburn, E. H. The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 9316–9321 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Moiseeva, O., Bourdeau, V., Roux, A., Deschenes-Simard, X. & Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 29, 4495–4507 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    CAS  PubMed  Google Scholar 

  130. McCormick, M. A., Tsai, S. Y. & Kennedy, B. K. TOR and ageing: a complex pathway for a complex process. Phil. Trans. R. Soc. B 366, 17–27 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  Google Scholar 

  132. de Jesus, B. B. et al. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10, 604–621 (2011).

    Google Scholar 

  133. Wenz, T., Rossi, S. G., Rotundo, R. L., Spiegelman, B. M. & Moraes, C. T. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc. Natl Acad. Sci. USA 106, 20405–20410 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Little, J. P., Safdar, A., Bishop, D., Tarnopolsky, M. A. & Gibala, M. J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1303–R1310 (2011).

    CAS  PubMed  Google Scholar 

  135. Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011).

    CAS  PubMed  Google Scholar 

  136. Hu, J. et al. Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell 148, 651–663 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zoncu, R. Efeyan, A. & Sabatini, D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21–35 (2011).

    CAS  Google Scholar 

  138. Hardie, D. G. Signal transduction: How cells sense energy. Nature 472, 176–177 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to all their colleagues whose work could not be cited. Part of the work described in this article was supported by a fellowship from the Deutsche Forschungsgemeinschaft (to E.S.) and by R01 and U01 grants from the US National Institutes of Health (NIH) National Cancer Institute and the Robert A. and Renee E. Belfer Foundation. R.A.D. was supported by an Ellison Foundation for Medical Research Senior Scholar and an American Cancer Society Research Professor award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ergün Sahin or Ronald A. DePinho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ronald A. DePinho's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, E., DePinho, R. Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13, 397–404 (2012). https://doi.org/10.1038/nrm3352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing