Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Y-family DNA polymerases and their role in tolerance of cellular DNA damage

Key Points

  • Replication past DNA damage by translesion synthesis (TLS) requires specialized DNA polymerases, most of which belong to the Y-family. They have open structures that can accommodate damaged bases in their active sites and are conserved in all organisms.

  • Y-family members have specialized features enabling them to synthesize DNA past specific lesions. As an example, the main ultraviolet light photoproduct is constrained by DNA polymerase η (Pol η) in a molecular splint, such that base pairing is maintained despite the distortion caused by the lesion.

  • As these polymerases have a low fidelity on undamaged DNA, they are regulated at several different levels. In Escherichia coli, their concentration is under the control of the SOS response — low in undamaged cells but induced by damage.

  • In vertebrate cells, they are concentrated in replication factories in S phase, especially following DNA damage, but are also specifically regulated at stalled forks within these factories. The sliding clamp accessory protein PCNA (proliferating cell nuclear antigen) is a key regulator, and all family members have PCNA-binding motifs.

  • When the replication fork is stalled at damage, PCNA is ubiquitylated. This increases the affinity of the polymerases for PCNA by virtue of the ubiquitin-binding motifs present in all of the Y-family polymerases.

  • Under most circumstances, REV1 has a non-catalytic role and acts as a scaffold by virtue of a carboxy-terminal sequence that binds the other Y-family polymerases. Ubiquitylation of PCNA is required for carrying out TLS across gaps behind the replication forks, whereas REV1 is involved in directing TLS at the stalled forks.

Abstract

The past 15 years have seen an explosion in our understanding of how cells replicate damaged DNA and how this can lead to mutagenesis. The Y-family DNA polymerases lie at the heart of this process, which is commonly known as translesion synthesis. This family of polymerases has unique features that enable them to synthesize DNA past damaged bases. However, as they exhibit low fidelity when copying undamaged DNA, it is essential that they are only called into play when they are absolutely required. Several layers of regulation ensure that this is achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The basic mechanism of translesion synthesis.
Figure 2: Structures of the Y-family DNA polymerases.
Figure 3: Evolutionarily conserved roles of DNA polymerases in translesion synthesis.
Figure 4: Domains of the Y-family polymerases.
Figure 5: Different levels of regulation of the Y-family polymerases.
Figure 6: Non-canonical roles of Y-family polymerases.

Similar content being viewed by others

References

  1. Ohmori, H. et al. The Y-family of DNA polymerases. Mol. Cell 8, 7–8 (2001).

    CAS  PubMed  Google Scholar 

  2. Rupp, W. D. & Howard-Flanders, P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31, 291–304 (1968). First demonstration of gaps in newly synthesized DNA in E. coli.

    CAS  PubMed  Google Scholar 

  3. Radman, M. in Molecular and Environmental Aspects of Mutagenesis (eds Prakash, L., Sherman, F., Miller, M. W., Lawrence, C. W. & Tabor, H. W.) 128–142 (Charles, C. Thomas, Springfield, Illinois, 1974).

    Google Scholar 

  4. Lemontt, J. F. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 68, 21–33 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kato, T. & Shinoura, Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol. Gen. Genet. 156, 121–131 (1977).

    CAS  PubMed  Google Scholar 

  6. Steinborn, G. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol. Gen. Genet. 165, 87–93 (1978).

    CAS  PubMed  Google Scholar 

  7. Lehmann, A. R. et al. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc. Natl Acad. Sci. USA 72, 219–223 (1975).

    CAS  PubMed  Google Scholar 

  8. Nelson, J. R., Lawrence, C. W. & Hinkle, D. C. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382, 729–731 (1996). Discovery that Rev1 is a dCMP transferase.

    CAS  PubMed  Google Scholar 

  9. Nelson, J. R., Lawrence, C. W. & Hinkle, D. C. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 272, 1646–1649 (1996).

    CAS  PubMed  Google Scholar 

  10. Johnson, R. E., Prakash, S. & Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Polη. Science 283, 1001–1004 (1999).

    CAS  PubMed  Google Scholar 

  11. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).

    CAS  PubMed  Google Scholar 

  12. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999). References 11 and 12 detail the discovery that the gene encoding Pol η is defective in XPV cells.

    CAS  PubMed  Google Scholar 

  13. Wagner, J. et al. The dinB gene encodes a novel, E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol. Cell 4, 281–286 (1999).

    CAS  PubMed  Google Scholar 

  14. Reuven, N. B., Arad, G., Maor-Shoshani, A. & Livneh, Z. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and is specialized for translesion replication. J. Biol. Chem. 274, 31763–31766 (1999).

    CAS  PubMed  Google Scholar 

  15. Tang, M. et al. UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl Acad. Sci. USA 96, 8919–8924 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McDonald, J. P., Levine, A. S. & Woodgate, R. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics 147, 1557–1568 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. polι, a remarkably error-prone human DNA polymerase. Genes Dev. 14, 1642–1650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000).

    CAS  PubMed  Google Scholar 

  19. Zhang, Y., Yuan, F., Wu, X. & Wang, Z. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase ι. Mol. Cell. Biol. 20, 7099–7108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ogi, T., Kato, T. Jr, Kato, T. & Ohmori, H. Mutation enhancement by DINB1, a mammalian homologue of the Escherichia coli mutagenesis protein dinB. Genes Cells 4, 607–618 (1999).

    CAS  PubMed  Google Scholar 

  21. Gerlach, V. L. et al. Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc. Natl Acad. Sci. USA 96, 11922–11927 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohashi, E. et al. Error-prone bypass of certain DNA lesions by the human DNA polymerase κ. Genes Dev. 14, 1589–1594 (2000).

    CAS  Google Scholar 

  23. Zhang, Y. et al. Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro. Nucleic Acids Res. 28, 4138–4146 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Woodgate, R. Evolution of the two-step model for UV-mutagenesis. Mutat. Res. 485, 83–92 (2001).

    CAS  PubMed  Google Scholar 

  25. Shachar, S. et al. Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals. EMBO J. 28, 383–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Woodgate, R. A plethora of lesion-replicating DNA polymerases. Genes Dev. 13, 2191–2195 (1999).

    CAS  PubMed  Google Scholar 

  27. Beard, W. A., Shock, D. D., Vande Berg, B. J. & Wilson, S. H. Efficiency of correct nucleotide insertion governs DNA polymerase fidelity. J. Biol. Chem. 277, 47393–47398 (2002).

    CAS  PubMed  Google Scholar 

  28. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313, 762–766 (1985).

    CAS  PubMed  Google Scholar 

  29. Doublie, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).

    CAS  PubMed  Google Scholar 

  30. Yang, W. & Woodgate, R. What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl Acad. Sci. USA 104, 15591–15598 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Boudsocq, F. et al. Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J. Biol. Chem. 279, 32932–32940 (2004).

    CAS  PubMed  Google Scholar 

  32. Adar, S. & Livneh, Z. Translesion DNA synthesis across non-DNA segments in cultured human cells. DNA Repair 5, 479–490 (2006).

    CAS  PubMed  Google Scholar 

  33. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001).

    CAS  PubMed  Google Scholar 

  34. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts. Mol. Cell 13, 751–762 (2004).

    CAS  PubMed  Google Scholar 

  35. Kim, S. R. et al. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc. Natl Acad. Sci. USA 94, 13792–13797 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohashi, E. et al. Fidelity and processivity of DNA synthesis by DNA polymerase κ, the product of the human DINB1 gene. J. Biol. Chem. 275, 39786–39684 (2000).

    Google Scholar 

  37. Bauer, J. et al. A structural gap in Dpo4 supports mutagenic bypass of a major benzo[a]pyrene dG adduct in DNA through template misalignment. Proc. Natl Acad. Sci. USA 104, 14905–14910 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ogi, T., Shinkai, Y., Tanaka, K. & Ohmori, H. Polκ protects mammalian cells against the lethal and mutagenic effects of polycyclic hydrocarbons. Proc. Natl Acad. Sci. USA 99, 15548–15553 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y. et al. Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase ɛ, DNA polymerase ι causes the very high frequency and unique spectrum of UV-induced mutations. Cancer Res. 67, 3018–3026 (2007).

    CAS  PubMed  Google Scholar 

  40. Ziv, O., Geacintov, N., Nakajima, S., Yasui, A. & Livneh, Z. DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. Proc. Natl Acad. Sci. USA 29 Jun 2009 (doi:10.1073/pnas.0812548106).

    CAS  Google Scholar 

  41. Silverstein, T. D. et al. Structural basis for the suppression of skin cancers by DNA polymerase η. Nature 465, 1039–1043 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Biertümpfel, C. et al. Structure and mechanism of human DNA polymerase η. Nature 465, 1044–1048 (2010). The 'molecular splint' structure of Pol η provides the mechanism for correct base-pairing of T-T CPDs.

    PubMed  PubMed Central  Google Scholar 

  43. Nair, D. T., Johnson, R. E., Prakash, S., Prakash, L. & Aggarwal, A. K. Replication by human DNA polymerase ι occurs by Hoogsteen base-pairing. Nature 430, 377–380 (2004).

    CAS  PubMed  Google Scholar 

  44. Kirouac, K. N. & Ling, H. Structural basis of error-prone replication and stalling at a thymine base by human DNA polymerase ι. EMBO J. 28, 1644–1654 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaisman, A. & Woodgate, R. Unique misinsertion specificity of polι may decrease the mutagenic potential of deaminated cytosines. EMBO J. 20, 6520–6529 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirouac, K. N. & Ling, H. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase ι. Proc. Natl Acad. Sci. USA 108, 3210–3215 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Petta, T. B. et al. Human DNA polymerase ι protects cells against oxidative stress. EMBO J. 27, 2883–2895 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Haracska, L., Prakash, S. & Prakash, L. Yeast Rev1 protein is a G template-specific DNA polymerase. J. Biol. Chem. 277, 15546–15551 (2002).

    CAS  PubMed  Google Scholar 

  49. Zhang, Y. et al. Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion. Nucleic Acids Res. 30, 1630–1638 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Washington, M. T. et al. Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase ζ. Mol. Cell. Biol. 24, 6900–6906 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ross, A. L., Simpson, L. J. & Sale, J. E. Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1. Nucleic Acids Res. 33, 1280–1289 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Masuda, K. et al. A critical role for REV1 in regulating the induction of C:G. transitions and A:T mutations during Ig gene hypermutation. J. Immunol. 183, 1846–1850 (2009).

    CAS  PubMed  Google Scholar 

  53. Wiltrout, M. E. & Walker, G. C. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant. Genetics 187, 21–35 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ross, A. L. & Sale, J. E. The catalytic activity of REV1 is employed during immunoglobulin gene diversification in DT40. Mol. Immunol. 43, 1587–1594 (2006).

    CAS  PubMed  Google Scholar 

  55. Jansen, J. G. et al. Strand-biased defect in C/G. transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. J. Exp. Med. 203, 319–323 (2006).

    PubMed  PubMed Central  Google Scholar 

  56. Kim, N., Mudrak, S. V. & Jinks-Robertson, S. The dCMP transferase activity of yeast Rev1 is biologically relevant during the bypass of endogenously generated AP sites. DNA Repair 10, 1262–1271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309, 2219–2222 (2005). The structure of Rev1 reveals the mechanism for pairing incoming dCTP with an arginine moiety.

    CAS  PubMed  Google Scholar 

  58. Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis Ch. 14–15 (Am. Soc. for Microbiology, Washington, DC, 1995).

    Google Scholar 

  59. Frank, E. G., Ennis, D. G., Gonzalez, M., Levine, A. S. & Woodgate, R. Regulation of SOS mutagenesis by proteolysis. Proc. Natl Acad. Sci. USA 93, 10291–10296 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nohmi, T., Battista, J. R., Dodson, L. A. & Walker, G. C. RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. Natl Acad. Sci. USA 85, 1816–1820 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Waters, L. S. & Walker, G. C. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G2/M phase rather than S phase. Proc. Natl Acad. Sci. USA 103, 8971–8976 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wiltrout, M. E. & Walker, G. C. Proteasomal regulation of the mutagenic translesion DNA polymerase, Saccharomyces cerevisiae Rev1. DNA Repair 10, 169–175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bravo, R. & Macdonald-Bravo, H. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J. Cell Biol. 105, 1549–1554 (1987).

    CAS  PubMed  Google Scholar 

  64. Kannouche, P. et al. Domain structure, localization and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gueranger, Q. et al. Role of DNA polymerases η, ι and ζ in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair 7, 1551–1562 (2008).

    CAS  PubMed  Google Scholar 

  66. Naryzhny, S. N. Proliferating cell nuclear antigen: a proteomics view. Cell. Mol. Life Sci. 65, 3789–3808 (2008).

    CAS  PubMed  Google Scholar 

  67. Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    CAS  PubMed  Google Scholar 

  68. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002). Discovery that PCNA is ubiquitylated when replication forks are blocked by damage in S. cerevisiae.

    CAS  PubMed  Google Scholar 

  69. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    CAS  PubMed  Google Scholar 

  70. Haracska, L., Torres-Ramos, C., Johnson, R., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4267–4274 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    CAS  PubMed  Google Scholar 

  72. Terai, K., Abbas, T., Jazaeri, A. A. & Dutta, A. CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol. Cell 37, 143–149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, S. et al. PCNA is ubiquitinated by RNF8. Cell Cycle 7, 3399–3404 (2008).

    CAS  PubMed  Google Scholar 

  74. Davies, A. A., Huttner, D., Daigaku, Y., Chen, S. & Ulrich, H. D. Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein A. Mol. Cell 29, 625–636 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005). Discovery that all eukaryotic Y-family polymerases have ubiquitin-binding motifs.

    CAS  PubMed  Google Scholar 

  76. Plosky, B. et al. Controlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitin. EMBO J. 25, 2847–2855 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bomar, M. G. et al. Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1. Mol. Cell 37, 408–417 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sabbioneda, S. et al. Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases. Mol. Biol. Cell 19, 5193–5202 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Arakawa, H. et al. A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol. 4, e366 (2006).

    PubMed  PubMed Central  Google Scholar 

  80. Langerak, P., Nygren, A. O., Krijger, P. H., van den Berk, P. C. & Jacobs, H. A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification. J. Exp. Med. 204, 1989–1998 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Szüts, D., Marcus, A. P., Himoto, M., Iwai, S. & Sale, J. E. REV1 restrains DNA polymerase ζ to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. Nucleic Acids Res. 36, 6767–6780 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Hendel, A. et al. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet. 7, e1002262 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Edmunds, C. E., Simpson, L. J. & Sale, J. E. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol. Cell 30, 519–529 (2008).

    CAS  PubMed  Google Scholar 

  84. Guo, C. et al. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 22, 6621–6630 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ohashi, E. et al. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9, 523–531 (2004).

    CAS  PubMed  Google Scholar 

  86. Tissier, A. et al. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase polη and REVl protein. DNA Repair 3, 1503–1514 (2004).

    CAS  PubMed  Google Scholar 

  87. Murakumo, Y. et al. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem. 276, 35644–35651 (2001).

    CAS  PubMed  Google Scholar 

  88. Guo, C. et al. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol. Cell 23, 265–271 (2006).

    CAS  PubMed  Google Scholar 

  89. de Groote, F. H. et al. The Rev1 translesion synthesis polymerase has multiple distinct DNA binding modes. DNA Repair 10, 915–925 (2011).

    CAS  PubMed  Google Scholar 

  90. Wood, A., Garg, P. & Burgers, P. M. A Ubiquitin-binding motif in the translesion DNA polymerase rev1 mediates its essential functional interaction with ubiquitinated PCNA in response to DNA damage. J. Biol. Chem. 282, 20256–20263 (2007).

    CAS  PubMed  Google Scholar 

  91. Guo, C. et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell. Biol. 26, 8892–8900 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Acharya, N., Haracska, L., Prakash, S. & Prakash, L. Complex formation of yeast Rev1 with DNA polymerase η. Mol. Cell. Biol. 27, 8401–8408 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. D'Souza, S., Waters, L. & Walker, G. Novel conserved motifs in Rev1 C-terminus are required for mutagenic DNA damage tolerance. DNA Repair 7, 1455–1470 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sabbioneda, S., Bortolomai, I., Giannattasio, M., Plevani, P. & Muzi-Falconi, M. Yeast Rev1 is cell cycle regulated, phosphorylated in response to DNA damage and its binding to chromosomes is dependent upon MEC1. DNA Repair 6, 121–127 (2007).

    CAS  PubMed  Google Scholar 

  95. Bienko, M. et al. Regulation of translesion synthesis DNA polymerase ɛ by monoubiquitination. Mol. Cell 37, 396–407 (2010).

    CAS  PubMed  Google Scholar 

  96. Pages, V., Santa Maria, S. R., Prakash, L. & Prakash, S. Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast. Genes Dev. 23, 1438–1449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Goehler, T., Sabbioneda, S., Green, C. M. & Lehmann, A. R. ATR-mediated phosphorylation of DNA polymerase η is needed for efficient recovery from UV damage. J. Cell Biol. 192, 219–227 (2011).

    Google Scholar 

  98. Jung, Y. S., Hakem, A., Hakem, R. & Chen, X. Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase η to suppress translesion DNA synthesis. Mol. Cell. Biol. 31, 3997–4006 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, M., de Calignon, A., Nicolas, A. & Galibert, F. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase δ, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr. Genet. 38, 178–187 (2000).

    CAS  PubMed  Google Scholar 

  100. Kai, M. & Wang, T. S. Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev. 17, 64–76 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sabbioneda, S. et al. The 9-1-1 checkpoint clamp physically interacts with polζ and is partially required for spontaneous polζ-dependent mutagenesis in Saccharomyces cerevisiae. J. Biol. Chem. 280, 38657–38665 (2005).

    CAS  PubMed  Google Scholar 

  102. Acharya, N., Johnson, R., Pages, V., Prakash, L. & Prakash, S. Yeast Rev1 protein promotes complex formation of DNA polymerase ζ with Pol32 subunit of DNA polymerase δ. Proc. Natl Acad. Sci. USA 106, 9631–9636 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tissier, A. et al. Crosstalk between replicative and translesional DNA polymerases: PDIP38 interacts directly with Polɛ. DNA Repair 9, 922–928 (2010).

    CAS  PubMed  Google Scholar 

  104. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 341–347 (2006).

    Google Scholar 

  105. Goehler, T., Munoz, I. M., Rouse, J. & Blow, J. J. PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. DNA Repair 7, 775–787 (2008).

    Google Scholar 

  106. Yang, X. H., Shiotani, B., Classon, M. & Zou, L. Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev. 22, 1147–1152 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Terai, K., Abbas, T., Jazaeri, A. A. & Dutta, A. CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol. Cell 37, 143–149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lehmann, A. R. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J. Mol. Biol. 66, 319–337 (1972).

    CAS  PubMed  Google Scholar 

  109. Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006). Visualization by electron microscopy of ssDNA both at and behind the replication fork in UV light-irradiated cells.

    CAS  PubMed  Google Scholar 

  110. Daigaku, Y., Davies, A. A. & Ulrich, H. D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465, 951–955 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Karras, G. I. & Jentsch, S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141, 255–267 (2010).

    CAS  PubMed  Google Scholar 

  112. Diamant, N. et al. DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity. Nucleic Acids Res. 40, 170–180 (2012).

    CAS  PubMed  Google Scholar 

  113. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    CAS  PubMed  Google Scholar 

  114. Sale, J. E. et al. Timing matters: error-prone gap filling and translesion synthesis in immunoglobulin gene hypermutation. Phil. Trans. R. Soc. B. 364, 595–603 (2009).

    CAS  PubMed  Google Scholar 

  115. Zeng, X. et al. DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunol. 2, 537–541 (2001).

    CAS  Google Scholar 

  116. Delbos, F., Aoufouchi, S., Faili, A., Weill, J. C. & Reynaud, C. A. DNA polymerase η is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. J. Exp. Med. 204, 17–23 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zlatanou, A. et al. The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and pol η in response to oxidative DNA damage in human cells. Mol. Cell 43, 649–662 (2011).

    CAS  PubMed  Google Scholar 

  118. Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37, 714–727 (2010).

    CAS  PubMed  Google Scholar 

  119. Sarkies, P., Reams, C., Simpson, L. J. & Sale, J. E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sarkies, P. et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 22 Oct 2011 (doi:10.1093/nar/gkr868).

    PubMed  PubMed Central  Google Scholar 

  121. Betous, R. et al. Role of TLS DNA polymerases η and κ in processing naturally occurring structured DNA in human cells. Mol. Carcinog. 48, 369–378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rey, L. et al. Human DNA polymerase η is required for common fragile site stability during unperturbed DNA replication. Mol. Cell. Biol. 29, 3344–3354 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kawamoto, T. et al. Dual roles for DNA polymerase η in homologous DNA recombination and translesion DNA synthesis. Mol. Cell 20, 793–799 (2005).

    CAS  PubMed  Google Scholar 

  124. McIlwraith, M. J. et al. Human DNA polymerase η promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 20, 783–792 (2005).

    CAS  PubMed  Google Scholar 

  125. Bomar, M. G., Pai, M. T., Tzeng, S. R., Li, S. S. & Zhou, P. Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase η. EMBO Rep. 8, 247–251 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Burschowsky, D. et al. Structural analysis of the conserved ubiquitin-binding motifs (UBMs) of the translesion polymerase ι in complex with ubiquitin. J. Biol. Chem. 286, 1364–1373 (2011).

    CAS  PubMed  Google Scholar 

  127. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Ann. Rev. Biochem. 78, 993–1016 (2009).

    CAS  PubMed  Google Scholar 

  128. Luedeke, M. et al. Predisposition for TMPRSS2-ERG fusion in prostate cancer by variants in DNA repair genes. Cancer Epidemiol. Biomarkers Prev. 18, 3030–3035 (2009).

    CAS  PubMed  Google Scholar 

  129. Doles, J. et al. Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl Acad. Sci. USA 107, 20786–20791 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Xie, K., Doles, J., Hemann, M. T. & Walker, G. C. Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl Acad. Sci. USA 107, 20792–20797 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bridges, B. A. & Woodgate, R. The two-step model of bacterial UV mutagenesis. Mutat. Res. 150, 133–139 (1985).

    CAS  PubMed  Google Scholar 

  132. Wang, M. et al. Insights into base selectivity from the 1.8 Ă resolution structure of an RB69 DNA polymerase ternary complex. Biochemistry 50, 581–590 (2011).

    CAS  PubMed  Google Scholar 

  133. Jiang, Q., Karata, K., Woodgate, R., Cox, M. M. & Goodman, M. F. The active form of DNA polymerase V is UmuD′2C-RecA-ATP. Nature 460, 359–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Vaisman (US National Institute of Child Health and Human Development (NICHD)/US National Institutes of Health (NIH)) for help in generating figure 2. J.E.S. is funded by the Medical Research Council, Association for International Cancer Research and The Fanconi Anaemia Research Fund; A.R.L. is funded by a Medical Research Council programme grant; and R.W. is funded by the NICHD/NIH Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julian E. Sale, Alan R. Lehmann or Roger Woodgate.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Julian Sale's homepage

Alan Lehmann's homepage

Roger Woodgate's homepage

SUPPLEMENTARY INFORMATION

S1 (box)

Glossary

Damage tolerance

A general term for mechanisms that allow the replication machinery to complete replication despite the presence of DNA damage and without removing the damage.

Replication fork

The point on a replicating DNA molecule where replication is actually taking place and one parental strand generates two daughter strands in a Y-like structure.

Variant form of xeroderma pigmentosum

(XPV). An autosomal recessive disorder that is characterized by increased sensitivity to sunlight and risk of skin cancer, which is due to mutations in DNA polymerase-ɛ.

dCMP transferase

An enzyme activity that adds dCMP onto the end of a growing DNA chain without the need for a template.

B-family polymerase

On the basis of phylogenetic relationships, DNA polymerases (Pols) can be classified into different families. B-family polymerases include Escherichia coli Pol II and eukaryotic Pol α, Pol δ, Pol ɛ and Pol ζ.

Cyclobutane pyrimidine dimer

(CPD). The most common ultraviolet light photoproduct, in which two adjacent pyrimidines are joined together by a cyclobutane ring between their 5 and 6 positions. T-T dimers are the most abundant CPDs, although C-T, T-C and C-C dimers are also possible. Several isomers of a CPD can exist. The most common isomer is a cis-syn CPD.

Processivity

The ability of a polymerase to extend a growing DNA chain before it dissociates.

Non-DNA carbon chain

This simply refers to the replacement of a stretch of DNA with a saturated aliphatic chain. It is, of course, not something that is found in vivo, but the ability of translesion synthesis polymerases to bypass such a structure illustrates their broad adaptability when dealing with problematic regions of the genome.

Abasic site

A site in DNA where the base has been lost by hydrolysis of the base–sugar (glycosidic) bond.

B-form

The most common form of the DNA double helix in aqueous environments. In this form, the bases are perpendicular to the axis of the helix.

Syn conformation

Nucleotides can exist in two conformations, anti or syn, depending upon rotation of the base around the glycosidic bond. In order for normal base pairing to occur in DNA, the nucleotide is usually in the anti conformation.

DT40 cells

A B cell line derived from an avian leukosis virus-induced bursal lymphoma in a white leghorn chicken.

SOS response

Following DNA damage to Escherichia coli, and a few related species of bacteria, 40–50 genes are induced, including several DNA repair proteins. This is known as the SOS response.

Replication factories

The clustering of replication and repair proteins into discrete subnuclear foci, which are visible under the light microscope, suggests that multiple replication forks can group together in what has been termed a replication factory.

PCNA

(Proliferating cell nuclear antigen). The trimeric sliding clamp that tethers DNA polymerases and other factors to DNA in a sequence-independent manner, such that they can readily translocate up and down the duplex DNA. The prokaryotic version, which is almost structurally identical, is a dimeric complex called the β-clamp.

Ubiquitin

A 76-amino-acid peptide that can be conjugated to proteins either singly (mono-ubiquitylation) or in a variety of chains (poly-ubiquitylation). It tags proteins for degradation but is now known to also control cell physiology principally through modulating protein–protein interactions.

SUMO

(Small ubiquitin-like modifier). A post-translation modification related to ubiquitin. Like ubiquitylation, SUMOylation can alter interactions with other proteins.

E3 ubiquitin ligase

An enzyme that catalyses the transfer of ubiquitin from the E2 ubiquitin-conjugating enzyme to the target protein.

E2 ubiquitin-conjugating enzyme

A class of enzymes responsible, in conjunction with an E3 ubiquitin ligase, for attaching ubiquitin to target proteins. Ubiquitin, after activation, is transferred to an E2 ubiquitin-conjugating enzyme, which then interacts with an E3 ubiquitin ligase to effect ubiquitin transfer to the target protein.

RPA

(Replication protein A). Eukaryotic protein that binds specifically to single-stranded DNA.

Activation-induced deaminase

(AID). An enzyme that hydrolytically deaminates cytosines in nucleic acids, resulting in the substitution of cytosines with uracils.

Uracil DNA glycosylase

(UNG). An enzyme that disrupts the glycosidic bond between uracil in DNA and the deoxyribose sugar, generating free uracil and an abasic site in the DNA.

G quadruplex

A class of DNA secondary structure formed in regions of G-rich DNA of the general sequence G3–5-L1–7-G3–5-L1–7-G3–5-L1–7-G3–5 (where L can be any base). The structures are characterized by stacks of planar arrays of four Hoogsteen-bonded dG bases coordinated by a monovalent metal ion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sale, J., Lehmann, A. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13, 141–152 (2012). https://doi.org/10.1038/nrm3289

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing