Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitin signalling in DNA replication and repair

Key Points

  • DNA damage processing pathways involve checkpoints for damage sensing, repair pathways for damage removal and a system of damage tolerance to bypass lesions during DNA replication.

  • Non-degradative ubiquitin signalling, mediated by monoubiquitylation or polyubiquitylation through non-standard linkage, often involves the recruitment of downstream effectors that recognize relevant ubiquitylation targets by means of ubiquitin-binding domains. These domains sometimes show exquisite specificity for a particular type of chain geometry.

  • The signalling events at a DNA double-strand break are mediated by a ubiquitylation cascade involving the ubiquitin protein ligases RING finger protein 8 (RNF8) and RNF168, the modification of histone H2A and the formation of Lys63-linked polyubiquitin chains on as-yet-unidentified target proteins. Collectively, they promote the recruitment of the E3 ligase breast and ovarian cancer type 1 susceptibility protein (BRCA1), which is required for G2–M checkpoint arrest and initiates break repair by homologous recombination.

  • The Fanconi anaemia pathway is a replication-associated system for the processing of DNA interstrand cross links that culminates in the monoubiquitylation of the proteins Fanconi anaemia group D2 protein (FANCD2) and FANCI, resulting in their recruitment to chromatin and the initiation of recombination-mediated repair.

  • Post-translational modification of the replication clamp protein proliferating cell nuclear antigen (PCNA) by monoubiquitylation and Lys63-linked polyubiquitylation controls replicative lesion bypass by translesion synthesis and an error-free, recombination-like mechanism, respectively. In budding yeast, PCNA is also subject to sumoylation, which facilitates the ubiquitin-dependent pathways by inhibiting unscheduled recombination events.

Abstract

Post-translational modification by ubiquitin is best known for its role in targeting its substrates for regulated degradation. However, non-proteolytic functions of the ubiquitin system, often involving either monoubiquitylation or polyubiquitylation through Lys63-linked chains, have emerged in various cell signalling pathways. These two forms of the ubiquitin signal contribute to three different pathways related to the maintenance of genome integrity that are responsible for the processing of DNA double-strand breaks, the repair of interstrand cross links and the bypass of lesions during DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processing of DNA damage.
Figure 2: Ubiquitin signalling at DNA double-strand breaks.
Figure 3: The Fanconi anaemia pathway.
Figure 4: Ubiquitin-dependent DNA damage bypass.

Similar content being viewed by others

References

  1. Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc. Natl Acad. Sci. USA 74, 864–868 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ciechanover, A., Hod, Y. & Hershko, A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem. Biophys. Res. Commun. 81, 1100–1105 (1978).

    Article  Google Scholar 

  3. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz, D. C. & Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. EMBO Rep. 9, 536–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, Z. J. & Sun, L. J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275–286 (2009).

    CAS  PubMed  Google Scholar 

  9. Dikic, I., Wakatsuki, S. & Walters, K. J. Ubiquitin-binding domains — from structures to functions. Nature Rev. Mol. Cell Biol. 10, 659–671 (2009).

    Article  CAS  Google Scholar 

  10. Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10, 466–473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K. & Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nature Struct. Mol. Biol. 16, 1328–1330 (2009).

    Article  CAS  Google Scholar 

  12. Sato, Y. et al. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 28, 2461–2468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Fu, Y. et al. Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133, 601–611 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Davies, A. A., Neiss, A. & Ulrich, H. D. Ubiquitylation of the 9-1-1 checkpoint clamp is independent of Rad6-Rad18 and DNA damage. Cell 11 Jun 2010 (doi:10.1016/j.cell.2010.04.039).

  16. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, T. T. & D'Andrea, A. D. Regulation of DNA repair by ubiquitylation. Nature Rev. Mol. Cell Biol. 7, 323–334 (2006).

    Article  CAS  Google Scholar 

  19. Ben-Yehoyada, M. et al. Checkpoint signaling from a single DNA interstrand crosslink. Mol. Cell 35, 704–715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lawrence, C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 16, 253–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Lou, Z. et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 21, 187–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213–1226 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Huen, M. S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901–914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kolas, N. K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637–1640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007). References 24–26 describe the identification of RNF8 as an E3 enzyme responsible for mediating checkpoint signalling by ubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  27. Huen, M. S. et al. Noncanonical E2 variant-independent function of UBC13 in promoting checkpoint protein assembly. Mol. Cell. Biol. 28, 6104–6112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, G. Y. et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol. Cell 25, 663–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009). References 29 and 30 describe the isolation and characterization of RNF168 as a second E3 enzyme downstream of RNF8 that is involved in checkpoint signalling through Lys63-linked ubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, H., Chen, J. & Yu, X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202–1205 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Z., Wu, J. & Yu, X. CCDC98 targets BRCA1 to DNA damage sites. Nature Struct. Mol. Biol. 14, 716–720 (2007).

    Article  CAS  Google Scholar 

  33. Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, B. et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198 (2007). References 31–34 describe the role of RAP80 as a ubiquitin-binding protein in the recruitment of BRCA1 to DSBs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feng, L., Huang, J. & Chen, J. MERIT40 facilitates BRCA1 localization and DNA damage repair. Genes Dev. 23, 719–728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shao, G. et al. MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes Dev. 23, 740–754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, B., Hurov, K., Hofmann, K. & Elledge, S. J. NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev. 23, 729–739 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, J. et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nature Cell Biol. 11, 592–603 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Bekker-Jensen, S. et al. HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nature Cell Biol. 12, 80–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. & Wolberger, C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711–720 (2001). The crystal structure of the Mms2–Ubc13 complex provides a mechanistic explanation for the exclusive Lys63-linkage specificity of this heterodimeric E2 enzyme.

    Article  CAS  PubMed  Google Scholar 

  43. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vissers, J. H., Nicassio, F., van Lohuizen, M., Di Fiore, P. P. & Citterio, E. The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Div. 3, 8 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nicassio, F. et al. Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr. Biol. 17, 1972–1977 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Galanty, Y. et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462, 935–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morris, J. R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462, 886–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Huen, M. S., Sy, S. M. H. & Chen, J. BRCA1 and its toolbox for the maintenance of genome integrity. Nature Rev. Mol. Cell Biol. 11, 138–148 (2010).

    Article  CAS  Google Scholar 

  49. Stewart, G. S. et al. RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc. Natl Acad. Sci. USA 104, 16910–16915 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marteijn, J. A. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 186, 835–847 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lilley, C. E. et al. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J. 29, 943–955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tremblay, C. S. et al. The Fanconi anemia core complex acts as a transcriptional co-regulator in hairy enhancer of split 1 signaling. J. Biol. Chem. 284, 13384–13395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tremblay, C. S. et al. HES1 is a novel interactor of the Fanconi anemia core complex. Blood 112, 2062–2070 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Alpi, A. F. & Patel, K. J. Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair 8, 430–435 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Moldovan, G. L. & D'Andrea, A. D. How the fanconi anemia pathway guards the genome. Annu. Rev. Genet. 43, 223–249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001). This study is the first to show that Fanconi anaemia proteins operate in a common pathway to monoubiquitylate FANCD2.

    Article  CAS  PubMed  Google Scholar 

  58. Meetei, A. R. et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group, M. Nature Genet. 37, 958–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, J. M., Kee, Y., Gurtan, A. & D'Andrea, A. D. Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. Blood 111, 5215–5222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ciccia, A. et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25, 331–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Xue, Y., Li, Y., Guo, R., Ling, C. & Wang, W. FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Hum. Mol. Genet. 17, 1641–1652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Deans, A. J. & West, S. C. FANCM connects the genome instability disorders Bloom's syndrome and Fanconi anemia. Mol. Cell 36, 943–953 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Schwab, R. A., Blackford, A. N. & Niedzwiedz, W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 29, 806–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luke-Glaser, S., Luke, B., Grossi, S. & Constantinou, A. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J. 29, 795–805 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Singh, T. R. et al. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol. Cell 37, 879–886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yan, Z. et al. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 37, 865–878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet. 35, 165–170 (2003). Identification of the catalytic subunit of the Fanconi anaemia core complex in this study provides direct evidence of ubiquitin ligase activity.

    Article  CAS  PubMed  Google Scholar 

  68. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008). In vitro reconstitution of FANCD2 monoubiquitylation provides evidence of the minimum requirements for reaction.

    Article  CAS  PubMed  Google Scholar 

  70. Ishiai, M. et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nature Struct. Mol. Biol. 15, 1138–1146 (2008).

    Article  CAS  Google Scholar 

  71. Longerich, S., San Filippo, J., Liu, D. & Sung, P. FANCI binds branched DNA and is monoubiquitinated by UBE2T-FANCL. J. Biol. Chem. 284, 23182–23186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cole, A. R., Lewis, L. P. C. & Walden, H. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nature Struct. Mol. Biol. 17, 294–298 (2010).

    Article  CAS  Google Scholar 

  73. Ueki, T. et al. Ubiquitination and downregulation of BRCA1 by ubiquitin-conjugating enzyme E2T overexpression in human breast cancer cells. Cancer Res. 69, 8752–8760 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Matsushita, N. et al. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 19, 841–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009). An ICL repair assay based on X. laevis egg extracts provides direct evidence of the requirement for FANCI and FANCD2 for ICL repair in S phase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Raschle, M. et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969–980 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oestergaard, V. H. et al. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol. Cell 28, 798–809 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, J. M. et al. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev. Cell 16, 314–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moldovan, G. L. & D'Andrea, A. D. FANCD2 hurdles the DNA interstrand crosslink. Cell 139, 1222–1224 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. van Leuken, R., Clijsters, L. & Wolthuis, R. To cell cycle, swing the APC/C. Biochim. Biophys. Acta 1786, 49–59 (2008).

    CAS  PubMed  Google Scholar 

  82. Vanderwerf, S. M. et al. TLR8-dependent TNF-α overexpression in Fanconi anemia group C cells. Blood 114, 5290–5298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ulrich, H. D. Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair 8, 461–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002). This study identifies PCNA as the relevant target for ubiquitylation in the context of DNA damage bypass.

    Article  CAS  PubMed  Google Scholar 

  85. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Watanabe, K. et al. Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003). References 85–87 provide biochemical and genetic evidence that PCNA monoubiquitylation activates TLS.

    Article  CAS  PubMed  Google Scholar 

  88. Chen, C. C. et al. Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals translesion synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination. DNA Repair 5, 1475–1488 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Edmunds, C. E., Simpson, L. J. & Sale, J. E. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol. Cell 30, 519–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Okada, T. et al. Involvement of vertebrate polκ in Rad18-independent postreplication repair of UV damage. J. Biol. Chem. 277, 48690–48695 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Arakawa, H. et al. A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol. 4, e366 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005). UBDs are identified in a family of damage-tolerant polymerases, thus revealing the mechanism by which ubiquitylated PCNA activates TLS.

    Article  CAS  PubMed  Google Scholar 

  93. Hishida, T., Kubota, Y., Carr, A. M. & Iwasaki, H. RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 457, 612–615 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Zhao, S. & Ulrich, H. D. Distinct consequences of post-translational modification by linear versus K63-linked polyubiquitin chains. Proc. Natl Acad. Sci. USA 107, 7704–7709 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005).

    CAS  PubMed  Google Scholar 

  96. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA controls establishment of sister chromatid cohesion during S phase. Mol. Cell 23, 723–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Garg, P. & Burgers, P. M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1. Proc. Natl Acad. Sci. USA 102, 18361–18366 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parker, J. L. et al. SUMO modification of PCNA is controlled by DNA. EMBO J. 27, 2422–2431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carlile, C. M., Pickart, C. M., Matunis, M. J. & Cohen, R. E. Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. J. Biol. Chem. 284, 29326–29334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Parker, J. L. & Ulrich, H. D. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J. 28, 3657–3666 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Davies, A. A., Huttner, D., Daigaku, Y., Chen, S. & Ulrich, H. D. Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol. Cell 29, 625–636 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Niimi, A. et al. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16125–16130 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chang, D. J., Lupardus, P. J. & Cimprich, K. A. Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J. Biol. Chem. 281, 32081–32088 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Frampton, J. et al. Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol. Biol. Cell 17, 2976–2985 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Daigaku, Y., Davies, A. A. & Ulrich, H. D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 9 May 2010 (doi:10.1038/nature09097).

  107. Karras, G. I. & Jentsch, S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141, 255–267 (2010). References 106 and 107 provide evidence that both TLS and error-free damage bypass can be delayed until after genome replication without adverse effects in yeast.

    Article  CAS  PubMed  Google Scholar 

  108. Waters, L. S. & Walker, G. C. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G 2/M phase rather than S phase. Proc. Natl Acad. Sci. USA 103, 8971–8976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  110. Yang, X. H., Shiotani, B., Classon, M. & Zou, L. Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev. 22, 1147–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bi, X. et al. Rad18 regulates DNA polymerase κ and is required for recovery from S-phase checkpoint-mediated arrest. Mol. Cell. Biol. 26, 3527–3540 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Simpson, L. J. et al. RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40. EMBO Rep. 7, 927–932 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Terai, K., Abbas, T., Jazaeri, A. A. & Dutta, A. CRL4Cdt2 E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol. Cell 37, 143–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, S. et al. PCNA is ubiquitinated by RNF8. Cell Cycle 7, 3399–3404 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Das-Bradoo, S. et al. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nature Cell Biol. 12, 74–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, J., Ai, Y., Wang, J., Haracska, L. & Zhuang, Z. Chemically ubiquitylated PCNA as a probe for eukaryotic translesion DNA synthesis. Nature Chem. Biol. 6, 270–272 (2010).

    Article  CAS  Google Scholar 

  117. Freudenthal, B. D., Gakhar, L., Ramaswamy, S. & Washington, M. T. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nature Struct. Mol. Biol. 17, 479–484 (2010).

    Article  CAS  Google Scholar 

  118. Cohen, P. The origins of protein phosphorylation. Nature Cell Biol. 4, E127–E130 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Paik, W. K., Paik, D. C. & Kim, S. Historical review: the field of protein methylation. Trends Biochem. Sci. 32, 146–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Mellert, H. S. & McMahon, S. B. Biochemical pathways that regulate acetyltransferase and deacetylase activity in mammalian cells. Trends Biochem. Sci. 34, 571–578 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Christensen, D. E., Brzovic, P. S. & Klevit, R. E. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nature Struct. Mol. Biol. 14, 941–948 (2007).

    Article  CAS  Google Scholar 

  122. Yu, X., Fu, S., Lai, M., Baer, R. & Chen, J. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev. 20, 1721–1726 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Reid, L. J. et al. E3 ligase activity of BRCA1 is not essential for mammalian cell viability or homology-directed repair of double-strand DNA breaks. Proc. Natl Acad. Sci. USA 105, 20876–20881 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sy, S. M., Huen, M. S. & Chen, J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl Acad. Sci. USA 106, 7155–7160 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhang, F. et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr. Biol. 19, 524–529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nature Rev. Genet. 8, 735–748 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Szuts, D., Simpson, L. J., Kabani, S., Yamazoe, M. & Sale, J. E. Role for RAD18 in homologous recombination in DT40 cells. Mol. Cell. Biol. 26, 8032–8041 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McKee, R. H. & Lawrence, C. W. Genetic analysis of gamma-ray mutagenesis in yeast. III. Double-mutant strains. Mutat. Res. 70, 37–48 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helle D. Ulrich or Helen Walden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Helle D. Ulrich's homepage

Helen Walden's homepage

Glossary

Ubiquitin-binding domain

(UBD). A domain that mediates non-covalent interactions with ubiquitin. UBDs are usually found in downstream effectors that selectively interact with ubiquitylated target proteins and come in various different types (reviewed in Ref. 9), such as α-helical motifs in UBM, UIM and MIU, or zinc fingers, as in UBZ.

Replication fork

The part of replicating DNA in which the two strands are being separated and DNA synthesis is occurring to generate two copies of the parental DNA.

Homologous recombination

Genetic recombination process in which nucleotide sequences are exchanged between two strands of identical or similar DNA. This pathway is widely used in repairing DSBs.

Non-homologous end joining

A means to repair DSBs that is alternative to homologous recombination and involves direct ligation of the break ends without the need for a homologous template.

Base excision repair

A DNA repair pathway that is primarily responsible for removing small, non-helix-distorting base lesions that affect only one strand, such as alkylation or oxidative damage.

Nucleotide excision repair

A pathway responsible for the removal of bulky, helix-distorting lesions that affect only one strand, involving the excision of a lesion-containing oligonucleotide and the resynthesis of the affected region.

FHA

A 65–100-residue phosphorylation-specific protein–protein interaction motif that was first identified in forkhead transcription factors. It is often found in proteins that also contain BRCT repeats.

BRCT

A 90-residue phosphate-binding tandem domain that interacts with specific motifs in their phosphorylated form, such as in γ-H2AX.

RING

A zinc-binding protein–protein interaction motif found in RING-type E3 enzymes that scaffolds two zinc ions and forms the hallmark of the largest class of E3 ligases.

HECT

A domain with a catalytic Cys residue (found in a class of E3 enzymes) that forms a thioester intermediate during ubiquitin transfer to the substrate protein.

WD40 repeat

Repeat of 40 amino acids with a characteristic central Trp–Asp motif.

Translesion synthesis

The processing of a lesion-containing replication template by a damage-tolerant polymerase that inserts either correct or inappropriate nucleotides opposite the lesion, thus potentially contributing to damage-induced mutagenesis.

26S proteasome

A large multisubunit protease complex that selectively degrades polyubiquitylated proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrich, H., Walden, H. Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11, 479–489 (2010). https://doi.org/10.1038/nrm2921

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing