Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene discovery by ribozyme and siRNA libraries

Key Points

  • Rapid progress in the sequencing of several genomes has provided abundant sequence information, but the functions of many of the genes remain to be determined. So, a simple and reliable knockdown tool is needed, for example, ribozymes or small interfering RNAs (siRNAs), for the construction of genome-wide libraries.

  • The hammerhead ribozyme can be engineered to optimize its activity in the intracellular environment. The introduction of a library of active ribozymes into cells, and the subsequent screening for phenotypic changes, can lead to the rapid identification of gene function.

  • The application of randomized ribozyme libraries to gene discovery in the field of cancer biology has led to the identification of several new genes that function in tumorigenesis and metastasis. In addition, randomized ribozyme libraries have been used to identify other types of genes, such as genes associated with the viral life cycle, apoptotic pathways, Alzheimer's disease, muscle differentiation and neuronal differentiation.

  • RNA interference (RNAi) technology is also attractive as a knockdown tool for gene discovery. Compared with ribozyme libraries, siRNA libraries have a higher suppressive activity but lower specificity. Therefore, because of the strong specificity of ribozymes and the strong activities of siRNAs, it is clear that the two technologies have important, complementary roles in the identification of new genes and their functions.

  • This article describes the use of catalytic RNAs (or ribozymes) as tools for the identification of gene function, and compares the pros and cons of ribozyme and siRNA libraries in large-scale screening.

Abstract

Catalytic RNAs, also known as ribozymes, can be engineered to optimize their activities in the intracellular environment. The introduction of a library of active ribozymes into cells, and the subsequent screening for phenotypic changes, allows the rapid identification of gene function. For the determination of gene function, ribozyme technology complements another RNA-based tool that is based on libraries of small interfering RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of a hammerhead ribozyme.
Figure 2: Strategy for gene discovery using a library of randomized hairpin or hammerhead ribozymes.
Figure 3: Identification of genes involved in metastasis.

Similar content being viewed by others

References

  1. Austin, C. P. et al. The knockout mouse project. Nature Genet. 36, 921–924 (2004).

    CAS  PubMed  Google Scholar 

  2. Auwerx, J. et al. The European dimension for the mouse genome mutagenesis program. Nature Genet. 36, 925–927 (2004).

    CAS  PubMed  Google Scholar 

  3. Stein, C. A. Two problems in antisense biotechnology: in vitro delivery and the design of antisense experiments. Biochim. Biophys. Acta 1489, 45–52 (1999).

    CAS  PubMed  Google Scholar 

  4. Scherer, L. J. & Rossi, J. J. Approaches for the sequence-specific knockdown of mRNA. Nature Biotechnol. 21, 1457–1465 (2003).

    CAS  Google Scholar 

  5. Beger, C. et al. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc. Natl Acad. Sci. USA 98, 130–135 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawasaki, H., Onuki, R., Suyama, E. & Taira, K. Identification of genes that function in the TNF-α-mediated apoptotic pathway using randomized hybrid ribozyme libraries. Nature Biotechnol. 20, 376–380 (2002).

    CAS  Google Scholar 

  7. Kawasaki, H. & Taira, K. Identification of genes by hybrid ribozymes that couple cleavage activity with the unwinding activity of an endogenous RNA helicase. EMBO Rep. 3, 443–450 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawasaki, H. & Taira, K. A functional gene discovery in the Fas-mediated pathway to apoptosis by analysis of transiently expressed randomized hybrid-ribozyme libraries. Nucleic Acids Res. 30, 3609–3614 (2002).References 6–8 are the first reports of gene discovery using a randomized library of hammerhead ribozymes with a helicase-recruiting motif.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kruger, M. et al. Identification of eIF2Bγ and eIF2γ as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach. Proc. Natl Acad. Sci. USA 97, 8566–8571 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuwabara, T., Hsieh, J., Nakashima, K., Taira, K. & Gage, F. H. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779–793 (2004).Reports the discovery, using a randomized hammerhead ribozyme library, of a new type of small RNA, which regulates neuronal differentiation through a dsRNA–protein interaction in the nucleus rather than through siRNA or miRNA.

    CAS  PubMed  Google Scholar 

  11. Li, Q. X., Robbins, J. M., Welch, P. J., Wong-Staal, F. & Barber, J. R. A novel functional genomics approach identifies mTERT as a suppressor of fibroblast transformation. Nucleic Acids Res. 28, 2605–2612 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Onuki, R. et al. An RNA-dependent protein kinase is involved in tunicamycin-induced apoptosis and Alzheimer's disease. EMBO J. 23, 959–968 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Suyama, E., Kawasaki, H., Kasaoka, T. & Taira, K. Identification of genes responsible for cell migration by a library of randomized ribozymes. Cancer Res. 63, 119–124 (2003).

    CAS  PubMed  Google Scholar 

  14. Suyama, E., Kawasaki, H., Nakajima, M. & Taira, K. Identification of genes involved in cell invasion by using a library of randomized hybrid ribozymes. Proc. Natl Acad. Sci. USA 100, 5616–5621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Suyama, E. et al. Identification of metastasis-related genes in a mouse model using a library of randomized ribozymes. J. Biol. Chem. 279, 38083–38086 (2004).

    CAS  PubMed  Google Scholar 

  16. Suyama, E. et al. LIM kinase-2 targeting as a possible anti-metastasis therapy. J. Gene Med. 6, 357–363 (2004).

    CAS  PubMed  Google Scholar 

  17. Wadhwa, R. et al. Use of a randomized hybrid ribozyme library for identification of genes involved in muscle differentiation. J. Biol. Chem. 279, 51622–51629 (2004).

    CAS  PubMed  Google Scholar 

  18. Waninger, S. et al. Identification of cellular cofactors for human immunodeficiency virus replication via a ribozyme-based genomics approach. J. Virol. 78, 12829–12837 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Welch, P. J. et al. Identification and validation of a gene involved in anchorage-independent cell growth control using a library of randomized hairpin ribozymes. Genomics 66, 274–283 (2000).Reports the first gene that was discovered using a library of randomized hairpin ribozymes.

    CAS  PubMed  Google Scholar 

  20. Haseloff, J. & Gerlach, W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

    CAS  PubMed  Google Scholar 

  21. Uhlenbeck, O. C. A small catalytic oligoribonucleotide. Nature 328, 596–600 (1987).

    CAS  PubMed  Google Scholar 

  22. Zhou, D. M. & Taira, K. The hydrolysis of RNA: from theoretical calculations to the hammerhead ribozyme-mediated cleavage of RNA. Chem. Rev. 98, 991–1026 (1998).

    CAS  PubMed  Google Scholar 

  23. Suzumura, K., Takagi, Y., Orita, M. & Taira, K. NMR-based reappraisal of the coordination of a metal ion at the pro-Rp oxygen of the A9/G10.1 site in a hammerhead ribozyme. J. Am. Chem. Soc. 126, 15504–15511 (2004).

    CAS  PubMed  Google Scholar 

  24. Takagi, Y., Inoue, A. & Taira, K. Analysis of a cooperative pathway involving multiple cations in hammerhead reactions. J. Am. Chem. Soc. 126, 12856–12864 (2004).

    CAS  PubMed  Google Scholar 

  25. Tanaka, Y. et al. Nature of the chemical bond formed with the structural metal ion at the A9/G10.1 motif derived from hammerhead ribozymes. J. Am. Chem. Soc. 126, 744–752 (2004).

    CAS  PubMed  Google Scholar 

  26. Warashina, M. et al. Analysis of the conserved P9-G10.1 metal binding motif in hammerhead ribozymes with an extra nucleotide inserted between A9 and G10.1 residues. J. Am. Chem. Soc. 126, 12291–12297 (2004).

    CAS  PubMed  Google Scholar 

  27. Shimayama, T., Nishikawa, S. & Taira, K. Generality of the NUX rule: kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of hammerhead ribozymes. Biochemistry 34, 3649–3654 (1995).

    CAS  PubMed  Google Scholar 

  28. Sarver, N. et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225 (1990).

    CAS  PubMed  Google Scholar 

  29. Rossi, J. J. Controlled, targeted, intracellular expression of ribozymes: progress and problems. Trends Biotechnol. 13, 301–306 (1995).

    CAS  PubMed  Google Scholar 

  30. Rossi, J. J. & Sarver, N. RNA enzymes (ribozymes) as antiviral therapeutic agents. Trends Biotechnol. 8, 179–183 (1990).

    CAS  PubMed  Google Scholar 

  31. Sioud, M. (ed.) Methods in Molecular Biology: Ribozymes and siRNA Protocols (Humana, Totowa, New Jersey, 2004).

    Google Scholar 

  32. Geiduschek, E. P. & Tocchini-Valentini, G. P. Transcription by RNA polymerase III. Annu. Rev. Biochem. 57, 873–914 (1988).

    CAS  PubMed  Google Scholar 

  33. Cotten, M. & Birnstiel, M. L. Ribozyme mediated destruction of RNA in vivo. EMBO J. 8, 3861–3866 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shiota, M., Sano, M., Miyagishi, M. & Taira, K. Ribozymes: applications to functional analysis and gene discovery. J. Biochem. (Tokyo) 136, 133–147 (2004).

    CAS  Google Scholar 

  35. Good, P. D. et al. Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther. 4, 45–54 (1997).

    CAS  PubMed  Google Scholar 

  36. Bertrand, E. et al. The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3, 75–88 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kato, Y., Kuwabara, T., Warashina, M., Toda, H. & Taira, K. Relationships between the activities in vitro and in vivo of various kinds of ribozyme and their intracellular localization in mammalian cells. J. Biol. Chem. 276, 15378–15385 (2001).

    CAS  PubMed  Google Scholar 

  38. Koseki, S. et al. Factors governing the activity in vivo of ribozymes transcribed by RNA polymerase III. J. Virol. 73, 1868–1877 (1999). Demonstrates that the localization and the stability of the ribozyme, which depends on its promoter species and/or the linker sequence, are crucial for its cleavage activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuwabara, T. et al. Recognition of engineered tRNAs with an extended 3′ end by exportin-t (Xpo-t) and transport of tRNA-attached ribozymes to the cytoplasm in somatic cells. Biomacromol. 2, 1229–1242 (2001).

    CAS  Google Scholar 

  40. Luking, A., Stahl, U. & Schmidt, U. The protein family of RNA helicases. Crit. Rev. Biochem. Mol. Biol. 33, 259–296 (1998).

    CAS  PubMed  Google Scholar 

  41. Agrawal, N. et al. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 67, 657–685 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Warashina, M., Kuwabara, T., Kato, Y., Sano, M. & Taira, K. RNA–protein hybrid ribozymes that efficiently cleave any mRNA independently of the structure of the target RNA. Proc. Natl Acad. Sci. USA 98, 5572–5577 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chatterton, J. E., Hu, X. & Wong-Staal, F. Ribozymes in gene identification, target validation, and drug discovery. Targets 3, 10–17 (2004).

    CAS  Google Scholar 

  44. Nelson, D. L., Suyama, E., Kawasaki, H. & Taira, K. Use of random ribozyme libraries for the rapid screening of apoptosis- and metastasis-related genes. Targets 2, 191–200 (2003).

    CAS  Google Scholar 

  45. Onuki, R. et al. Confirmation by FRET in individual living cells of the absence of significant amyloid β-mediated caspase 8 activation. Proc. Natl Acad. Sci. USA 99, 14716–14721 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).Provides the first evidence for a new gene silencing phenomenon that is mediated by dsRNA in a sequence-specific manner.

    CAS  PubMed  Google Scholar 

  47. Zamore, P. D. RNA interference: listening to the sound of silence. Nature Struct. Biol. 8, 746–750 (2001).

    CAS  PubMed  Google Scholar 

  48. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).Shows for the first time that RNAi can be applied in mammalian cells without nonspecific side effects by using 21-nucleotide siRNAs.

    CAS  PubMed  Google Scholar 

  49. Novina, C. D. & Sharp, P. A. The RNAi revolution. Nature 430, 161–164 (2004).

    CAS  PubMed  Google Scholar 

  50. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    CAS  PubMed  Google Scholar 

  51. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    CAS  PubMed  Google Scholar 

  52. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    CAS  PubMed  Google Scholar 

  53. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    CAS  PubMed  Google Scholar 

  54. Miyagishi, M. & Taira, K. Strategies for generation of an siRNA expression library directed against the human genome. Oligonucleotides 13, 325–333 (2003).Reports a strategy for the construction of a large, genome-wide library of siRNA expression vectors. The utility of the vector-based library compared with the siRNA library is discussed.

    CAS  PubMed  Google Scholar 

  55. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 12, 627–637 (2003).Provides a good example of the utility of large-scale screening using a siRNA library, which resulted in the identification of several new factors that are involved in TRAIL-induced apoptosis.

    CAS  PubMed  Google Scholar 

  56. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    CAS  PubMed  Google Scholar 

  57. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    CAS  PubMed  Google Scholar 

  58. Sen, G., Wehrman, T. S., Myers, J. W. & Blau, H. M. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nature Genet. 36, 183–189 (2004).

    CAS  PubMed  Google Scholar 

  59. Shirane, D. et al. Enzymatic production of RNAi libraries from cDNAs. Nature Genet. 36, 190–196 (2004).

    CAS  PubMed  Google Scholar 

  60. Hsieh, A. C. et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res. 32, 893–901 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaykas, A. & Moon, R. T. A plasmid-based system for expressing small interfering RNA libraries in mammalian cells. BMC Cell Biol. 5, 16 (2004).

    PubMed  PubMed Central  Google Scholar 

  62. Colland, F. et al. Functional proteomics mapping of a human signaling pathway. Genome Res. 14, 1324–1332 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Luo, B., Heard, A. D. & Lodish, H. F. Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc. Natl Acad. Sci. USA 101, 5494–5499 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng, L. et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 101, 135–140 (2004).

    CAS  PubMed  Google Scholar 

  65. Futami, T., Miyagishi, M. & Taira, K. Identification of a network involved in thapsigargin-induced apoptosis using a library of small interfering RNA expression vectors. J. Biol. Chem. 280, 826–831 (2005).

    CAS  PubMed  Google Scholar 

  66. Miyagishi, M., Matsumoto, S. & Taira, K. Generation of an shRNAi expression library against the whole human transcripts. Virus Res. 102, 117–124 (2004).

    CAS  PubMed  Google Scholar 

  67. Yoshinari, K., Miyagishi, M. & Taira, K. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res. 32, 691–699 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Katoh, T., Susa, M., Suzuki, T., Umeda, N. & Watanabe, K. Simple and rapid synthesis of siRNA derived from in vitro transcribed shRNA. Nucleic Acids Res. Suppl. 3, 249–250 (2003).

    CAS  Google Scholar 

  69. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003).

    CAS  Google Scholar 

  70. Lewin, A. S. et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nature Med. 4, 967–971 (1998).

    CAS  PubMed  Google Scholar 

  71. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  72. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  73. Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature Biotechnol. 23, 222–226 (2005).

    CAS  Google Scholar 

  74. Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nature Biotechnol. 23, 227–231 (2005).

    CAS  Google Scholar 

  75. Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genet. 34, 263–264 (2003).

    CAS  PubMed  Google Scholar 

  76. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).

    CAS  PubMed  Google Scholar 

  77. Kawasaki, H. & Taira, K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211–217 (2004).

    CAS  PubMed  Google Scholar 

  78. Morris, K. V., Chan, S. W., Jacobsen, S. E. & Looney, D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    CAS  PubMed  Google Scholar 

  79. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  80. Khvorova, A., Lescoute, A., Westhof, E. & Jayasena, S. D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nature Struct. Biol. 10, 708–712 (2003).

    CAS  PubMed  Google Scholar 

  81. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676 (2003).

    CAS  PubMed  Google Scholar 

  82. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol. 1, E60 (2003).

    PubMed  PubMed Central  Google Scholar 

  83. Enright, A. J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).

    PubMed  PubMed Central  Google Scholar 

  84. Hartig, J. S., Grune, I., Najafi-Shoushtari, S. H. & Famulok, M. Sequence-specific detection of microRNAs by signal-amplifying ribozymes. J. Am. Chem. Soc. 126, 722–723 (2004).

    CAS  PubMed  Google Scholar 

  85. Liang, R. Q. et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res. 33, e17 (2005).

    PubMed  PubMed Central  Google Scholar 

  86. Valoczi, A. et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175 (2004).

    PubMed  PubMed Central  Google Scholar 

  87. Allawi, H. T. et al. Quantitation of microRNAs using a modified Invader assay. RNA 10, 1153–1161 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Eis, P. S. et al. An invasive cleavage assay for direct quantitation of specific RNAs. Nature Biotechnol. 19, 673–676 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Taira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Id4

mTERT

ROCK1

Flybase

ppan

Glossary

ANTISENSE OLIGONUCLEOTIDES

An oligonucleotide that is complementary to a specific mRNA molecule. The antisense oligonucleotide can hybridize with the target mRNA and prevent gene expression.

HAMMERHEAD RIBOZYME

A small catalytic RNA molecule, the two-dimensional structure of the catalytic core of which resembles a hammerhead. Hammerhead ribozymes can hybridize with the target RNA through two recognition arms that are complementary to the target RNA, and cleave the target RNA in a sequence-specific manner.

HAIRPIN RIBOZYME

A ribozyme with a double helical region, a two-dimensional structure shaped like a hairpin, which is formed by base pairing adjacent to the sequences that are complementary with the target RNA. Hairpin ribozymes can hybridize and cleave the target RNA in a sequence-specific manner.

VIRUSOID

A small circular single-stranded RNA (350 nucleotides) that lacks a protein coat, and that is present in a protein coat of another helper plant virus. Its replication depends on the helper virus.

SMALL NUCLEAR RNA

(snRNA). A small RNA molecule that functions in the nucleus by guiding the assembly of macromolecular complexes on the target RNA to allow site-specific modifications or processing reactions to occur.

SMALL INTERFERING RNA

(siRNA). A short RNA (22 nucleotides) that is processed from longer dsRNA during RNAi. These short RNAs hybridize with mRNA targets, and confer target specificity to the silencing complexes in which they reside.

POST-TRANSCRIPTIONAL GENE SILENCING

(PTGS). A sequence-specific gene silencing phenomenon that might function as a defence mechanism against pathogenic nucleic acids such as viruses or transposons. RNAi is a form of PTGS in which dsRNA induces the degradation of homologous endogenous transcripts.

CHEMOTAXIS

A type of migration that is stimulated by a gradient of a chemical stimulant or chemoattractant.

MICRORNA

(miRNA). A non-coding RNA of 21–24 nucleotides, which is processed from an endogenous 70-nucleotide hairpin RNA precursor by the RNase-III-type Dicer enzyme. miRNAs are evolutionarily conserved molecules and are thought to have important functions in various biological mechanisms.

FLUORESCENCE RESONANCE ENERGY TRANSFER

(FRET). Process of energy transfer between two fluorophores. Can be used to determine the distance between two attachment positions within a macromolecule or between two molecules.

MOLECULAR BEACON

A nucleic acid probe with a stem–loop structure that has two different fluorescent dyes (a fluorophore and a quencher) at each end. Hybridization of the probe with the target unwinds the stem–loop structure and allows emission of fluorescent signals by uncoupling of the fluorophore and the quencher.

RNA-INDUCED SILENCING COMPLEX

(RISC). A multi-component, ribonucleoprotein complex that cleaves specific mRNAs that are targeted for degradation by homologous dsRNAs during the process of RNA interference.

SHORT HAIRPIN RNA

(shRNA). A hairpin-shaped RNA containing sense and antisense sequences connected by a loop sequence. shRNA is processed into 21–23-nucleotide siRNAs by Dicer, and can suppress gene expression by triggering the RNAi pathway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akashi, H., Matsumoto, S. & Taira, K. Gene discovery by ribozyme and siRNA libraries. Nat Rev Mol Cell Biol 6, 413–422 (2005). https://doi.org/10.1038/nrm1646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing