Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The front and rear of collective cell migration

Key Points

  • During collective migration, cells not only migrate in a coordinated manner but also migrate faster and in a more directed way than individual cells. The coordination and efficiency of collective migration relies on cellular interactions through soluble and contact-mediated signals.

  • Leader cells, which are generally localized at the front of the migrating group, have specific molecular features and morphological characteristics, which are reinforced by the soluble and contact-mediated signals present in their microenvironment.

  • Leader cells facilitate the directed migration of followers, directly by generating pulling forces and indirectly by modifying the composition and structure of the extracellular matrix.

  • Intercellular contacts between collectively migrating cells involving several sets of membrane proteins induce a local inhibition of locomotion through the regulation of RHO GTPases. Contact inhibition of locomotion is an essential event that promotes the coordinated polarization of collectively migrating cells.

  • Several lines of evidence have shown that the followers actively participate in the collective movement by communicating with one another and with the leaders, by generating forces and contributing to the generation of chemotactic gradients.

Abstract

Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarization in single cells and in collectively migrating cells.
Figure 2: Polarization of leader cells by integrin-induced signalling.
Figure 3: Role and dynamics of adherens junctions between leader cells.
Figure 4: Contact inhibition of locomotion (CIL).
Figure 5: Self-generated chemoattractants gradients during collective cell migration.

Similar content being viewed by others

References

  1. Weijer, C. J. Collective cell migration in development. J. Cell Sci. 122, 3215–3223 (2009).

    CAS  PubMed  Google Scholar 

  2. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).

    CAS  PubMed  Google Scholar 

  3. Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Worthylake, R. A. & Burridge, K. RhoA and ROCK promote migration by limiting membrane protrusions. J. Biol. Chem. 278, 13578–13584 (2003).

    CAS  PubMed  Google Scholar 

  6. Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boettiger, D. Mechanical control of integrin-mediated adhesion and signaling. Curr. Opin. Cell Biol. 24, 592–599 (2012).

    CAS  PubMed  Google Scholar 

  9. Dabiri, B. E., Lee, H. & Parker, K. K. A potential role for integrin signaling in mechanoelectrical feedback. Prog. Biophys. Mol. Biol. 110, 196–203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008).

    CAS  PubMed  Google Scholar 

  11. Ventre, M., Causa, F. & Netti, P. A. Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J. R. Soc. Interface 9, 2017–2032 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001).

    CAS  PubMed  Google Scholar 

  13. Lamalice, L., Le Boeuf, F. & Huot, J. Endothelial cell migration during angiogenesis. Circ. Res. 100, 782–794 (2007).

    CAS  PubMed  Google Scholar 

  14. Peng, H., Ong, Y. M., Shah, W. A., Holland, P. C. & Carbonetto, S. Integrins regulate centrosome integrity and astrocyte polarization following a wound. Dev. Neurobiol. 73, 333–353 (2013).

    CAS  PubMed  Google Scholar 

  15. Yamaguchi, N., Mizutani, T., Kawabata, K. & Haga, H. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci. Rep. 5, 7656 (2015). In this work, the authors show the functional specificity of the leader cells during the migration of an epithelial cell sheet, using micromanipulation. The crucial role of leader cells in driving the monolayer migration is associated with the activation of β1-integrins, RAC and PI3K specifically in these cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Osmani, N., Peglion, F., Chavrier, P. & Etienne-Manneville, S. Cdc42 localization and cell polarity depend on membrane traffic. J. Cell Biol. 191, 1261–1269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Osmani, N., Vitale, N., Borg, J. P. & Etienne-Manneville, S. Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr. Biol. 16, 2395–2405 (2006).

    CAS  PubMed  Google Scholar 

  18. Ellenbroek, S. I., Iden, S. & Collard, J. G. The Rac activator Tiam1 is required for polarized protrusional outgrowth of primary astrocytes by affecting the organization of the microtubule network. Small GTPases 3, 4–14 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Pegtel, D. M. et al. The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr. Biol. 17, 1623–1634 (2007).

    CAS  PubMed  Google Scholar 

  20. Lawson, C. D. & Burridge, K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5, e27958 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Scales, T. M. & Parsons, M. Spatial and temporal regulation of integrin signalling during cell migration. Curr. Opin. Cell Biol. 23, 562–568 (2011).

    CAS  PubMed  Google Scholar 

  22. Krause, M. & Gautreau, A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15, 577–590 (2014).

    CAS  PubMed  Google Scholar 

  23. Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013).

    CAS  PubMed  Google Scholar 

  24. Priya, M. K. et al. Tipping off endothelial tubes: nitric oxide drives tip cells. Angiogenesis 18, 175–189 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Chauvet, S., Burk, K. & Mann, F. Navigation rules for vessels and neurons: cooperative signaling between VEGF and neural guidance cues. Cell. Mol. Life Sci. 70, 1685–1703 (2013).

    CAS  PubMed  Google Scholar 

  26. Haas, P. & Gilmour, D. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev. Cell 10, 673–680 (2006).

    CAS  PubMed  Google Scholar 

  27. Xu, H. et al. Gβ1 controls collective cell migration by regulating the protrusive activity of leader cells in the posterior lateral line primordium. Dev. Biol. 385, 316–327 (2014).

    CAS  PubMed  Google Scholar 

  28. Barber, M. A. & Welch, H. C. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull. Cancer 93, E44–E52 (2006).

    PubMed  Google Scholar 

  29. Kolsch, V., Charest, P. G. & Firtel, R. A. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551–559 (2008).

    CAS  PubMed  Google Scholar 

  30. Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 5, 816–826 (2004).

    CAS  PubMed  Google Scholar 

  31. Shen, B., Delaney, M. K. & Du, X. Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr. Opin. Cell Biol. 24, 600–606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Le Boeuf, F., Houle, F., Sussman, M. & Huot, J. Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by Rho-dependent kinase and is essential for proline-rich tyrosine kinase-2-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor. Mol. Biol. Cell 17, 3508–3520 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Avraham, H. K. et al. Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J. Biol. Chem. 278, 36661–36668 (2003).

    CAS  PubMed  Google Scholar 

  34. Sieg, D. J. et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol. 2, 249–256 (2000).

    CAS  PubMed  Google Scholar 

  35. Wang, C. et al. The interplay of cell-cell and cell-substrate adhesion in collective cell migration. J. R. Soc. Interface 11, 20140684 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Byzova, T. V. et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell 6, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  37. Kuwada, S. K. & Li, X. Integrin α5/β1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation. Mol. Biol. Cell 11, 2485–2496 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cruz-Monserrate, Z. & O'Connor, K. L. Integrin α6β4 promotes migration, invasion through Tiam1 upregulation, and subsequent Rac activation. Neoplasia 10, 408–417 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Montell, D. J., Yoon, W. H. & Starz-Gaiano, M. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat. Rev. Mol. Cell Biol. 13, 631–645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghabrial, A. S. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441, 746–749 (2006).

    CAS  PubMed  Google Scholar 

  41. Pocha, S. M. & Montell, D. J. Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations. Annu. Rev. Genet. 48, 295–318 (2014).

    CAS  PubMed  Google Scholar 

  42. Vincent, S., Wilson, R., Coelho, C., Affolter, M. & Leptin, M. The Drosophila protein Dof is specifically required for FGF signaling. Mol. Cell 2, 515–525 (1998).

    CAS  PubMed  Google Scholar 

  43. Ikeya, T. & Hayashi, S. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea. Development 126, 4455–4463 (1999).

    CAS  PubMed  Google Scholar 

  44. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    PubMed  Google Scholar 

  45. Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781–784 (2007).

    CAS  PubMed  Google Scholar 

  46. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    CAS  PubMed  Google Scholar 

  47. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    CAS  PubMed  Google Scholar 

  48. Etienne-Manneville, S. Control of polarized cell morphology and motility by adherens junctions. Semin. Cell Dev. Biol. 22, 850–857 (2011).

    CAS  PubMed  Google Scholar 

  49. Etienne-Manneville, S. Adherens junctions during cell migration. Subcell. Biochem. 60, 225–249 (2012).

    CAS  PubMed  Google Scholar 

  50. Bazellieres, E. et al. Control of cell–cell forces and collective cell dynamics by the intercellular adhesome. Nat. Cell Biol. 17, 409–420 (2015). In this study, the authors identify three groups of molecules involved in different mechanical responses by performing a siRNA screen targeting molecules of cell–cell interactions. Desmosomes, tight junctions and adherens junction proteins have distinct roles in the maintenance and adaptation of epithelial monolayer mechanics. They also distinguish N-, P- and E-cadherin functions in the regulation of intercellular tension equilibrium and the intercellular tension response to extracellular forces.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Camand, E., Peglion, F., Osmani, N., Sanson, M. & Etienne-Manneville, S. N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J. Cell Sci. 125, 844–857 (2012).

    CAS  PubMed  Google Scholar 

  52. Liu, Q. et al. Cell adhesion molecule cadherin-6 function in zebrafish cranial and lateral line ganglia development. Dev. Dyn. 240, 1716–1726 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilson, A. L. et al. Cadherin-4 plays a role in the development of zebrafish cranial ganglia and lateral line system. Dev. Dyn. 236, 893–902 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Niewiadomska, P., Godt, D. & Tepass, U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kardash, E. et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell Biol. 12, 47–53 (2010).

    CAS  PubMed  Google Scholar 

  56. Dupin, I., Camand, E. & Etienne-Manneville, S. Classical cadherins control nucleus and centrosome position and cell polarity. J. Cell Biol. 185, 779–786 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Borghi, N., Lowndes, M., Maruthamuthu, V., Gardel, M. L. & Nelson, W. J. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc. Natl Acad. Sci. USA 107, 13324–13329 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Burute, M. & Thery, M. Spatial segregation between cell-cell and cell-matrix adhesions. Curr. Opin. Cell Biol. 24, 628–636 (2012).

    CAS  PubMed  Google Scholar 

  59. Desai, R. A., Gao, L., Raghavan, S., Liu, W. F. & Chen, C. S. Cell polarity triggered by cell-cell adhesion via E-cadherin. J. Cell Sci. 122, 905–911 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961 (2008). This paper demonstrates, for the first time, that contact inhibition of locomotion takes place in vivo and proposes a molecular mechanism based on the regulation of small GTPases at the cell contact via PCP signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Abraham, S. et al. VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr. Biol. 19, 668–674 (2009).

    CAS  PubMed  Google Scholar 

  62. Cai, D. et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157, 1146–1159 (2014). The authors characterize the roles of E-cadherin-mediated interaction during the migration of border cells between nurse cells in the D. melanogaster oocyte. Contacts of border cells with nurse cells, polar cells or other border cells each have specific effects in controlling the polarity and migration of the cell group.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Peglion, F., Llense, F. & Etienne-Manneville, S. Adherens junction treadmilling during collective migration. Nat. Cell Biol. 16, 639–651 (2014). This study shows that the dynamics of adherens junctions between leader cells in a wound-induced collective migration has a key role in the control of collective migration. Adherens junctions of the lateral sides of the cells follow a continuous retrograde flow, which is compensated for by p120 catenin-regulated polarized traffic of cadherins.

    CAS  PubMed  Google Scholar 

  64. Omelchenko, T., Vasiliev, J. M., Gelfand, I. M., Feder, H. H. & Bonder, E. M. Rho-dependent formation of epithelial “leader” cells during wound healing. Proc. Natl Acad. Sci. USA 100, 10788–10793 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jacinto, A. et al. Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr. Biol. 12, 1245–1250 (2002).

    CAS  PubMed  Google Scholar 

  66. Reffay, M. et al. Orientation and polarity in collectively migrating cell structures: statics and dynamics. Biophys. J. 100, 2566–2575 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Aigouy, B., Lepelletier, L. & Giangrande, A. Glial chain migration requires pioneer cells. J. Neurosci. 28, 11635–11641 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Khalil, A. A. & Friedl, P. Determinants of leader cells in collective cell migration. Integr. Biol. 2, 568–574 (2010).

    Google Scholar 

  69. Wang, Q., Uhlirova, M. & Bohmann, D. Spatial restriction of FGF signaling by a matrix metalloprotease controls branching morphogenesis. Dev. Cell 18, 157–164 (2010).

    CAS  PubMed  Google Scholar 

  70. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    CAS  PubMed  Google Scholar 

  71. Nguyen, B. P., Ryan, M. C., Gil, S. G. & Carter, W. G. Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr. Opin. Cell Biol. 12, 554–562 (2000).

    CAS  PubMed  Google Scholar 

  72. Caussinus, E., Colombelli, J. & Affolter, M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol. 18, 1727–1734 (2008).

    CAS  PubMed  Google Scholar 

  73. Reffay, M. et al. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat. Cell Biol. 16, 217–223 (2014). In this paper, the authors map the mechanical traction forces exerted on the surface by MDCKmigration fingers and correlate them with RHOA activity. They show that these fingers are mechanical global entities, with the leader cells exerting a large traction force and dragging the whole structure.

    CAS  PubMed  Google Scholar 

  74. Li, L. et al. E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cell. Mol. Life Sci. 69, 2779–2789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ladoux, B. & Nicolas, A. Physically based principles of cell adhesion mechanosensitivity in tissues. Rep. Prog. Phys. 75, 116601 (2012).

    PubMed  Google Scholar 

  76. Pruitt, B. L., Dunn, A. R., Weis, W. I. & Nelson, W. J. Mechano-transduction: from molecules to tissues. PLoS Biol. 12, e1001996 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Das, T. et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat. Cell Biol. 17, 276–287 (2015). The authors identify Merlin as an essential mechanotransducer. Its localization is affected by intercellular pulling forces, and its relocalization to the cytoplasm induces the polarization of RAC activity, lamellipodia formation and directed migration. Merlin thereby directly participates in collective migration by promoting directional migration in follower cells.

    CAS  PubMed  Google Scholar 

  78. Weber, G. F., Bjerke, M. A. & DeSimone, D. W. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 22, 104–115 (2012).

    CAS  PubMed  Google Scholar 

  79. Bjerke, M. A., Dzamba, B. J., Wang, C. & DeSimone, D. W. FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. Dev. Biol. 394, 340–356 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yonemura, S. A mechanism of mechanotransduction at the cell-cell interface: emergence of α-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms. Bioessays 33, 732–736 (2011).

    CAS  PubMed  Google Scholar 

  81. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    CAS  PubMed  Google Scholar 

  82. Buckley, C. D. et al. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346, 1254211 (2014). This paper addresses a long standing question: how does the cadherin–catenin complex interact with filamentous actin (F-actin)?Using an optical trap-based assay, the authors show that force promotes the interaction between the adhesion complex and actin, explaining how the adherens junction transduces mechanical forces.

    PubMed  PubMed Central  Google Scholar 

  83. Leckband, D. E. & de Rooij, J. Cadherin adhesion and echanotransduction. Annu. Rev. Cell Dev. Biol. 30, 291–315 (2014).

    CAS  PubMed  Google Scholar 

  84. Trepat, X. et al. Physical forces during collective cell migration. Nat. Phys. 5, 426–430 (2009). This paper shows for the first time that traction forces arise many cell rows behind the leading front edge and extend across enormous distances. These findings suggest that forces generated by leader cells are a small part of a global tug-of-war involving cells well back from the leading edge.

    CAS  Google Scholar 

  85. Trepat, X. & Fredberg, J. J. Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol. 21, 638–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011). This work analyses the forces involved during collective cell migration of epithelial cell sheets. It shows that cells are able to transmit normal stress across the cell–cell junction, but that they migrate along orientations of minimal intercellular shear stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Arima, S. et al. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138, 4763–4776 (2011).

    CAS  PubMed  Google Scholar 

  88. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010).

    CAS  PubMed  Google Scholar 

  89. Lebreton, G. & Casanova, J. Specification of leading and trailing cell features during collective migration in the Drosophila trachea. J. Cell Sci. 127, 465–474 (2014).

    CAS  PubMed  Google Scholar 

  90. Bianco, A. et al. Two distinct modes of guidance signalling during collective migration of border cells. Nature 448, 362–365 (2007).

    CAS  PubMed  Google Scholar 

  91. Prasad, M. & Montell, D. J. Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev. Cell 12, 997–1005 (2007).

    CAS  PubMed  Google Scholar 

  92. Friedl, P. et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 55, 4557–4560 (1995).

    CAS  PubMed  Google Scholar 

  93. Aman, A. & Piotrowski, T. Wnt/β-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev. Cell 15, 749–761 (2008).

    CAS  PubMed  Google Scholar 

  94. Wang, X., He, L., Wu, Y. I., Hahn, K. M. & Montell, D. J. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat. Cell Biol. 12, 591–597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Inaki, M., Vishnu, S., Cliffe, A. & Rorth, P. Effective guidance of collective migration based on differences in cell states. Proc. Natl Acad. Sci. USA 109, 2027–2032 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Janssens, K., Sung, H. H. & Rorth, P. Direct detection of guidance receptor activity during border cell migration. Proc. Natl Acad. Sci. USA 107, 7323–7328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Poukkula, M., Cliffe, A., Changede, R. & Rorth, P. Cell behaviors regulated by guidance cues in collective migration of border cells. J. Cell Biol. 192, 513–524 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ramel, D., Wang, X., Laflamme, C., Montell, D. J. & Emery, G. Rab11 regulates cell–cell communication during collective cell movements. Nat. Cell Biol. 15, 317–324 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Abercrombie, M. & Heaysman, J. E. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp. Cell Res. 5, 111–131 (1953).

    CAS  PubMed  Google Scholar 

  100. Abercrombie, M. Contact inhibition in tissue culture. In Vitro 6, 128–142 (1970).

    CAS  PubMed  Google Scholar 

  101. Mayor, R. & Carmona-Fontaine, C. Keeping in touch with contact inhibition of locomotion. Trends Cell Biol. 20, 319–328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stramer, B. M., Dunn, G. A., Davis, J. R. & Mayor, R. Rediscovering contact inhibition in the embryo. J. Microsc. 251, 206–211 (2013).

    CAS  PubMed  Google Scholar 

  103. Theveneau, E. & Mayor, R. Collective cell migration of the cephalic neural crest: the art of integrating information. Genesis 49, 164–176 (2011).

    PubMed  Google Scholar 

  104. Theveneau, E. et al. Collective chemotaxis requires contact-dependent cell polarity. Dev. Cell 19, 39–53 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Becker, S. F., Mayor, R. & Kashef, J. Cadherin-11 mediates contact inhibition of locomotion during Xenopus neural crest cell migration. PLoS ONE 8, e85717 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. Barriga, E. H., Maxwell, P. H., Reyes, A. E. & Mayor, R. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. J. Cell Biol. 201, 759–776 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Astin, J. W. et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat. Cell Biol. 12, 1194–1204 (2010). This paper addresses a long standing question concerning the loss of CIL between malignant and normal cells. The authors show that different cells express distinct levels of ephrinsand their receptors, which could lead to activation or inhibition of CDC42, promoting or inhibiting cell migration.

    CAS  PubMed  Google Scholar 

  108. Batson, J., Maccarthy-Morrogh, L., Archer, A., Tanton, H. & Nobes, C. D. EphA receptors regulate prostate cancer cell dissemination through Vav2-RhoA mediated cell-cell repulsion. Biol. Open 3, 453–462 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Villar-Cervino, V. et al. Contact repulsion controls the dispersion and final distribution of Cajal-Retzius cells. Neuron 77, 457–471 (2013). This paper highlights the role of contact repulsion mediated by EPH–ephrin interactions in controlling the directed migration of Cajal–Retzius cells in the cerebral cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Carmona-Fontaine, C., Matthews, H. & Mayor, R. Directional cell migration in vivo: Wnt at the crest. Cell Adh. Migr. 2, 240–242 (2008).

    PubMed  PubMed Central  Google Scholar 

  111. Mayor, R. & Theveneau, E. The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem. J. 457, 19–26 (2014).

    CAS  PubMed  Google Scholar 

  112. Matthews, H. K. et al. Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 135, 1771–1780 (2008).

    CAS  PubMed  Google Scholar 

  113. Shnitsar, I. & Borchers, A. PTK7 recruits dsh to regulate neural crest migration. Development 135, 4015–4024 (2008).

    CAS  PubMed  Google Scholar 

  114. Witzel, S., Zimyanin, V., Carreira-Barbosa, F., Tada, M. & Heisenberg, C. P. Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J. Cell Biol. 175, 791–802 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bin-Nun, N. et al. PTK7 modulates Wnt signaling activity via LRP6. Development 141, 410–421 (2014).

    CAS  PubMed  Google Scholar 

  116. Hayes, M., Naito, M., Daulat, A., Angers, S. & Ciruna, B. Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/β-catenin-dependent cell fate decisions during vertebrate development. Development 140, 1807–1818 (2013).

    CAS  PubMed  Google Scholar 

  117. Peradziryi, H. et al. PTK7/Otk interacts with Wnts and inhibits canonical Wnt signalling. EMBO J. 30, 3729–3740 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Theveneau, E. & Mayor, R. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol. 24, 677–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Moore, R. et al. Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion. Development 140, 4763–4775 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Theveneau, E. & Mayor, R. Integrating chemotaxis and contact-inhibition during collective cell migration: small GTPases at work. Small GTPases 1, 113–117 (2010).

    PubMed  PubMed Central  Google Scholar 

  121. Desai, R. A., Gopal, S. B., Chen, S. & Chen, C. S. Contact inhibition of locomotion probabilities drive solitary versus collective cell migration. J. R. Soc. Interface 10, 20130717 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. Kashef, J. et al. Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases. Genes Dev. 23, 1393–1398 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Davis, J. R. et al. Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 161, 361–373 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ulmer, B. et al. Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration. Cell Rep. 3, 615–621 (2013).

    CAS  PubMed  Google Scholar 

  125. Theveneau, E. et al. Chase-and-run between adjacent cell populations promotes directional collective migration. Nat. Cell Biol. 15, 763–772 (2013). This paper shows that neural crest cells control the positions of the cells that secrete the chemoattractant Sdf1. Neural crest are attracted towards Sdf1 but induce a repulsion in the cells that secrete it, leading to a 'chase-and-run' mechanism, with a robust effect on directional migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Martin, K., Vilela, M., Jeon, N. L., Danuser, G. & Pertz, O. A growth factor-induced, spatially organizing cytoskeletal module enables rapid and persistent fibroblast migration. Dev. Cell 30, 701–716 (2014). This study shows that in the absence of a chemotactic gradient, PDGF can induce directed migration of fibroblasts, if cells are pre-polarized by adhesion on a line of fibronectin. This indicates that the cells can integrate chemical and physical independent cues, which enable them to migrate in a directed manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Woods, M. L. et al. Directional collective cell migration emerges as a property of cell interactions. PLoS ONE 9, e104969 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Camley, B. A. et al. Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns. Proc. Natl Acad. Sci. USA 111, 14770–14775 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Li, J. F. & Lowengrub, J. The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model. J. Theor. Biol. 343, 79–91 (2014).

    PubMed  Google Scholar 

  130. Fulga, T. A. & Rorth, P. Invasive cell migration is initiated by guided growth of long cellular extensions. Nat. Cell Biol. 4, 715–719 (2002).

    CAS  PubMed  Google Scholar 

  131. Cai, D. & Montell, D. J. Diverse and dynamic sources and sinks in gradient formation and directed migration. Curr. Opin. Cell Biol. 30, 91–98 (2014).

    CAS  PubMed  Google Scholar 

  132. Malet-Engra, G. et al. Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr. Biol. 25, 242–250 (2015).

    CAS  PubMed  Google Scholar 

  133. David, N. B. et al. Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc. Natl Acad. Sci. USA 99, 16297–16302 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kerstetter, A. E., Azodi, E., Marrs, J. A. & Liu, Q. Cadherin-2 function in the cranial ganglia and lateral line system of developing zebrafish. Dev. Dyn. 230, 137–143 (2004).

    CAS  PubMed  Google Scholar 

  135. Dambly-Chaudiere, C., Cubedo, N. & Ghysen, A. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev. Biol. 7, 23 (2007).

    PubMed  PubMed Central  Google Scholar 

  136. Valentin, G., Haas, P. & Gilmour, D. The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr. Biol. 17, 1026–1031 (2007).

    CAS  PubMed  Google Scholar 

  137. Aman, A. & Piotrowski, T. Cell migration during morphogenesis. Dev. Biol. 341, 20–33 (2010).

    CAS  PubMed  Google Scholar 

  138. Dona, E. et al. Directional tissue migration through a self-generated chemokine gradient. Nature 503, 285–289 (2013).

    CAS  PubMed  Google Scholar 

  139. Muinonen-Martin, A. J. et al. Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol. 12, e1001966 (2014). This paper demonstrates that melanoma cells break down LPA, generating a LPA gradient that functions as a chemoattractant for the migration of these cells.

    PubMed  PubMed Central  Google Scholar 

  140. Theveneau, E. & Mayor, R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev. Biol. 366, 34–54 (2012).

    CAS  PubMed  Google Scholar 

  141. Mayor, R. & Theveneau, E. The neural crest. Development 140, 2247–2251 (2013).

    CAS  PubMed  Google Scholar 

  142. Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 18, 698–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Dalle Nogare, D. et al. Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium. Development 141, 3188–3196 (2014). References 138 and 143 show that leader and follower cells of the lateral line primordium can self-generate gradients of chemokine activity to promote the directed collective migration of the primordium. Expression of Cxcr7b in trailing cells prevents Cxcr4b signalling in these cells, inducing the polarized response of the primordium to Cxcl12 and promoting unidirectional migration of the cell group.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pietras, K. & Ostman, A. Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res. 316, 1324–1331 (2010).

    CAS  PubMed  Google Scholar 

  146. Szabo, A. & Mayor, R. Cell traction in collective cell migration and morphogenesis: the chase and run mechanism. Cell Adh. Migr. 9, 380–383 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Choe, C. P. & Crump, J. G. Eph-Pak2a signaling regulates branching of the pharyngeal endoderm by inhibiting late-stage epithelial dynamics. Development 142, 1089–1094 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Breau, M. A. & Schneider-Maunoury, S. Cranial placodes: models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements. Dev. Biol. 401, 25–36 (2015).

    CAS  PubMed  Google Scholar 

  149. Attia, L., Schneider, J., Yelin, R. & Schultheiss, T. M. Collective cell migration of the nephric duct requires FGF signaling. Dev. Dyn. 244, 157–167 (2015).

    CAS  PubMed  Google Scholar 

  150. Shamir, E. R. & Ewald, A. J. Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr. Top. Dev. Biol. 112, 353–382 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, J., Cao, J., Dickson, A. L. & Poss, K. D. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 522, 226–230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Duchek, P. & Rorth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291, 131–133 (2001).

    CAS  PubMed  Google Scholar 

  154. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    CAS  PubMed  Google Scholar 

  155. McDonald, J. A., Pinheiro, E. M. & Montell, D. J. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130, 3469–3478 (2003).

    CAS  PubMed  Google Scholar 

  156. McDonald, S. A., Preston, S. L., Lovell, M. J., Wright, N. A. & Jankowski, J. A. Mechanisms of disease: from stem cells to colorectal cancer. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 267–274 (2006).

    CAS  PubMed  Google Scholar 

  157. Ghysen, A., Dambly-Chaudiere, C. & Raible, D. Making sense of zebrafish neural development in the Minervois. Neural Dev. 2, 15 (2007).

    PubMed  PubMed Central  Google Scholar 

  158. Carmona-Fontaine, C. et al. Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev. Cell 21, 1026–1037 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Vignjevic, D. et al. Fascin, a novel target of β-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res. 67, 6844–6853 (2007).

    CAS  PubMed  Google Scholar 

  160. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    CAS  PubMed  Google Scholar 

  161. Etienne-Manneville, S. Actin and microtubules in cell motility: which one is in control? Traffic 5, 470–477 (2004).

    CAS  PubMed  Google Scholar 

  162. Jacinto, A., Martinez-Arias, A. & Martin, P. Mechanisms of epithelial fusion and repair. Nat. Cell Biol. 3, E117–E123 (2001).

    CAS  PubMed  Google Scholar 

  163. Wicki, A. et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261–272 (2006).

    CAS  PubMed  Google Scholar 

  164. McLennan, R. et al. Multiscale mechanisms of cell migration during development: theory and experiment. Development 139, 2935–2944 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Feng, Q. et al. Cool-1 functions as an essential regulatory node for EGFreceptor- and Src-mediated cell growth. Nat. Cell Biol. 8, 945–956 (2006).

    CAS  PubMed  Google Scholar 

  166. Etienne-Manneville, S. Cdc42 — the centre of polarity. J. Cell Sci. 117, 1291–1300 (2004).

    CAS  PubMed  Google Scholar 

  167. Etienne-Manneville, S. & Hall, A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol. 15, 67–72 (2003).

    CAS  PubMed  Google Scholar 

  168. Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    CAS  PubMed  Google Scholar 

  169. Watson, L. J., Rossi, G. & Brennwald, P. Quantitative analysis of membrane trafficking in regulation of Cdc42 polarity. Traffic 15, 1330–1343 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Cau, J. & Hall, A. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J. Cell Sci. 118, 2579–2587 (2005).

    CAS  PubMed  Google Scholar 

  171. Nola, S. et al. Scrib regulates PAK activity during the cell migration process. Hum. Mol. Genet. 17, 3552–3565 (2008).

    CAS  PubMed  Google Scholar 

  172. Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A. & Hall, A. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J. Biol. Chem. 276, 1677–1680 (2001).

    CAS  PubMed  Google Scholar 

  173. Dupin, I. & Etienne-Manneville, S. Nuclear positioning: mechanisms and functions. Int. J. Biochem. Cell Biol. 43, 1698–1707 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.M.'s work was supported by grants from the UK Medical Research Council (MRC; J000655, M010465) and Biotechnology and Biological Sciences Research Council (BBSRC; M008517), and S.E.-M.'s work was supported by the French Institut National du Cancer, l'Association pour la Recherche contre le Cancer and La Ligue contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Mayor or Sandrine Etienne-Manneville.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Filopodia

Finger-like membrane projections that are frequently found at the leading edge of migrating cells. These membrane protrusions are formed by the polymerization of actin bundles and can be induced, in particular, by the small GTPase CDC42.

Lamellipodia

Thin sheet-like membrane extensions that are frequently found at the front of migrating cells. The formation of lamellipodia involves the polymerization of a branched actin meshwork and the formation of transient adhesions with the cell substrate.

Integrins

A family of transmembrane proteins that are involved in the interaction of cells with protein fibres of the extracellular matrix (ECM). α- and β-integrins form heterodimers, whose conformation and affinity for the ECM is regulated by inside-out signalling. Upon engagement with the ECM, integrin dimers induce intracellular (outside-in) signalling.

Chemotaxis

The process by which cells undergo directed locomotion along a chemical gradient.

Adherens junctions

Molecular complexes that enable intercellular interaction. Adherens junctions involve the homophilic interaction of classical cadherins and a large complex of cytosolic proteins (such as catenins), bridging cadherins to the cytoskeleton, including actin stress fibres.

Nurse cells

Cells that contribute to the development of the oocyte in invertebrate organisms. In Drosophila melanogaster, 15 nurse cells are included in the egg chamber that provides the nutrients, RNA and proteins required for the growth of the oocyte.

Focal adhesions

Molecular complexes that enable cell adhesion to the extracellular matrix. Focal adhesions involve the transmembrane protein family of integrins and a large complex of cytosolic proteins, bridging integrins to the cytoskeleton, including actin stress fibres.

Desmosomes

Cell–cell adhesion complexes that are typically found in epithelial cells. Desmosomes involve specific members of the cadherin family of transmembrane adhesion proteins and are connected to keratin filaments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayor, R., Etienne-Manneville, S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17, 97–109 (2016). https://doi.org/10.1038/nrm.2015.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2015.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing