Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein prenylation: unique fats make their mark on biology

Subjects

Key Points

  • A large repertoire of eukaryotic proteins, termed prenylated proteins, are subject to post-translational modification by isoprenoid lipids.

  • The attached lipid can markedly affect the cellular location of the prenylated protein, as well as its function.

  • Prenylated proteins have been implicated in diseases ranging from cancer to inflammation and premature ageing.

  • The enzymes that catalyse the reactions leading to a mature prenylated protein are under investigation as drug targets in various diseases.

Abstract

The modification of eukaryotic proteins by isoprenoid lipids, which is known as prenylation, controls the localization and activity of a range of proteins that have crucial functions in biological regulation. The roles of prenylated proteins in cells are well conserved across species, underscoring the biological and evolutionary importance of this lipid modification pathway. Genetic suppression and pharmacological inhibition of the protein prenylation machinery have provided insights into several cellular processes and into the aetiology of diseases in which prenylation is involved. The functional dependence of prenylation substrates, such as RAS proteins, on this modification and the therapeutic potential of targeting the prenylation process in pathological conditions accentuate the need to fully understand this form of post-translational modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isoprenoid metabolism and CAAX protein prenylation.
Figure 2: Roles of protein-associated isoprenoids in protein–protein interactions and membrane targeting.
Figure 3: Completion of prelamin A maturation into lamin A depends on three-step prenylation processing.<ct:Light Italic>

Similar content being viewed by others

References

  1. Ambrogelly, A., Palioura, S. & Soll, D. Natural expansion of the genetic code. Nat. Chem. Biol. 3, 29–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Gelb, M. H. et al. Therapeutic intervention based on protein prenylation and associated modifications. Nat. Chem. Biol. 2, 518–528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashby, M. N. CaaX converting enzymes. Curr. Opin. Lipidol. 9, 99–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Winter-Vann, A. M. & Casey, P. J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 5, 405–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Ahearn, I. M., Haigis, K., Bar-Sagi, D. & Philips, M. R. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol. 13, 39–51 (2012).

    Article  CAS  Google Scholar 

  7. Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11, 775–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schafer, W. R. & Rine, J. Protein prenylation: genes, enzymes, targets, and functions. Annu. Rev. Genet. 26, 209–237 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Sinensky, M. et al. The processing pathway of prelamin A. J. Cell Sci. 107, 61–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Gordon, L. B., Rothman, F. G., Lopez-Otin, C. & Misteli, T. Progeria: a paradigm for translational medicine. Cell 156, 400–407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamiya, Y., Sakurai, A., Tamura, S. & Takahashi, N. Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem. Biophys. Res. Commun. 83, 1077–1083 (1978). This is the first report of a biological peptide being modified by an isoprenoid lipid.

    Article  CAS  PubMed  Google Scholar 

  13. Brown, M. S. & Goldstein, J. L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res. 21, 505–517 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Quesney-Huneeus, V., Wiley, M. H. & Siperstein, M. D. Essential role for mevalonate synthesis in DNA replication. Proc. Natl Acad. Sci. USA 76, 5056–5060 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Habenicht, A. J., Glomset, J. A. & Ross, R. Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J. Biol. Chem. 255, 5134–5140 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt, R. A., Schneider, C. J. & Glomset, J. A. Evidence for post-translational incorporation of a product of mevalonic acid into Swiss 3T3 cell proteins. J. Biol. Chem. 259, 10175–10180 (1984). This report shows that mammalian proteins can be modified by an entity derived from mevalonate.

    Article  CAS  PubMed  Google Scholar 

  17. Wolda, S. L. & Glomset, J. A. Evidence for modification of lamin B by a product of mevalonic acid. J. Biol. Chem. 263, 5997–6000 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Anderegg, R. J., Betz, R., Carr, S. A., Crabb, J. W. & Duntze, W. Structure of Saccharomyces cerevisiae mating hormone a-factor. Identification of S-farnesyl cysteine as a structural component. J. Biol. Chem. 263, 18236–18240 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 (1989). This report shows that mammalian RAS proteins are modified by an isoprenoid lipid.

    Article  CAS  PubMed  Google Scholar 

  20. Casey, P. J., Solski, P. A., Der, C. J. & Buss, J. E. p21ras is modified by a farnesyl isoprenoid. Proc. Natl Acad. Sci. USA 86, 8323–8327 (1989). This report shows that RAS is modified by a metabolite of mevalonate and further identifies the modifying lipid as a farnesyl moiety.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schafer, W. R. et al. Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science 245, 379–385 (1989). This study shows that yeast Ras is prenylated, and that the genes that are involved in the processing of Ras are the same as those involved in yeast a-factor processing.

    Article  CAS  PubMed  Google Scholar 

  22. Farnsworth, C. C., Gelb, M. H. & Glomset, J. A. Identification of geranylgeranyl-modified proteins in HeLa cells. Science 247, 320–322 (1990). This work shows that the 20-carbon geranylgeranyl isoprenoid can modify proteins, as well as the 15-carbon farnesyl isoprenoid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mumby, S. M., Casey, P. J., Gilman, A. G., Gutowski, S. & Sternweis, P. C. G protein γ subunits contain a 20-carbon isoprenoid. Proc. Natl Acad. Sci. USA 87, 5873–5877 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reid, T. S., Terry, K. L., Casey, P. J. & Beese, L. S. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J. Mol. Biol. 343, 417–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Maurer-Stroh, S. et al. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput. Biol. 3, e66 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hougland, J. L. et al. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities. J. Mol. Biol. 395, 176–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Armstrong, S. A., Seabra, M. C., Sudhof, T. C., Goldstein, J. L. & Brown, M. S. cDNA cloning and expression of the α and β subunits of rat Rab geranylgeranyl transferase. J. Biol. Chem. 268, 12221–12229 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Leung, K. F., Baron, R. & Seabra, M. C. Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J. Lipid Res. 47, 467–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Itzen, A. & Goody, R. S. GTPases involved in vesicular trafficking: structures and mechanisms. Semin. Cell Dev. Biol. 22, 48–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Boyartchuk, V. L., Ashby, M. N. & Rine, J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275, 1796–1800 (1997). This study identifies the gene encoding the yeast CAAX protease, termed RCE1.

    Article  CAS  PubMed  Google Scholar 

  31. Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273, 15030–15034 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Hrycyna, C. A., Sapperstein, S. K., Clarke, S. & Michaelis, S. The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. EMBO J. 10, 1699–1709 (1991). This work shows that the STE14 gene in yeast encodes the CAAX protein methyltransferase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kellogg, B. A. & Poulter, C. D. Chain elongation in the isoprenoid biosynthetic pathway. Curr. Opin. Chem. Biol. 1, 570–578 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Long, S. B., Casey, P. J. & Beese, L. S. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry 37, 9612–9618 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Long, S. B., Casey, P. J. & Beese, L. S. Reaction path of protein farnesyltransferase at atomic resolution. Nature 419, 645–650 (2002). This report presents a detailed structural analysis of the FTase catalytic cycle, including substrate-binding and product-binding modes.

    Article  CAS  PubMed  Google Scholar 

  36. Furfine, E. S., Leban, J. J., Landavazo, A., Moomaw, J. F. & Casey, P. J. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry 34, 6857–6862 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Taylor, J. S., Reid, T. S., Terry, K. L., Casey, P. J. & Beese, L. S. Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J. 22, 5963–5974 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zverina, E. A., Lamphear, C. L., Wright, E. N. & Fierke, C. A. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr. Opin. Chem. Biol. 16, 544–552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hartman, H. L., Hicks, K. A. & Fierke, C. A. Peptide specificity of protein prenyltransferases is determined mainly by reactivity rather than binding affinity. Biochemistry 44, 15314–15324 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Trueblood, C. E., Ohya, Y. & Rine, J. Genetic evidence for in vivo cross-specificity of the CaaX-box protein prenyltransferases farnesyltransferase and geranylgeranyltransferase-I in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 4260–4275 (1993). This work provides evidence that the CAAX prenyltransferases can modify each other's substrates under particular conditions.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sjogren, A. K. et al. GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS-induced lung cancer. J. Clin. Invest. 117, 1294–1304 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whyte, D. B. et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459–14464 (1997). This work demonstrates cross-prenylation of KRAS and NRAS in cancer cells treated with FTIs.

    Article  CAS  PubMed  Google Scholar 

  43. Rao, S. et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol. 22, 3950–3957 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Du, W., Lebowitz, P. F. & Prendergast, G. C. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol. Cell. Biol. 19, 1831–1840 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, Z. et al. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J. Biol. Chem. 275, 17974–17978 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Zeng, P. Y., Rane, N., Du, W., Chintapalli, J. & Prendergast, G. C. Role for RhoB and PRK in the suppression of epithelial cell transformation by farnesyltransferase inhibitors. Oncogene 22, 1124–1134 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Sebti, S. M. & Hamilton, A. D. Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: lessons from mechanism and bench-to-bedside translational studies. Oncogene 19, 6584–6593 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Berg, T. J. et al. Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J. Biol. Chem. 285, 35255–35266 (2010). This work identifies a family of proteins that specifically recognize prenylated and unprenylated forms of CAAX proteins and implicates them in CAAX protein modification and trafficking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schuld, N. J. et al. The chaperone protein SmgGDS interacts with small GTPases entering the prenylation pathway by recognizing the last amino acid in the CAAX motif. J. Biol. Chem. 289, 6862–6876 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ntantie, E. et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci. Signal. 6, ra39 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Otto, J. C., Kim, E., Young, S. G. & Casey, P. J. Cloning and characterization of a mammalian prenyl protein-specific protease. J. Biol. Chem. 274, 8379–8382 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Boyartchuk, V. L. & Rine, J. Roles of prenyl protein proteases in maturation of Saccharomyces cerevisiae a-factor. Genetics 150, 95–101 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, E. et al. Disruption of the mouse Rce1 gene results in defective Ras processing and mislocalization of Ras within cells. J. Biol. Chem. 274, 8383–8390 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Tam, A. et al. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J. Cell Biol. 142, 635–649 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 31, 94–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Pillinger, M. H., Volker, C., Stock, J. B., Weissmann, G. & Philips, M. R. Characterization of a plasma membrane-associated prenylcysteine-directed α carboxyl methyltransferase in human neutrophils. J. Biol. Chem. 269, 1486–1492 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Manolaridis, I. et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, J. et al. Mechanism of isoprenylcysteine carboxyl methylation from the crystal structure of the integral membrane methyltransferase ICMT. Mol. Cell 44, 997–1004 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Wright, L. P. et al. Topology of mammalian isoprenylcysteine carboxyl methyltransferase determined in live cells with a fluorescent probe. Mol. Cell. Biol. 29, 1826–1833 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Diver, M. M. & Long, S. B. Mutational analysis of the integral membrane methyltransferase isoprenylcysteine carboxyl methyltransferase (ICMT) reveals potential substrate binding sites. J. Biol. Chem. 289, 26007–26020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Griggs, A. M., Hahne, K. & Hrycyna, C. A. Functional oligomerization of the Saccharomyces cerevisiae isoprenylcysteine carboxyl methyltransferase, Ste14p. J. Biol. Chem. 285, 13380–13387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Plummer, L. J. et al. Mutational analysis of the ras converting enzyme reveals a requirement for glutamate and histidine residues. J. Biol. Chem. 281, 4596–4605 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Hildebrandt, E. R. et al. Topology of the yeast Ras converting enzyme as inferred from cysteine accessibility studies. Biochemistry 52, 6601–6614 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Nishimura, A. & Linder, M. E. Identification of a novel prenyl and palmitoyl modification at the CaaX motif of Cdc42 that regulates RhoGDI binding. Mol. Cell. Biol. 33, 1417–1429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Riou, P. et al. 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins. Cell 153, 640–653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bhagatji, P., Leventis, R., Rich, R., Lin, C. J. & Silvius, J. R. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane. Biophys. J. 99, 3327–3335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zimmermann, G. et al. Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013). This study provides evidence that the binding of KRAS to PDE δ is important in oncogenic KRAS function.

    Article  CAS  PubMed  Google Scholar 

  70. Ismail, S. A. et al. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat. Chem. Biol. 7, 942–949 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Rotblat, B. et al. Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res. 64, 3112–3118 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Lopez-Alcala, C. et al. Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization. J. Biol. Chem. 283, 10621–10631 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Figueroa, C., Taylor, J. & Vojtek, A. B. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J. Biol. Chem. 276, 28219–28225 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Doll, R. J., Kirschmeier, P. & Bishop, W. R. Farnesyltransferase inhibitors as anticancer agents: critical crossroads. Curr. Opin. Drug Discov. Devel. 7, 478–486 (2004).

    CAS  PubMed  Google Scholar 

  76. Liu, M. et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc. Natl Acad. Sci. USA 107, 6471–6476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ashar, H. R. et al. The farnesyl transferase inhibitor SCH 66336 induces a G2 → M or G1 pause in sensitive human tumor cell lines. Exp. Cell Res. 262, 17–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Crespo, N. C., Ohkanda, J., Yen, T. J., Hamilton, A. D. & Sebti, S. M. The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J. Biol. Chem. 276, 16161–16167 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Hussein, D. & Taylor, S. S. Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. J. Cell Sci. 115, 3403–3414 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Adam, S. A., Butin-Israeli, V., Cleland, M. M., Shimi, T. & Goldman, R. D. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus 4, 142–150 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Basso, A. D. et al. The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J. Biol. Chem. 280, 31101–31108 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Houde, V. P. et al. Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity. Biochem. J. 458, 41–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Hanker, A. B. et al. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 29, 380–391 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Li, X. et al. Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J. Biol. Chem. 277, 15309–15316 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Peterson, Y. K., Kelly, P., Weinbaum, C. A. & Casey, P. J. A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity, and cellular activity. J. Biol. Chem. 281, 12445–12450 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Vasudevan, A. et al. Potent, highly selective, and non-thiol inhibitors of protein geranylgeranyltransferase-I. J. Med. Chem. 42, 1333–1340 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, J. et al. In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Mol. Cancer Ther. 8, 1218–1226 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun, J. et al. The geranylgeranyltransferase I inhibitor GGTI-298 induces hypophosphorylation of retinoblastoma and partner switching of cyclin-dependent kinase inhibitors. A potential mechanism for GGTI-298 antitumor activity. J. Biol. Chem. 274, 6930–6934 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Dan, H. C. et al. Phosphatidylinositol-3-OH kinase/AKT and survivin pathways as critical targets for geranylgeranyltransferase I inhibitor-induced apoptosis. Oncogene 23, 706–715 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Morgan, M. A., Wegner, J., Aydilek, E., Ganser, A. & Reuter, C. W. Synergistic cytotoxic effects in myeloid leukemia cells upon cotreatment with farnesyltransferase and geranylgeranyl transferase-I inhibitors. Leukemia 17, 1508–1520 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Bergo, M. O. et al. On the physiological importance of endoproteolysis of CAAX proteins: heart-specific RCE1 knockout mice develop a lethal cardiomyopathy. J. Biol. Chem. 279, 4729–4736 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Christiansen, J. R., Kolandaivelu, S., Bergo, M. O. & Ramamurthy, V. RAS-converting enzyme 1-mediated endoproteolysis is required for trafficking of rod phosphodiesterase 6 to photoreceptor outer segments. Proc. Natl Acad. Sci. USA 108, 8862–8866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bergo, M. O. et al. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J. Biol. Chem. 276, 5841–5845 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Lin, X. et al. Prenylcysteine carboxylmethyltransferase is essential for the earliest stages of liver development in mice. Gastroenterology 123, 345–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Smeland, T. E., Seabra, M. C., Goldstein, J. L. & Brown, M. S. Geranylgeranylated Rab proteins terminating in Cys-Ala-Cys, but not Cys-Cys, are carboxyl-methylated by bovine brain membranes in vitro. Proc. Natl Acad. Sci. USA 91, 10712–10716 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, M. et al. A small molecule inhibitor of isoprenylcysteine carboxymethyltransferase induces autophagic cell death in PC3 prostate cancer cells. J. Biol. Chem. 283, 18678–18684 (2008). This study links ICMT function to the cellular process of autophagy and identifies autophagy induction as a component of the antitumour response to ICMT inhibition.

    Article  CAS  PubMed  Google Scholar 

  98. Sane, K. M. et al. A novel geranylgeranyl transferase inhibitor in combination with lovastatin inhibits proliferation and induces autophagy in STS-26T MPNST cells. J. Pharmacol. Exp. Ther. 333, 23–33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pan, J., Song, E., Cheng, C., Lee, M. H. & Yeung, S. C. Farnesyltransferase inhibitors-induced autophagy: alternative mechanisms? Autophagy 5, 129–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Zhu, W. L. et al. A role for Rac3 GTPase in the regulation of autophagy. J. Biol. Chem. 286, 35291–35298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, Y. C. & Guan, K. L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125, 25–32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Levine, B. & Kroemer, G. Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ. 16, 1–2 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Teh, J. T. et al. Isoprenylcysteine carboxylmethyltransferase regulates mitochondrial respiration and cancer cell metabolism. Oncogene 34, 3296–3304 (2014).

    Article  PubMed  CAS  Google Scholar 

  104. Backlund, P. S. Jr. Post-translational processing of RhoA. Carboxyl methylation of the carboxyl-terminal prenylcysteine increases the half-life of RhoA. J. Biol. Chem. 272, 33175–33180 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Bergo, M. O. et al. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J. Clin. Invest. 113, 539–550 (2004). This study demonstrates that genetic suppression of ICMT affects transformation by oncogenic KRAS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Cushman, I. & Casey, P. J. Role of isoprenylcysteine carboxylmethyltransferase-catalyzed methylation in Rho function and migration. J. Biol. Chem. 284, 27964–27973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Michaelson, D. et al. Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases. Mol. Biol. Cell 16, 1606–1616 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stubbs, E. B. Jr & Von Zee, C. L. Prenylation of Rho G-proteins: a novel mechanism regulating gene expression and protein stability in human trabecular meshwork cells. Mol. Neurobiol. 46, 28–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Lu, Q. et al. Isoprenylcysteine carboxyl methyltransferase modulates endothelial monolayer permeability. Involvement of RhoA carboxyl methylation. Circ. Res. 94, 306–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Cushman, I., Cushman, S. M., Potter, P. M. & Casey, P. J. Control of RhoA methylation by carboxylesterase I. J. Biol. Chem. 288, 19177–19183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oboh, O. T. & Lamango, N. S. Liver prenylated methylated protein methyl esterase is the same enzyme as Sus scrofa carboxylesterase. J. Biochem. Mol. Toxicol. 22, 51–62 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Deem, A. K., Bultema, R. L. & Crowell, D. N. Prenylcysteine methylesterase in Arabidopsis thaliana. Gene 380, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Huizinga, D. H., Omosegbon, O., Omery, B. & Crowell, D. N. Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. Plant Cell 20, 2714–2728 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cox, A. D., Der, C. J. & Philips, M. R. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin. Cancer Res. 21, 1819–1827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gibbs, J. B., Oliff, A. & Kohl, N. E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 77, 175–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Sousa, S., Fernandes, P. & Ramos, M. Farnesyltransferase inhibitors: a detailed chemical view on an elusive biological problem. Curr. Med. Chem. 15, 1478–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Karp, J. E. & Lancet, J. E. Development of farnesyltransferase inhibitors for clinical cancer therapy: focus on hematologic malignancies. Cancer Invest. 25, 484–494 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Tsimberidou, A. M., Chandhasin, C. & Kurzrock, R. Farnesyltransferase inhibitors: where are we now? Expert Opin. Investig. Drugs 19, 1569–1580 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Kohl, N. E. et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat. Med. 1, 792–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, X., Makarewicz, J. M., Knauf, J. A., Johnson, L. K. & Fagin, J. A. Transformation by Hras(G12V) is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition. Oncogene 33, 5442–5449 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Schmidmaier, R. et al. The HMG-CoA reductase inhibitor simvastatin overcomes cell adhesion-mediated drug resistance in multiple myeloma by geranylgeranylation of Rho protein and activation of Rho kinase. Blood 104, 1825–1832 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Falsetti, S. C. et al. Geranylgeranyltransferase I inhibitors target RalB to inhibit anchorage-dependent growth and induce apoptosis and RalA to inhibit anchorage-independent growth. Mol. Cell. Biol. 27, 8003–8014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Park, H. J. et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ. Res. 91, 143–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Kusama, T. et al. Selective inhibition of cancer cell invasion by a geranylgeranyltransferase-I inhibitor. Clin. Exp. Metastasis 20, 561–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Hasan, Z. et al. Geranylgeranyl transferase regulates CXC chemokine formation in alveolar macrophages and neutrophil recruitment in septic lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L221–L229 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Khan, O. M. et al. Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J. Clin. Invest. 121, 628–639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Bergo, M. O. et al. Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol. Cell. Biol. 22, 171–181 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wahlstrom, A. M. et al. Rce1 deficiency accelerates the development of K-RAS-induced myeloproliferative disease. Blood 109, 763–768 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wahlstrom, A. M. et al. Inactivating Icmt ameliorates K-RAS-induced myeloproliferative disease. Blood 112, 1357–1365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Court, H. et al. Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression. J. Clin. Invest. 123, 4681–4694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Winter-Vann, A. M. et al. A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proc. Natl Acad. Sci. USA 102, 4336–4341 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Donelson, J. L. et al. Amide-substituted farnesylcysteine analogs as inhibitors of human isoprenylcysteine carboxyl methyltransferase. Bioorg. Med. Chem. Lett. 16, 4420–4423 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Judd, W. R. et al. Discovery and SAR of methylated tetrahydropyranyl derivatives as inhibitors of isoprenylcysteine carboxyl methyltransferase (ICMT). J. Med. Chem. 54, 5031–5047 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Bergman, J. A., Hahne, K., Song, J., Hrycyna, C. A. & Gibbs, R. A. S-farnesyl-thiopropionic acid (FTPA) triazoles as potent inhibitors of isoprenylcysteine carboxyl methyltransferase. ACS Med. Chem. Lett. 3, 15–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, M. et al. Inhibition of isoprenylcysteine carboxylmethyltransferase induces autophagic-dependent apoptosis and impairs tumor growth. Oncogene 29, 4959–4970 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Lau, H. Y. et al. An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biol. Ther. 15, 1280–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cao, K. et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J. Clin. Invest. 121, 2833–2844 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Capell, B. C. et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 102, 12879–12884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang, S. H. et al. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson–Gilford progeria syndrome mutation. J. Clin. Invest. 116, 2115–2121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Leung, G. K. et al. Biochemical studies of Zmpste24-deficient mice. J. Biol. Chem. 276, 29051–29058 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Young, S. G., Meta, M., Yang, S. H. & Fong, L. G. Prelamin A farnesylation and progeroid syndromes. J. Biol. Chem. 281, 39741–39745 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Navarro, C. L. et al. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of lamin A precursors. Hum. Mol. Genet. 14, 1503–1513 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Moulson, C. L. et al. Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J. Invest. Dermatol. 125, 913–919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Broers, J. L., Ramaekers, F. C., Bonne, G., Yaou, R. B. & Hutchison, C. J. Nuclear lamins: laminopathies and their role in premature ageing. Physiol. Rev. 86, 967–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Fong, L. G. et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311, 1621–1623 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Yang, S. H. et al. Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum. Mol. Genet. 20, 436–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Gordon, L. B. et al. Impact of farnesylation inhibitors on survival in Hutchinson–Gilford progeria syndrome. Circulation 130, 27–34 (2014). A detailed analysis of the effects of prenylation inhibition on the clinical progression of HGPS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ibrahim, M. X. et al. Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science 340, 1330–1333 (2013). This study demonstrates that reduction of ICMT activity in a mouse model of progeria markedly attenuates disease progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ye, X. & Carew, T. J. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 68, 340–361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Samuel, F. et al. Inhibiting geranylgeranylation increases neurite branching and differentially activates cofilin in cell bodies and growth cones. Mol. Neurobiol. 50, 49–59 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hottman, D. A. & Li, L. Protein prenylation and synaptic plasticity: implications for Alzheimer's disease. Mol. Neurobiol. 50, 177–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cheng, S. et al. Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease. J. Biol. Chem. 288, 35952–35960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ye, J. et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc. Natl Acad. Sci. USA 100, 15865–15870 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hannoush, R. N. & Sun, J. The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat. Chem. Biol. 6, 498–506 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Palsuledesai, C. C., Ochocki, J. D., Markowski, T. W. & Distefano, M. D. A combination of metabolic labeling and 2D-DIGE analysis in response to a farnesyltransferase inhibitor facilitates the discovery of new prenylated proteins. Mol. Biosyst. 10, 1094–1103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Duckworth, B. P., Zhang, Z., Hosokawa, A. & Distefano, M. D. Selective labeling of proteins by using protein farnesyltransferase. ChemBioChem 8, 98–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Nguyen, U. T. et al. Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat. Chem. Biol. 5, 227–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Soltis, D. A. et al. Expression, purification, and characterization of the human squalene synthase: use of yeast and baculoviral systems. Arch. Biochem. Biophys. 316, 713–723 (1995).

    Article  CAS  PubMed  Google Scholar 

  162. Sagami, H., Morita, Y. & Ogura, K. Purification and properties of geranylgeranyl-diphosphate synthase from bovine brain. J. Biol. Chem. 269, 20561–20566 (1994).

    Article  CAS  PubMed  Google Scholar 

  163. McFarlane, S. I., Muniyappa, R., Francisco, R. & Sowers, J. R. Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond. J. Clin. Endocrinol. Metab. 87, 1451–1458 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Hooff, G. P., Wood, W. G., Muller, W. E. & Eckert, G. P. Isoprenoids, small GTPases and Alzheimer's disease. Biochim. Biophys. Acta 1801, 896–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mammen, A. L. & Amato, A. A. Statin myopathy: a review of recent progress. Curr. Opin. Rheumatol. 22, 644–650 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Lee, M. H., Cho, Y. S. & Han, Y. M. Simvastatin suppresses self-renewal of mouse embryonic stem cells by inhibiting RhoA geranylgeranylation. Stem Cells 25, 1654–1663 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Waiczies, S. et al. Geranylgeranylation but not GTP loading determines rho migratory function in T cells. J. Immunol. 179, 6024–6032 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Zhao, T. T. et al. Lovastatin inhibits EGFR dimerization and AKT activation in squamous cell carcinoma cells: potential regulation by targeting rho proteins. Oncogene 29, 4682–4692 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Wrighton, K. H. Metabolism: YAP and TAZ under metabolic control. Nat. Rev. Mol. Cell Biol. 15, 296 (2014).

    Article  PubMed  CAS  Google Scholar 

  171. Eastman, R. T., Buckner, F. S., Yokoyama, K., Gelb, M. H. & Van Voorhis, W. C. Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J. Lipid Res. 47, 233–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Hast, M. A. et al. Structural basis for binding and selectivity of antimalarial and anticancer ethylenediamine inhibitors to protein farnesyltransferase. Chem. Biol. 16, 181–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Glenn, J. S., Watson, J. A., Havel, C. M. & White, J. M. Identification of a prenylation site in delta virus large antigen. Science 256, 1331–1333 (1992).

    Article  CAS  PubMed  Google Scholar 

  174. Otto, J. C. & Casey, P. J. The hepatitis delta virus large antigen is farnesylated both in vitro and in animal cells. J. Biol. Chem. 271, 4569–4572 (1996).

    Article  CAS  PubMed  Google Scholar 

  175. Bordier, B. B. et al. In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus. J. Clin. Invest. 112, 407–414 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wedemeyer, H. & Manns, M. P. Epidemiology, pathogenesis and management of hepatitis D: update and challenges ahead. Nat. Rev. Gastroenterol. Hepatol. 7, 31–40 (2010).

    Article  PubMed  Google Scholar 

  177. Koh, C. et al. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect. Dis. 15, 1167–1174 (2015). This study reports a clinical benefit of treating hepatitis D virus infection with a FTI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang, C. et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol. Cell 18, 425–434 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for helpful comments on the manuscript and express regret that they could not reference all of the important studies that have contributed to the understanding of protein prenylation. They also thank Zheng Huan Tay for his assistance with the figures. Work from the authors' laboratories is funded by the Ministries of Health and Education of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Wang or Patrick J. Casey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

CAAX proteins

Proteins containing a CAAX motif at their carboxyl termini, in which 'C' is the Cys residue that functions as the isoprenoid attachment site, 'A' signifies any aliphatic amino acid, and 'X' denotes any of several amino acids.

HMG-CoA reductase

(HMGCR). The rate-controlling enzyme of the mevalonate pathway of cholesterol and isoprenoid biosynthesis and the target of the widely-used statin drugs.

Sterols

The major biosynthetic end products of the isoprenoid biosynthetic pathway; sterols occur naturally in eukaryotic organisms, with the most well-recognized animal sterol being cholesterol.

Mevalonate

The direct product of the HMG-CoA reductase (HMGCR) reaction and the first committed intermediate in the biosynthetic pathway that produces isoprenoids and, subsequently, sterols.

Prenylome

The repertoire of proteins in an organism that contain covalently attached isoprenoid lipids.

FTase inhibitors

(FTIs). Inhibitors of the protein farnesyltransferase (FTase) enzymes. FTIs have been used in clinical trials for the treatment of cancer, progeria and hepatitis D virus infection.

GDP/GTP exchange factors

(GEFs). Proteins that facilitate the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

Progeroid syndromes

A group of rare genetic disorders that result in markedly accelerated ageing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Casey, P. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol 17, 110–122 (2016). https://doi.org/10.1038/nrm.2015.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2015.11

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing