Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

A brief history of T cell help to B cells

Abstract

In celebration of the 50th anniversary of the discovery of B cells, I take a look back at the history of T cell help to B cells, which was discovered 47 years ago. In addition, I summarize and categorize the distinct molecules that are expressed by CD4+ T cells that constitute 'help' to B cells, and particularly the molecules expressed by T follicular helper (TFH) cells, which are the specialized providers of help to B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A timeline of discoveries about T cell help to B cells.
Figure 2: Categories of T cell help to B cells.

References

  1. Claman, H. N., Chaperon, E. A. & Triplett, R. F. Thymus-marrow cell combinations. Synergism in antibody production. Proc. Soc. Exp. Biol. Med. 122, 1167–1171 (1966).

    Article  CAS  PubMed  Google Scholar 

  2. Miller, J. F. & Mitchell, G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J. Exp. Med. 128, 801–820 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell, G. F. & Miller, J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J. Exp. Med. 128, 821–837 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nossal, G. J., Cunningham, A., Mitchell, G. F. & Miller, J. F. Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice. J. Exp. Med. 128, 839–853 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katz, D. H. & Benacerraf, B. The regulatory influence of activated T cells on B cell responses to antigen. Adv. Immunol. 15, 1–94 (1972).

    Article  CAS  PubMed  Google Scholar 

  6. Rajewsky, K., Schirrmacher, V., Nase, S. & Jerne, N. K. The requirement of more than one antigenic determinant for immunogenicity. J. Exp. Med. 129, 1131–1143 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raff, M. θ-isoantigen as a marker of thymus-derived lymphocytes in mice. Nature 224, 378–379 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. Raff, M. C. Role of thymus-derived lymphocytes in the secondary humoral immune response in mice. Nature 226, 1257–1258 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. Nossal, G. J. & Lederberg, J. Antibody production by single cells. Nature 181, 1419–1420 (1958).

    Article  CAS  PubMed  Google Scholar 

  10. Paul, W. E. & Ohara, J. B-cell stimulatory factor-1/interleukin 4. Annu. Rev. Immunol. 5, 429–459 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Howard, M. et al. Identification of a T cell-derived B cell growth factor distinct from interleukin 2. J. Exp. Med. 155, 914–923 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  13. Kopf, M., Le Gros, G., Coyle, A. J., Kosco-Vilbois, M. & Brombacher, F. Immune responses of IL-4, IL-5, IL-6 deficient mice. Immunol. Rev. 148, 45–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Grusby, M. J. Stat4- and Stat6-deficient mice as models for manipulating T helper cell responses. Biochem. Soc. Trans. 25, 359–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kurosaki, T., Kometani, K. & Ise, W. Memory B cells. Nature Rev. Immunol. (in the press).

  16. Thorbecke, G. J. & Tsiagbe, V. K. The Biology of Germinal Centers in Lymphoid Tissue. (Springer Verlag, 1998).

    Book  Google Scholar 

  17. Clark, E. A. & Ledbetter, J. A. Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc. Natl Acad. Sci. USA 83, 4494–4498 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y. J. et al. Mechanism of antigen-driven selection in germinal centres. Nature 342, 929–931 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Armitage, R. J. et al. Molecular and biological characterization of a murine ligand for CD40. Nature 357, 80–82 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Allen, R. C. et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–993 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Aruffo, A. et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72, 291–300 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Korthäuer, U. et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361, 539–541 (1993).

    Article  PubMed  Google Scholar 

  23. DiSanto, J. P., Bonnefoy, J. Y., Gauchat, J. F., Fischer, A. & de Saint Basile, G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 361, 541–543 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Fuleihan, R. et al. Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc. Natl Acad. Sci. USA 90, 2170–2173 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foy, T. M. et al. gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J. Exp. Med. 180, 157–163 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. J., Johnson, G. D., Gordon, J. & MacLennan, I. C. Germinal centres in T-cell-dependent antibody responses. Immunol. Today 13, 17–21 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Parrish-Novak, J. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Ozaki, K., Kikly, K., Michalovich, D., Young, P. R. & Leonard, W. J. Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc. Natl Acad. Sci. USA 97, 11439–11444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ettinger, R. et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J. Immunol. 175, 7867–7879 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Good, K. L., Bryant, V. L. & Tangye, S. G. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J. Immunol. 177, 5236–5247 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Crotty, S., Kersh, E. N., Cannons, J., Schwartzberg, P. L. & Ahmed, R. SAP is required for generating long-term humoral immunity. Nature 421, 282–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Dong, C., Temann, U. A. & Flavell, R. A. Cutting edge: critical role of inducible costimulator in germinal center reactions. J. Immunol. 166, 3659–3662 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cannons, J. L., Tangye, S. G. & Schwartzberg, P. L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol. 29, 665–705 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nature Immunol. 4, 261–268 (2003).

    Article  CAS  Google Scholar 

  38. Cannons, J. L. et al. SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J. Exp. Med. 203, 1551–1565 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Okada, T. & Cyster, J. G. B cell migration and interactions in the early phase of antibody responses. Curr. Opin. Immunol. 18, 278–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Allen, C. D. C., Okada, T. & Cyster, J. G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, H. et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496, 523–527 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng, M. H. & Anderson, M. S. Monogenic autoimmunity. Annu. Rev. Immunol. 30, 393–427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nature Rev. Immunol. 14, 585–600 (2014).

    Article  CAS  Google Scholar 

  48. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, C. H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193, 1373–1381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-TH1/TH2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. King, C., Tangye, S. G. & Mackay, C. R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular TH cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nature Immunol. 10, 375–384 (2009).

    Article  CAS  Google Scholar 

  57. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Förster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  PubMed  Google Scholar 

  62. Reinhardt, R. L., Liang, H.-E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nature Immunol. 10, 385–393 (2009).

    Article  CAS  Google Scholar 

  63. Yusuf, I. et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol. 185, 190–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Crotty, S. Follicular helper CD4+ T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Vijayanand, P. et al. Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 36, 175–187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Harada, Y. et al. The 3′ enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in follicular helper T cells. Immunity 36, 188–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Liang, H.-E. et al. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nature Immunol. 13, 58–66 (2012).

    Article  CAS  Google Scholar 

  68. Crotty, S. T. Follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi, Y. S., Eto, D., Yang, J. A., Lao, C. & Crotty, S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J. Immunol. 190, 3049–3053 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Choi, Y. S. et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J. Immunol. 190, 4014–4026 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Baumjohann, D., Okada, T. & Ansel, K. M. Cutting edge: Distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187, 2089–2092 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Goenka, R. et al. Cutting edge: dendritic cell-restricted antigen presentation initiates the follicular helper T cell program but cannot complete ultimate effector differentiation. J. Immunol. 187, 1091–1095 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Victora, G. D. & Mesin, L. Clonal and cellular dynamics in germinal centers. Curr. Opin. Immunol. 28, 90–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nature Rev. Immunol. (in the press).

  76. Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nature Immunol. 11, 114–120 (2010).

    Article  CAS  Google Scholar 

  77. Nojima, T. et al. In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nature Commun. 2, 465 (2011).

    Article  CAS  Google Scholar 

  78. Avery, D. T. et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207, 155–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Suto, A. et al. Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line Cε transcription of IL-4-stimulated B cells. Blood 100, 4565–4573 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Kageyama, R. et al. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 36, 986–1002 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kroenke, M. A. et al. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation. J. Immunol. 188, 3734–3744 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Rasheed, A.-U., Rahn, H.-P., Sallusto, F., Lipp, M. & Müller, G. Follicular B helper T cell activity is confined to CXCR5hiICOShi CD4 T cells and is independent of CD57 expression. Eur. J. Immunol. 36, 1892–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Sáez de Guinoa, J., Barrio, L., Mellado, M. & Carrasco, Y. R. CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics. Blood 118, 1560–1569 (2011).

    Article  PubMed  CAS  Google Scholar 

  84. Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Vinuesa, C. G. & Cyster, J. G. How T cells earn the follicular rite of passage. Immunity 35, 671–680 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane Crotty.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crotty, S. A brief history of T cell help to B cells. Nat Rev Immunol 15, 185–189 (2015). https://doi.org/10.1038/nri3803

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing