Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of the extracellular matrix on inflammation

Abstract

The advent of in situ immunology and intravital analyses of leukocyte movement in tissues has drawn attention to the previously neglected extracellular matrix (ECM) and its role in modulating immune cell behaviour in inflamed tissues. The ECM exists in different biochemical and structural forms; both their individual components and three-dimensional ultrastructure impart specific signals to cells that modulate basic functions that are important for the early steps in inflammation, such as immune cell migration into inflamed tissues and immune cell differentiation. In chronically inflamed tissues, aberrant ECM expression and fragments of the ECM that are derived from tissue-remodelling processes can influence immune cell activation and survival, thereby actively contributing to immune responses at these sites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leukocyte infiltration into inflamed tissues.
Figure 2: Cellular and ECM layers that are encountered by leukocytes infiltrating CNS post-capillary venules.
Figure 3: Potential modes of ECM-mediated activation of immune cells.

Similar content being viewed by others

References

  1. Nourshargh, S., Hordijk, P. L. & Sixt, M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nature Rev. Mol. Cell Biol. 11, 366–378 (2010). An up-to-date Review of cell–cell adhesion molecules, soluble factors and, in particular, junctional molecules that are involved in neutrophil extravasation, as well as an overview of leukocyte migration in the interstitial ECM.

    Article  CAS  Google Scholar 

  2. Vestweber, D. Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol. Rev. 218, 178–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Alon, R. & Ley, K. Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr. Opin. Cell Biol. 20, 525–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morrison, C. J., Butler, G. S., Rodriguez, D. & Overall, C. M. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr. Opin. Cell Biol. 21, 645–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Cauwe, B., Van den Steen, P. E. & Opdenakker, G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 42, 113–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Struyf, S., Proost, P. & Van Damme, J. Regulation of the immune response by the interaction of chemokines and proteases. Adv. Immunol. 81, 1–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hohenester, E. & Engel, J. Domain structure and organisation in extracellular matrix proteins. Matrix Biol. 21, 115–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009). A comprehensive review of the domain structure of ECM molecules and their multiple functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lokmic, Z. et al. The extracellular matrix of the spleen as a potential organizer of immune cell compartments. Semin. Immunol. 20, 4–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Eckes, B., Nischt, R. & Krieg, T. Cell–matrix interactions in dermal repair and scarring. Fibrogenesis Tissue Repair 3, 4 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Engelhardt, B. & Wolburg, H. Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur. J. Immunol. 34, 2955–2963 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Furie, M. B., Naprstek, B. L. & Silverstein, S. C. Migration of neutrophils across monolayers of cultured microvascular endothelial cells. An in vitro model of leucocyte extravasation. J. Cell Sci. 88, 161–175 (1987).

    CAS  PubMed  Google Scholar 

  14. Hurley, J. V. An electron microscopic study of leucocytic emigration and vascular permeability in rat skin. Aust. J. Exp. Biol. Med. Sci. 41, 171–186 (1963).

    Article  CAS  PubMed  Google Scholar 

  15. Marchesi, V. T. & Florey, H. W. Electron micrographic observations on the emigration of leucocytes. Q. J. Exp. Physiol. Cogn. Med. Sci. 45, 343–348 (1960).

    CAS  PubMed  Google Scholar 

  16. Ohashi, K. L., Tung, D. K., Wilson, J., Zweifach, B. W. & Schmid-Schonbein, G. W. Transvascular and interstitial migration of neutrophils in rat mesentery. Microcirculation 3, 199–210 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Hoshi, O. & Ushiki, T. Neutrophil extravasation in rat mesenteric venules induced by the chemotactic peptide N-formyl-methionyl-luecylphenylalanine (fMLP), with special attention to a barrier function of the vascular basal lamina for neutrophil migration. Arch. Histol. Cytol. 67, 107–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203, 1519–1532 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009). The only two-photon intravital microscopy analysis of T cell extravasation in vivo , showing cell retention at the vessel wall.

    Article  CAS  PubMed  Google Scholar 

  20. Muller, W. A. Mechanisms of transendothelial migration of leukocytes. Circ. Res. 105, 223–230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schenkel, A. R., Dufour, E. M., Chew, T. W., Sorg, E. & Muller, W. A. The murine CD99-related molecule CD99-like 2 (CD99L2) is an adhesion molecule involved in the inflammatory response. Cell Commun. Adhes. 14, 227–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Bixel, M. G. et al. A CD99-related antigen on endothelial cells mediates neutrophil but not lymphocyte extravasation in vivo. Blood 109, 5327–5336 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Bixel, G. et al. CD99 and CD99L act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis. Blood 116, 1172–1184 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Lou, O., Alcaide, P., Luscinskas, F. W. & Muller, W. A. CD99 is a key mediator of the transendothelial migration of neutrophils. J. Immunol. 178, 1136–1143 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wakelin, M. W. et al. An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J. Exp. Med. 184, 229–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Dangerfield, J., Larbi, K. Y., Huang, M. T., Dewar, A. & Nourshargh, S. PECAM-1 (CD31) homophilic interaction up-regulates α6β1 on transmigrated neutrophils in vivo and plays a functional role in the ability of α6 integrins to mediate leukocyte migration through the perivascular basement membrane. J. Exp. Med. 196, 1201–1211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yurchenco, P. D. & Patton, B. L. Developmental and pathogenic mechanisms of basement membrane assembly. Curr. Pharm. Des. 15, 1277–1294 (2009). An up-to-date overview of basement membrane components, their receptors and their functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poschl, E. et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131, 1619–1628 (2004). The first study to show that basement membranes, including vascular basement membranes, can form and are stable without a type IV collagen network.

    Article  CAS  PubMed  Google Scholar 

  29. Li, S. et al. Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J. Cell Biol. 157, 1279–1290 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McKee, K. K., Harrison, D., Capizzi, S. & Yurchenco, P. D. Role of laminin terminal globular domains in basement membrane assembly. J. Biol. Chem. 282, 21437–21447 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Koch, M. et al. A novel member of the netrin family, β-netrin, shares homology with the β chain of laminin: identification, expression, and functional characterization. J. Cell Biol. 151, 221–234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Timpl, R., Sasaki, T., Kostka, G. & Chu, M. L. Fibulins: a versatile family of extracellular matrix proteins. Nature Rev. Mol. Cell Biol. 4, 479–489 (2003).

    Article  CAS  Google Scholar 

  33. Brekken, R. A. & Sage, E. H. SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol. 19, 569–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, T. et al. Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J. Mol. Biol. 301, 1179–1190 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Hallmann, R. et al. Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev. 85, 979–1000 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Burns, A. R., Smith, C. W. & Walker, D. C. Unique structural features that influence neutrophil emigration into the lung. Physiol. Rev. 83, 309–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Sixt, M. et al. Endothelial cell laminin isoforms, laminin 8 and 10, play decisive roles in in T-cell recruitment across the blood-brain-barrier in an experimental autoimmune encephalitis model (EAE). J. Cell Biol. 153, 933–945 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, C. et al. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nature Med. 15, 519–527 (2009). This was the first study to show that laminin basement membrane composition selectively influences the extravasation of T cells.

    Article  CAS  PubMed  Google Scholar 

  39. Frieser, M. et al. Cloning of the mouse laminin α4 cDNA. Expression in a subset of endothelium. Eur. J. Biochem. 246, 727–735 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Khoshnoodi, J., Pedchenko, V. & Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iozzo, R. V. Basement membrane proteoglycans: from cellar to ceiling. Nature Rev. Mol. Cell Biol. 6, 646–656 (2005).

    Article  CAS  Google Scholar 

  42. Bader, B. L. et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol. Cell Biol. 25, 6846–6856 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sorokin, L. M. et al. Developmental regulation of laminin α5 suggests a role in epithelial and endothelial cell maturation. Dev. Biol. 189, 285–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Brachvogel, B. et al. Isolated Anxa5+/Sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo. Exp. Cell Res. 313, 2730–2743 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J. & Davis, G. E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114, 5091–5101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abramsson, A. et al. Defective N-sulfation of heparan sulfate proteoglycans limits PDGF–BB binding and pericyte recruitment in vascular development. Genes Dev. 21, 316–331 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalamajski, S. & Oldberg, A. The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol. 29, 248–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008). An overview of the potential mechanisms that are used by different cell types to penetrate basement membranes.

    Article  CAS  PubMed  Google Scholar 

  49. Senior, R. M., Gresham, H. D., Griffin, G. L., Brown, E. J. & Chung, A. E. Entactin stimulates neutrophil adhesion and chemotaxis through interactions between its Arg-Gly-Asp (RGD) domain and the leukocyte response integrin. J. Clin. Invest. 90, 2251–2257 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adair-Kirk, T. L. et al. A site on laminin α5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J. Immunol. 171, 398–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Pipoly, D. J. & Crouch, E. C. Degradation of native type IV procollagen by human neutrophil elastase. Implications for leukocyte-mediated degradation of basement membranes. Biochemistry 26, 5748–5754 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Heck, L. W., Blackburn, W. D., Irwin, M. H. & Abrahamson, D. R. Degradation of basement membrane laminin by human neutrophil elastase and cathepsin G. Am. J. Pathol. 136, 1267–1274 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Steadman, R. et al. Laminin cleavage by activated human neutrophils yields proteolytic fragments with selective migratory properties. J. Leukoc. Biol. 53, 354–365 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Huber, A. R. & Weiss, S. J. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J. Clin. Invest. 83, 1122–1136 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Agrawal, S. et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J. Exp. Med. 203, 1007–1019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huber, A. R., Kunkel, S. L., Todd, R. F. 3rd & Weiss, S. J. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254, 99–102 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Marchesi, V. T. The site of leucocyte emigration during inflammation. Q. J. Exp. Physiol. Cogn. Med. Sci. 46, 115–118 (1961).

    CAS  PubMed  Google Scholar 

  58. Steadman, R. et al. Human neutrophils do not degrade major basement membrane components during chemotactic migration. Int. J. Biochem. Cell Biol. 29, 993–1004 (1997).

    Article  PubMed  Google Scholar 

  59. Pham, C. T. Neutrophil serine proteases: specific regulators of inflammation. Nature Rev. Immunol. 6, 541–550 (2006).

    Article  CAS  Google Scholar 

  60. Walker, D. C., Behzad, A. R. & Chu, F. Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia. Microvasc. Res. 50, 397–416 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Abrams, G. A., Goodman, S. L., Nealey, P. F., Franco, M. & Murphy, C. J. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 299, 39–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Candiello, J. et al. Biomechanical properties of native basement membranes. FEBS J. 274, 2897–2908 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Last, J. A., Liliensiek, S. J., Nealey, P. F. & Murphy, C. J. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J. Struct. Biol. 167, 19–24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kenne, E. et al. Immune cell recruitment to inflammatory loci is impaired in mice deficient in basement membrane protein laminin α4. J. Leukoc. Biol. 29 Apr 2010 (doi:10.1189/jlb.0110043).

    Article  CAS  PubMed  Google Scholar 

  65. Engelhardt, B. & Sorokin, L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin. Immunopathol. 31, 497–511 (2009).

    Article  PubMed  Google Scholar 

  66. Wekerle, H. Lessons from multiple sclerosis: models, concepts, observations. Ann. Rheum. Dis. 67, 56–60 (2008).

    Article  Google Scholar 

  67. Thyboll, J. et al. Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol. Cell Biol. 22, 1194–1202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moore, S. A. et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418, 422–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008). The first study to show a non-integrin, non-proteolytic, force-dependent mode of DC migration through the interstitial matrix.

    Article  CAS  PubMed  Google Scholar 

  70. Wolf, K., Muller, R., Borgmann, S., Brocker, E. B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3269–3269 (2003).

    Article  CAS  Google Scholar 

  71. Friedl, P. & Wolf, K. Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem. Soc. Symp. 70, 277–285 (2003).

    Article  CAS  Google Scholar 

  72. Sabeh, F., Li, X. Y., Saunders, T. L., Rowe, R. G. & Weiss, S. J. Secreted versus membrane-anchored collagenases: relative roles in fibroblast-dependent collagenolysis and invasion. J. Biol. Chem. 284, 23001–23011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sabeh, F., Shimizu-Hirota, R. & Weiss, S. J. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185, 11–19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rabodzey, A., Alcaide, P., Luscinskas, F. W. & Ladoux, B. Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys. J. 95, 1428–1438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oakes, P. W. et al. Neutrophil morphology and migration are affected by substrate elasticity. Blood 114, 1387–1395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shulman, Z. et al. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30, 384–396 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Voisin, M. B., Woodfin, A. & Nourshargh, S. Monocytes and neutrophils exhibit both distinct and common mechanisms in penetrating the vascular basement membrane in vivo. Arterioscler. Thromb. Vasc. Biol. 29, 1193–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weathington, N. M. et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature Med. 12, 317–323 (2006). One of the few clear descriptions of how MMP processing of an interstitial matrix molecule, type I collagen, results in a fragment chemoattractant for neutrophils during lung inflammation.

    Article  CAS  PubMed  Google Scholar 

  79. Gaggar, A. et al. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J. Immunol. 180, 5662–5669 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. O'Reilly, P. J. et al. Neutrophils contain prolyl endopeptidase and generate the chemotactic peptide, PGP, from collagen. J. Neuroimmunol. 217, 51–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Senior, R. M., Griffin, G. L. & Mecham, R. P. Chemotactic activity of elastin-derived peptides. J. Clin. Invest. 66, 859–862 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hunninghake, G. W. et al. Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science 212, 925–927 (1981).

    Article  CAS  PubMed  Google Scholar 

  83. Houghton, A. M. et al. Elastin fragments drive disease progression in a murine model of emphysema. J. Clin. Invest. 116, 753–759 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ospelt, C. & Gay, S. TLRs and chronic inflammation. Int. J. Biochem. Cell Biol. 42, 495–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Oldberg, A., Franzen, A. & Heinegard, D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl Acad. Sci. USA 83, 8819–8823 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wong, C. K., Lit, L. C., Tam, L. S., Li, E. K. & Lam, C. W. Elevation of plasma osteopontin concentration is correlated with disease activity in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44, 602–606 (2005).

    Article  CAS  Google Scholar 

  87. Xu, G. et al. Role of osteopontin in amplification and perpetuation of rheumatoid synovitis. J. Clin. Invest. 115, 1060–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sato, T. et al. Osteopontin/Eta-1 upregulated in Crohn's disease regulates the Th1 immune response. Gut 54, 1254–1262 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158, 231–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Hur, E. M. et al. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nature Immunol. 8, 74–83 (2007). A description of the mechanism of action of the ECM molecule osteopontin in T H 1 and T H 17 cell polarization during EAE and in inhibition of effector T cell apoptosis.

    Article  CAS  Google Scholar 

  92. Steinman, L. A molecular trio in relapse and remission in multiple sclerosis. Nature Rev. Immunol. 9, 440–447 (2009).

    Article  CAS  Google Scholar 

  93. Ashkar, S. et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Adler, B., Ashkar, S., Cantor, H. & Weber, G. F. Costimulation by extracellular matrix proteins determines the response to TCR ligation. Cell. Immunol. 210, 30–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Pender, M. P., Nguyen, K. B., McCombe, P. A. & Kerr, J. F. Apoptosis in the nervous system in experimental allergic encephalomyelitis. J. Neurol. Sci. 104, 81–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Gold, R., Hartung, H. P. & Lassmann, H. T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci. 20, 399–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Hocking, A. M., Shinomura, T. & McQuillan, D. J. Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol. 17, 1–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229–10233 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Stern, R., Asari, A. A. & Sugahara, K. N. Hyaluronan fragments: an information-rich system. Eur. J. Cell Biol. 85, 699–715 (2006). A good overview of hyaluronan synthesis, fragment generation and studies on the role of hyaluronan in activating TLRs.

    Article  CAS  PubMed  Google Scholar 

  100. Johnson, G. B., Brunn, G. J., Kodaira, Y. & Platt, J. L. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol. 168, 5233–5239 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Taylor, K. R. & Gallo, R. L. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 20, 9–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nature Med. 15, 774–780 (2009). A description of the activation of TLR2 and TLR4 by tenascin during rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  103. Schaefer, L. et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest. 115, 2223–2233 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schaefer, L. Extracellular matrix molecules: endogenous danger signals as new drug targets in kidney diseases. Curr. Opin. Pharmacol. 10, 185–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Med. 11, 1173–1179 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Noble, P. W. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol. 21, 25–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. McKee, C. M. et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J. Clin. Invest. 98, 2403–2413 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mummert, M. E. et al. Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation. J. Immunol. 169, 4322–4331 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Termeer, C. et al. Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Overall, C. M. & Blobel, C. P. In search of partners: linking extracellular proteases to substrates. Nature Rev. Mol. Cell Biol. 8, 245–257 (2007). A Review of new concepts of MMPs action and current modes of substrate identification.

    Article  CAS  Google Scholar 

  111. Vanacore, R. M. et al. The α1.α2 network of collagen IV. Reinforced stabilization of the noncollagenous domain-1 by noncovalent forces and the absence of Met-Lys cross-links. J. Biol. Chem. 279, 44723–44730 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Di Girolamo, N. et al. Human mast cell-derived gelatinase B (matrix metalloproteinase-9) is regulated by inflammatory cytokines: role in cell migration. J. Immunol. 177, 2638–2650 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Qiu, Z. et al. Interleukin-17 regulates chemokine and gelatinase B expression in fibroblasts to recruit both neutrophils and monocytes. Immunobiology 214, 835–842 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Hu, J., Van den Steen, P. E., Sang, Q. X. & Opdenakker, G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature Rev. Drug Discov. 6, 480–498 (2007). An overview of the potential roles of MMPs in inflammation.

    Article  CAS  Google Scholar 

  116. Overall, C. M., McQuibban, G. A. & Clark-Lewis, I. Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning: a new tool for degradomics. Biol. Chem. 383, 1059–1066 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J. & Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 96, 2673–2681 (2000).

    CAS  PubMed  Google Scholar 

  118. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Van Den Steen, P. E. et al. Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur. J. Biochem. 270, 3739–3749 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Gearing, A. J. et al. Processing of tumour necrosis factor-α precursor by metalloproteinases. Nature 370, 555–557 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Ito, A. et al. Degradation of interleukin 1β by matrix metalloproteinases. J. Biol. Chem. 271, 14657–14660 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Schonbeck, U., Mach, F. & Libby, P. Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J. Immunol. 161, 3340–3346 (1998).

    CAS  PubMed  Google Scholar 

  123. Redondo-Munoz, J. et al. Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia B cell survival through its hemopexin domain. Cancer Cell 17, 160–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Denhardt, D. T., Noda, M., O'Regan, A. W., Pavlin, D. & Berman, J. S. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J. Clin. Invest. 107, 1055–1061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Leask, A. & Abraham, D. J. TGF-β signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. McQuibban, G. A. et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 43503–43508 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. McQuibban, G. A. et al. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 1160–1167 (2002).

    CAS  PubMed  Google Scholar 

  129. Hayashida, K., Parks, W. C. & Park, P. W. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood 114, 3033–3043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to those individuals whose work I have not been able to cite owing to space limitations. I thank R. Hallmann, P. Bruckner, D. Vestweber, P. Yurchenco and V. Gerke for critical reading of the manuscript and for helpful suggestions. Special thanks go to C. Wu for help with figure 2. Some of the research that is described in this Review was supported by the German Research Foundation (DFG), the Swedish Research Council (VR), the Medical Faculty of the University of Münster, Germany, and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements 201,024 and 202,213 (European Stroke Network).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Lydia Sorokin's homepage

Glossary

Intravital microscopy

A technique that is used for the examination of biological processes, such as leukocyte–endothelial cell interactions, in living tissues. In general, translucent tissues are used, such as the mesentery or cremaster muscle. These tissues can be exposed and mounted for microscopic observation.

Extracellular matrix

(ECM). The secreted products of many cell types that form an organized scaffold for cell support.

Extravasation

The cellular process in which circulating leukocytes bind to and migrate through the endothelium into the underlying tissue.

Cell adhesion molecules

Proteins (for example, CD99, CD99 antigen-like-2 (CD99L2) and platelet/endothelial cell adhesion molecule 1 (PECAM1)) that are located between adjacent endothelial cells but that are also expressed by neutrophils, monocytes and lymphocytes and are known to have important roles in leukocyte transmigration of the endothelium in inflammation. CD99 (also known as MIC2) is a small highly glycosylated glycoprotein with no known similarity to any other protein family. CD99L2 is distantly related to CD99 and has 32% sequence identity; PECAM1 is a member of the immunoglobulin supergene family.

Pericytes

Cells that are embedded in the vascular basement membrane of microvessels and that are thought to be derived from the vascular smooth muscle cell lineage. They make close cellular contact with endothelial cells and this interaction is essential for the maintenance of vessel function, as well as for the regulation of angiogenesis and vascular remodelling.

Tensile strength

The maximum load that a material can support during stretching without irreversible disruption and is expressed per unit area. When stresses less than the tensile strength are removed, a material returns either completely or partially to its original shape and size.

Diapedesis

The migration of leukocytes across the endothelium. This migration generally occurs by squeezing through the junctions between adjacent endothelial cells, although in some settings leukocytes have been shown to pass through transiently formed gaps in the cytoplasm of endothelial cells. It is the last step in the leukocyte–endothelial cell adhesion cascade, which includes tethering, triggering, tight adhesion and transmigration.

Perivascular cuff

The immune cell infiltrate that is immediately adjacent to the outer surface of the post-capillary venule wall and, in the case of central nervous system vessels, is bordered by the inner endothelial cell basement membrane and the outer parenchymal basement membrane.

Delayed-type hypersensitivity

(DTH). A cellular immune response to antigen that develops over a period of 24–72 hours. The response is characterized by the infiltration of T cells and monocytes and depends on the production of TH1-type cytokines.

Filopodia

Slender cytoplasmic projections that extend from the leading edge of migrating cells.

Osteopontin

An extracellular matrix protein that supports the adhesion and migration of inflammatory cells. It has recently been recognized as an immunoregulatory TH1-type cytokine.

Toll-like receptor family

(TLR family). A family of receptors that are unique to microorganisms that recognize conserved products (such as lipopolysaccharide) known as pathogen-associated molecular patterns (PAMPs), as well as damage-associated molecular patterns (DAMPs). TLRs signal to the host that a microbial pathogen is present or that tissue damage has occurred.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10, 712–723 (2010). https://doi.org/10.1038/nri2852

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing