Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria

Key Points

  • Mononuclear phagocytes are essential for the maintenance of intestinal homeostasis and have crucial roles in inflammatory bowel diseases (IBDs), both in mouse and man. The maintenance of robust gut homeostasis requires the presence of two mononuclear phagocyte populations of distinct origin and function.

  • CD11b+CD103+ dendritic cells (DCs) are poised to migrate to the draining mesenteric lymph nodes to initiate and modulate primary T cell immune responses.

  • CX3C-chemokine receptor 1 (CX3CR1)+ mononuclear phagocytes (which have also been termed DCs) do not migrate to the mesenteric lymph nodes but function locally in the mucosa and may maintain effector and regulatory T cells.

  • Mouse research requires a better understanding of mononuclear phagocytes during disease, but in humans we lack fundamental insights into the steady state functions of these cells.

  • For research into IBDs to capitalize on the progress made with small animal models, it will be important to align human and mouse mononuclear phagocyte populations.

Abstract

The intestinal landscape comprises the host's own tissue and immune cells, as well as a diverse intestinal microbiota. Intricate regulatory mechanisms have evolved to maintain peaceful coexistence at this site, the breakdown of which can result in devastating inflammatory bowel diseases (IBDs). Mononuclear phagocytes promote both innate and adaptive immune responses in the gut and, as such, are essential for the maintenance of intestinal homeostasis. Here, we review the origins and functions of the mononuclear phagocytes found in the intestinal lamina propria, highlighting the problems that have arisen from their classification. Understanding these cells in their physiological context will be important for developing new therapies for IBDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging intestinal CX3 CR1+ lamina propria mononuclear phagocytes.
Figure 2: The emerging intestinal lamina propria dendritic cell compartment.

Similar content being viewed by others

References

  1. Savage, D. C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Cho, J. H. The genetics and immunopathogenesis of inflammatory bowel disease. Nature Rev. Immunol. 8, 458–466 (2008).

    Article  CAS  Google Scholar 

  3. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Rev. Immunol. 8, 411–420 (2008).

    Article  CAS  Google Scholar 

  5. Rescigno, M. & Di Sabatino, A. Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest. 119, 2441–2450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol. 1, 460–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coombes, J. L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nature Rev. Immunol. 8, 435–446 (2008).

    Article  CAS  Google Scholar 

  8. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Annacker, O. et al. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 202, 1051–1061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nature Immunol. 8, 1086–1094 (2007).

    CAS  Google Scholar 

  11. Jang, M. H. et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 176, 803–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nature Immunol. 9, 769–776 (2008).

    Article  CAS  Google Scholar 

  13. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009). These two articles established that CD103+ and CX 3 CR1+ lamina propria DCs originate from classic DC precursors and Ly6C+ monocytes, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009). This elegant study used two-photon microscopy and the cannulation of intestinal lymphatics to show that CX 3 CR1+ lamina propria DCs do not migrate from the lamina propria to the mesenteric lymph nodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jaensson, E. et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205, 2139–3149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  25. Vallon-Eberhard, A., Landsman, L., Yogev, N., Verrier, B. & Jung, S. Transepithelial pathogen uptake into the small intestinal lamina propria. J. Immunol. 176, 2465–2469 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hapfelmeier, S. et al. Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent step in ΔinvG S. Typhimurium colitis. J. Exp. Med. 205, 437–450 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jang, M. H. et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. USA 101, 6110–6115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yrlid, U. et al. Regulation of intestinal dendritic cell migration and activation by plasmacytoid dendritic cells, TNF-α and type 1 IFNs after feeding a TLR7/8 ligand. J. Immunol. 176, 5205–5212 (2006).

    CAS  PubMed  Google Scholar 

  30. Worbs, T. et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 203, 519–527 (2006). A nice study that established the crucial role of CCR7-dependent DC migration for oral tolerance establishment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Svensson, M. et al. Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells. Mucosal Immunol. 1, 38–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature Immunol. 10, 1178–1184 (2009). The first paper to show that intestinal mononuclear phagocytes are in involved in the maintenance of FOXP3+ T Reg cells in the lamina propria in vivo.

    Article  CAS  Google Scholar 

  36. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2009).

    Article  CAS  Google Scholar 

  40. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  Google Scholar 

  41. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Seno, H. et al. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc. Natl Acad. Sci. USA 106, 256–261 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Honda, K. & Takeda, K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol. 2, 187–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  Google Scholar 

  46. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hirotani, T. et al. The nuclear IκB protein IκBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J. Immunol. 174, 3650–3657 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kamada, N. et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J. Immunol. 175, 6900–6908 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, P. D., Ochsenbauer-Jambor, C. & Smythies, L. E. Intestinal macrophages: unique effector cells of the innate immune system. Immunol. Rev. 206, 149–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kuwata, H. et al. IκBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity 24, 41–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Wald, D. et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nature Immunol. 4, 920–927 (2003).

    Article  CAS  Google Scholar 

  52. Garlanda, C. et al. Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. Proc. Natl Acad. Sci. USA 101, 3522–3526 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garlanda, C. et al. Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family. Cancer Res. 67, 6017–6021 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Tezuka, H. et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448, 929–933 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Niess, J. H. & Adler, G. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune Responses under Normal and Inflammatory Conditions. J. Immunol. 184, 2026–2037 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Arques, J. L. et al. Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology 137, 579–587 (2009).

    Article  PubMed  Google Scholar 

  59. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Ivanov, I. I. et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 139, 485–498 (2009). References 60 and 61 established the effects of a specific bacterial strain in determining the composition of the T helper cell compartment in the mouse gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Plattner, F. et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 3, 77–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Benson, A., Pifer, R., Behrendt, C. L., Hooper, L. V. & Yarovinsky, F. Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe 6, 187–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dunay, I. R. et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29, 306–317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pavli, P., Maxwell, L., Van de Pol, E. & Doe, F. Distribution of human colonic dendritic cells and macrophages. Clin. Exp. Immunol. 104, 124–132 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 66–75 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Invest. 118, 2269–2280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rugtveit, J. et al. Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology 112, 1493–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Schenk, M., Bouchon, A., Seibold, F. & Mueller, C. TREM-1-expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J. Clin. Invest. 117, 3097–3106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M. & Rescigno, M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2, 340–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Iliev, I. D. et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 58, 1481–1489 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. de Baey, A. et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-α. J. Immunol. 170, 5089–5094 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Uhlig, H. H. & Powrie, F. Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. Eur. J. Immunol. 39, 2021–2026 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Uhlig, H. H. et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25, 309–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007). This article described a new colitis model and showed the effects of the gut immune system on the microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garrett, W. S. et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16, 208–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lacy-Hulbert, A. et al. Ulcerative colitis and autoimmunity induced by loss of myeloid αv integrins. Proc. Natl Acad. Sci. USA 104, 15823–15828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Travis, M. A. et al. Loss of integrin αvbeta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007). References 79 and 80 establish the role of DC-derived αVβ8 integrin-mediated activation of latent TGFβ in the maintenance of gut homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Berndt, B. E., Zhang, M., Chen, G. H., Huffnagle, G. B. & Kao, J. Y. The role of dendritic cells in the development of acute dextran sulfate sodium colitis. J. Immunol. 179, 6255–6262 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Abe, K. et al. Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells. Proc. Natl Acad. Sci. USA 104, 17022–17027 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Monteleone, I., Platt, A. M., Jaensson, E., Agace, W. W. & Mowat, A. M. IL-10-dependent partial refractoriness to Toll-like receptor stimulation modulates gut mucosal dendritic cell function. Eur. J. Immunol. 38, 1533–1547 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fortin, G. et al. A role for CD47 in the development of experimental colitis mediated by SIRPα+CD103 dendritic cells. J. Exp. Med. 206, 1995–2011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Watanabe, N. et al. Elimination of local macrophages in intestine prevents chronic colitis in interleukin-10-deficient mice. Dig. Dis. Sci. 48, 408–414 (2003).

    Article  PubMed  Google Scholar 

  87. Watanabe, T. et al. Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J. Clin. Invest. 118, 545–559 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Weber, B., Saurer, L. & Mueller, C. Intestinal macrophages: differentiation and involvement in intestinal immunopathologies. Semin. Immunopathol. 31, 171–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Kamada, N. et al. Human CD14+ macrophages in intestinal lamina propria exhibit potent antigen-presenting ability. J. Immunol. 183, 1724–1731 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. te Velde, A. A. et al. Increased expression of DC-SIGN+IL-12+IL-18+ and CD83+IL-12IL-18 dendritic cell populations in the colonic mucosa of patients with Crohn's disease. Eur. J. Immunol. 33, 143–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Salim, S. Y. et al. CD83+CCR7 dendritic cells accumulate in the subepithelial dome and internalize translocated Escherichia coli HB101 in the Peyer's patches of ileal Crohn's disease. Am. J. Pathol. 174, 82–90 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Murakami, H., Akbar, S. M., Matsui, H., Horiike, N. & Onji, M. Macrophage migration inhibitory factor activates antigen-presenting dendritic cells and induces inflammatory cytokines in ulcerative colitis. Clin. Exp. Immunol. 128, 504–510 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hart, A. L. et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 129, 50–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Whittall, T. et al. Tumour necrosis factor-α production stimulated by heat shock protein 70 and its inhibition in circulating dendritic cells and cells eluted from mucosal tissues in Crohn's disease. Clin. Exp. Immunol. 143, 550–559 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bouchon, A., Dietrich, J. & Colonna, M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164, 4991–4995 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Sakuraba, A. et al. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn's disease. Gastroenterology 137, 1736–1745 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65–70 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kleinschek, M. A. et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med. 206, 525–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kullberg, M. C. et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med. 203, 2485–2494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hue, S. et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med. 203, 2473–2483 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mizoguchi, A. et al. Dependence of intestinal granuloma formation on unique myeloid DC-like cells. J. Clin. Invest. 117, 605–615 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. van Beelen, A. J. et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27, 660–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nature Genet. 39, 830–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nature Med. 16, 90–97 (2010). This study provides intriguing evidence for a surprising potential link of two IBD candidate genes ( NOD2 and ATG16L1 ) involved in pathogen sensing and autophagy.

    Article  CAS  PubMed  Google Scholar 

  111. Landsman, L., Varol, C. & Jung, S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. 178, 2000–2007 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Neutra, M. R., Mantis, N. J. & Kraehenbuhl, J. P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nature Immunol. 2, 1004–1009 (2001).

    Article  CAS  Google Scholar 

  114. Iwasaki, A. & Kelsall, B. L. Unique functions of CD11b+, CD8α+, and double-negative Peyer's patch dendritic cells. J. Immunol. 166, 4884–4890 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Salazar-Gonzalez, R. M. et al. CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. Immunity 24, 623–632 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israel Science Foundation, The Thyssen Foundation and a research grant from the estate of Edith F. Goldensohn Center (S.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Jung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Steffen Jung's homepage

Glossary

Peyer's patches

Groups of lymphoid nodules present in the small intestine. They occur massed together on the intestinal wall, opposite the line of attachment of the mesentery. Peyer's patches consist of a dome area, B cell follicles and interfollicular T cell areas.

Isolated lymphoid follicles

Dynamic aggregates of lymphoid cells found in the mouse small intestinal lamina propria; similar lymphoid aggregates have also been identified in the mouse colon. Isolated lymphoid follicles have germinal centres and an overlying follicle-associated epithelium containing microfold (M) cells specialized for antigen uptake, but they lack discrete T cell zones. They are formed de novo in adult animals in response to commensal organism-derived stimuli and, although their function is not completely clear, they may be inductive sites of immunity in the intestinal lamina propria.

Bromodeoxyuridine

A thymidine analogue that can be incorporated into DNA during DNA replication. Treatment with bromodeoxyuridine enables the detection of cells that are dividing or have recently divided.

Ly6Chi monocytes

A subset of blood monocytes that is derived from MDPs in the bone marrow and emigrates in a CCR2-dependent way to the blood. Ly6Chi monocytes can home back to the bone marrow in the steady state and differentiate into Ly6Clow monocytes. Following pathogen challenge, Ly6Chi monocytes can give rise to splenic TIP-DCs. Furthermore they are the precursors of CX3CR1+ mononuclear phagocytes in the intestinal lamina propria. In addition, Ly6Chi monocytes can contribute to tissue remodelling and healing processes.

Crypts of Lieberkuhn

Tubular invaginations of the intestinal epithelium. Paneth cells are found at the base of the crypts along with continuously dividing stem cells, which are the source of all intestinal epithelial cells.

Metagenome

The genomic content of a sample of organisms obtained from a common habitat.

Gnotobiotic mice

Mice that are born in aseptic conditions, separated from the mother by Caesarean section, and are raised in controlled environment. These animals can be monocolonized with defined microbial species in order to investigate specific relationships between the host and the microbiota.

Genome wide association (GWA) studies

An approach that involves rapidly scanning single nucleotide polymorphism markers across the complete genomes of many individuals to find genetic variations associated with a particular disease.

SLAN

(6-Sulfo LacNAc). A carbohydrate modification of the P-selectin glycoprotein 1 (PSGL1). SLAN is expressed by a subset of DCs found in human blood and is recognized by the monoclonal antibody MDC8.

Autophagy

Any process involving degradative delivery of a portion of the cytoplasm to the lysosome that does not involve direct transport through the endocytic or vacuolar protein sorting pathways.

Paneth cells

Paneth cells are found at the base of intestinal crypts and produce antimicrobial proteins and peptides, including phospholipase A2 and defensins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varol, C., Zigmond, E. & Jung, S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat Rev Immunol 10, 415–426 (2010). https://doi.org/10.1038/nri2778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing