Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human CD8+ T-cell differentiation in response to viruses

Key Points

  • Most markers that define functional subsets of CD8+ T cells are regulated by activation, which complicates their use as differentiation markers.

  • Although during acute infection overall similarities dominate between T cells specific for different viruses, their phenotypes seem to be distinct in the memory/latency stage.

  • Infection with cytomegalovirus has a dominant influence on the circulating CD8+ T-cell pool, promoting the generation and maintenance of a population with stable cytolytic function.

  • Specific co-stimulatory ligands (or cytokines) present during the initial priming or memory/latency stages might direct CD8+ T-cell differentiation and account for differences between T cells that react to different viruses.

Abstract

CD8+ T cells are essential in the defence against viruses. Recently, peptide–HLA class I tetramers have been used to study immune responses to viruses in humans. This approach has indicated consecutive stages of human CD8+ T-cell development in acute viral infection and has illustrated the heterogeneity of CD8+ T cells that are specific for latent viruses. Here, we summarize these findings and discuss their significance for our understanding of antigen-induced CD8+ T-cell maturation in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graph showing the T-cell response to infection with virus.
Figure 2: Phenotypic changes of virus-specific T cells from acute infection to the latent state.
Figure 3: A branched model for human CD8+ T-cell development.

Similar content being viewed by others

References

  1. Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nature Rev. Immunol. 2, 251–262 (2002).

    CAS  Google Scholar 

  2. Wong, P. & Pamer, E. G. CD8+ T cell responses to infectious pathogens. Annu. Rev. Immunol. 21, 29–70 (2003).

    CAS  PubMed  Google Scholar 

  3. Murali-Krishna, K. et al. Counting antigen-specific CD8+ T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Berke, G. The CTL's kiss of death. Cell 81, 9–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Badovinac, V. P., Porter, B. B. & Harty, J. T. Programmed contraction of CD8+ T cells after infection. Nature Immunol. 3, 619–626 (2002). This paper shows that not only clonal expansion but also clonal contraction might be determined in the initial contact between a T cell and an antigen-presenting cell (APC).

    CAS  Google Scholar 

  6. Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8+ T cell differentiation. Cell 111, 837–851 (2002).

    CAS  PubMed  Google Scholar 

  7. Schluns, K. S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nature Rev. Immunol. 3, 269–279 (2003).

    CAS  Google Scholar 

  8. Jordan, M. C., Jordan, G. W., Stevens, J. G. & Miller, G. Latent herpesviruses of humans. Ann. Intern. Med. 100, 866–880 (1984).

    CAS  PubMed  Google Scholar 

  9. Marchant, A. et al. Mature CD8+ T lymphocyte response to viral infection during fetal life. J. Clin. Invest. 111, 1747–1755 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gray, D. A role for antigen in the maintenance of immunological memory. Nature Rev. Immunol. 2, 60–65 (2002).

    CAS  Google Scholar 

  11. Selin, L. K. et al. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Rabin, R. L. et al. Altered representation of naive and memory CD8 T cell subsets in HIV-infected children. J. Clin. Invest. 95, 2054–2060 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  15. Campbell, J. J. et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884 (2001).

    CAS  PubMed  Google Scholar 

  16. Merkenschlager, M. & Beverley, P. C. Evidence for differential expression of CD45 isoforms by precursors for memory-dependent and independent cytotoxic responses: human CD8 memory CTLp selectively express CD45RO (UCHL1). Int. Immunol. 1, 450–459 (1989).

    CAS  PubMed  Google Scholar 

  17. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    CAS  PubMed  Google Scholar 

  18. de Jong, R., Brouwer, M., Miedema, F. & Van Lier, R. A. Human CD8+ T lymphocytes can be divided into CD45RA+ and CD45RO+ cells with different requirements for activation and differentiation. J. Immunol. 146, 2088–2094 (1991).

    CAS  PubMed  Google Scholar 

  19. Tomiyama, H., Matsuda, T. & Takiguchi, M. Differentiation of human CD8+ T cells from a memory to memory/effector phenotype. J. Immunol. 168, 5538–5550 (2002).

    CAS  PubMed  Google Scholar 

  20. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4+ T cells in the whole body. Nature 410, 101–105 (2001).

    CAS  PubMed  Google Scholar 

  21. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    CAS  PubMed  Google Scholar 

  22. Ravkov, E. V., Myrick, C. M. & Altman, J. D. Immediate early effector functions of virus-specific CD8+CCR7+ memory cells in humans defined by HLA and CC chemokine ligand 19 tetramers. J. Immunol. 170, 2461–2468 (2003).

    CAS  PubMed  Google Scholar 

  23. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8+ T cell subsets. Nature Immunol. 4, 225–234 (2003). This paper addresses the lineage relationship between memory T-cell subsets in vivo, providing evidence that central memory cells might develop from effector-memory cells relatively late after clearance of pathogen.

    CAS  Google Scholar 

  24. Unsoeld, H., Krautwald, S., Voehringer, D., Kunzendorf, U. & Pircher, H. Cutting edge: CCR7+ and CCR7 memory T cells do not differ in immediate effector cell function. J. Immunol. 169, 638–641 (2002).

    CAS  PubMed  Google Scholar 

  25. Ellefsen, K. et al. Distribution and functional analysis of memory antiviral CD8 T cell responses in HIV-1 and cytomegalovirus infections. Eur. J. Immunol. 32, 3756–3764 (2002).

    CAS  PubMed  Google Scholar 

  26. Azuma, M., Phillips, J. H. & Lanier, L. L. CD28 T lymphocytes. J. Immunol. 150, 1147–1159 (1993).

    CAS  PubMed  Google Scholar 

  27. Okumura, M., Fujii, Y., Inada, K., Nakahara, K. & Matsuda, H. Both CD45RA+ and CD45RA subpopulations of CD8+ T cells contain cells with high levels of LFA-1 expression, a phenotype of primed T cells. J. Immunol. 150, 429–437 (1993).

    CAS  PubMed  Google Scholar 

  28. Pittet, M. J., Speiser, D. E., Valmori, D., Cerottini, J. C. & Romero, P. Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expression. J. Immunol. 164, 1148–1152 (2000).

    CAS  PubMed  Google Scholar 

  29. Brenchley, J. M. et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101, 2711–2720 (2003).

    CAS  PubMed  Google Scholar 

  30. Speiser, D. E. et al. The activatory receptor 2B4 is expressed in vivo by human CD8+ effector αβ T cells. J. Immunol. 167, 6165–6170 (2001).

    CAS  PubMed  Google Scholar 

  31. Bell, E. B. & Sparshott, S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature 348, 163–166 (1990).

    CAS  PubMed  Google Scholar 

  32. Mingari, M. C. et al. Human CD8+ T lymphocyte subsets that express HLA class I-specific inhibitory receptors represent oligoclonally or monoclonally expanded cell populations. Proc. Natl Acad. Sci. USA 93, 12433–12438 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Baars, P. A. et al. Cytolytic mechanisms and expression of activation-regulating receptors on effector-type CD8+CD45RA+. J. Immunol. 165, 1910–1917 (2000).

    CAS  PubMed  Google Scholar 

  34. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    CAS  Google Scholar 

  35. van Leeuwen, E. M. et al. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells. J. Immunol. 169, 5838–5843 (2002).

    CAS  PubMed  Google Scholar 

  36. Wierenga, E. A. et al. Human atopen-specific types 1 and 2 T helper cell clones. J. Immunol. 147, 2942–2949 (1991).

    CAS  PubMed  Google Scholar 

  37. Rufer, N. et al. Ex-vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 105, 1779–1787 (2003).

    Google Scholar 

  38. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    CAS  PubMed  Google Scholar 

  39. Callan, M. F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus in vivo. J. Exp. Med. 187, 1395–1402 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Callan, M. F. et al. T cell selection during the evolution of CD8+ T cell memory in vivo. Eur. J. Immunol. 28, 4382–4390 (1998).

    CAS  PubMed  Google Scholar 

  41. Hislop, A. D., Annels, N. E., Gudgeon, N. H., Leese, A. M. & Rickinson, A. B. Epitope-specific evolution of human CD8+ T cell responses from primary to persistent phases of Epstein–Barr virus infection. J. Exp. Med. 195, 893–905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Catalina, M. D., Sullivan, J. L., Brody, R. M. & Luzuriaga, K. Phenotypic and functional heterogeneity of EBV epitope-specific CD8+ T cells. J. Immunol. 168, 4184–4191 (2002).

    CAS  PubMed  Google Scholar 

  43. Roos, M. T. et al. Changes in the composition of circulating CD8+ T cell subsets during acute Epstein–Barr and human immunodeficiency virus infections in humans. J. Infect. Dis. 182, 451–458 (2000). This reference, together with references 44 and 46, describe longitudinal studies on primary responses to virus in humans.

    CAS  PubMed  Google Scholar 

  44. Appay, V. et al. Dynamics of T cell responses in HIV infection. J. Immunol. 168, 3660–3666 (2002).

    CAS  PubMed  Google Scholar 

  45. Wills, M. R. et al. Identification of naive or antigen-experienced human CD8+ T cells by expression of co-stimulation and chemokine receptors: analysis of the human cytomegalovirus-specific CD8+ T cell response. J. Immunol. 168, 5455–5464 (2002).

    CAS  PubMed  Google Scholar 

  46. Gamadia, L. E. et al. Primary immune responses to human CMV: a critical role for IFN-γ-producing CD4+ T cells in protection against CMV disease. Blood 101, 2686–2692 (2003).

    CAS  PubMed  Google Scholar 

  47. Thimme, R. et al. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J. Exp. Med. 194, 1395–1406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Urbani, S. et al. Virus-specific CD8+ lymphocytes share the same effector-memory phenotype but exhibit functional differences in acute hepatitis B and C. J. Virol. 76, 12423–12434 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002). Together with reference 51, this study shows the phenotypic differences between virus-specific CD8+ T cells in large cohorts.

    CAS  PubMed  Google Scholar 

  51. Tussey, L. G. et al. Antigen burden is major determinant of human immunodeficiency virus-specific CD8+ T cell maturation state: potential implications for therapeutic immunization. J. Infect. Dis. 187, 364–374 (2003).

    PubMed  Google Scholar 

  52. Baron, V. et al. The repertoires of circulating human CD8+ central and effector memory T cell subsets are largely distinct. Immunity 18, 193–204 (2003).

    PubMed  Google Scholar 

  53. Hislop, A. D. et al. EBV-specific CD8+ T cell memory: relationships between epitope specificity, cell phenotype, and immediate effector function. J. Immunol. 167, 2019–2029 (2001).

    CAS  PubMed  Google Scholar 

  54. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    CAS  PubMed  Google Scholar 

  55. Alves, N. L., Hooibrink, B., Arosa, F. A. & Van Lier, R. A. IL-15 induces antigen-independent expansion and differentiation of human naive CD8+ T cells in vitro. Blood 102, 2541–2546 (2003)

    CAS  PubMed  Google Scholar 

  56. Kuijpers, T. W. et al. Frequencies of circulating cytolytic, CD45RA+CD27CD8+ T lymphocytes depend on infection with CMV. J. Immunol. 170, 4342–4348 (2003).

    CAS  PubMed  Google Scholar 

  57. Khan, N. et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169, 1984–1992 (2002).

    CAS  PubMed  Google Scholar 

  58. Wang, E. C. et al. CD8highCD57+ T lymphocytes in normal, healthy individuals are oligoclonal and respond to human cytomegalovirus. J. Immunol. 155, 5046–5056 (1995).

    CAS  PubMed  Google Scholar 

  59. Kern, F. et al. Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J. Infect. Dis. 185, 1709–1716 (2002).

    CAS  PubMed  Google Scholar 

  60. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    CAS  PubMed  Google Scholar 

  61. Monteiro, J., Batliwalla, F., Ostrer, H. & Gregersen, P. K. Shortened telomeres in clonally expanded CD28CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J. Immunol. 156, 3587–3590 (1996).

    CAS  PubMed  Google Scholar 

  62. Hamann, D. et al. Evidence that human CD8+CD45RA+. Int. Immunol. 11, 1027–1033 (1999).

    CAS  PubMed  Google Scholar 

  63. Posnett, D. N., Sinha, R., Kabak, S. & Russo, C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to 'benign monoclonal gammapathy'. J. Exp. Med. 179, 609–618 (1994).

    CAS  PubMed  Google Scholar 

  64. Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunol. 1, 433–440 (2000).

    CAS  Google Scholar 

  65. Arens, R. et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFN-γ-mediated B cell depletion. Immunity. 15, 801–812 (2001).

    CAS  PubMed  Google Scholar 

  66. Hintzen, R. Q. et al. Regulation of CD27 expression on subsets of mature T-lymphocytes. J. Immunol. 151, 2426–2435 (1993).

    CAS  PubMed  Google Scholar 

  67. McMichael, A. J. & Rowland-Jones, S. L. Cellular immune responses to HIV. Nature 410, 980–987 (2001).

    CAS  PubMed  Google Scholar 

  68. van Baarle, D. et al. Lack of Epstein–Barr virus- and HIV-specific CD27CD8+ T cells is associated with progression to viral disease in HIV-infection. AIDS 16, 2001–2011 (2002).

    CAS  PubMed  Google Scholar 

  69. Appay, V. & Rowland-Jones, S. L. Premature ageing of the immune system: the cause of AIDS? Trends Immunol. 23, 580–585 (2002).

    CAS  PubMed  Google Scholar 

  70. van Baarle, D., Kostense, S., Van Oers, M. H., Hamann, D. & Miedema, F. Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends Immunol. 23, 586–591 (2002).

    CAS  PubMed  Google Scholar 

  71. Janssen, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    CAS  PubMed  Google Scholar 

  72. Sun, J. C. & Bevan, M. J. Defective CD8+ T cell memory following acute infection without CD4+ T cell help. Science 300, 339–342 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    CAS  PubMed  Google Scholar 

  74. Riddell, S. R., Reusser, P. & Greenberg, P. D. Cytotoxic T cells specific for cytomegalovirus: a potential therapy for immunocompromised patients. Rev. Infect. Dis. 13 Suppl. 11, S966–S973 (1991).

    Google Scholar 

  75. Lee, P. P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med. 5, 677–685 (1999).

    CAS  PubMed  Google Scholar 

  76. Dunbar, P. R. et al. A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J. Immunol. 165, 6644–6652 (2000).

    CAS  PubMed  Google Scholar 

  77. Fong, L. et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl Acad. Sci. USA 98, 8809–8814 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Trowbridge, I. S. & Thomas, M. L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994).

    CAS  PubMed  Google Scholar 

  79. Streuli, M., Hall, L. R., Saga, Y., Schlossman, S. F. & Saito, H. Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens. J. Exp. Med. 166, 1548–1566 (1987).

    CAS  PubMed  Google Scholar 

  80. Smith, S. H., Brown, M. H., Rowe, D., Callard, R. E. & Beverley, P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology 58, 63–70 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sanders, M. E. et al. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-γ production. J. Immunol. 140, 1401–1407 (1988).

    CAS  PubMed  Google Scholar 

  82. Novak, T. J. et al. Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity. 1, 109–119 (1994).

    CAS  PubMed  Google Scholar 

  83. Springer, T. A. & Lasky, L. A. Cell adhesion. Sticky sugars for selectins. Nature 349, 196–197 (1991).

    CAS  PubMed  Google Scholar 

  84. Kannagi, R. Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struct. Biol. 12, 599–608 (2002).

    CAS  PubMed  Google Scholar 

  85. Janeway, C. A., Jr & Bottomly, K. Signals and signs for lymphocyte responses. Cell 76, 275–285 (1994).

    CAS  PubMed  Google Scholar 

  86. June, C. H., Bluestone, J. A., Nadler, L. M. & Thompson, C. B. The B7 and CD28 receptor families. Immunol. Today 15, 321–331 (1994).

    CAS  PubMed  Google Scholar 

  87. Linsley, P. S., Bradshaw, J., Urnes, M., Grosmaire, L. & Ledbetter, J. A. CD28 engagement by B7/BB-1 induces transient downregulation of CD28 synthesis and prolonged unresponsiveness to CD28 signaling. J. Immunol. 150, 3161–3169 (1993).

    CAS  PubMed  Google Scholar 

  88. Goodwin, R. G. et al. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 73, 447–456 (1993).

    CAS  PubMed  Google Scholar 

  89. Hintzen, R. Q., de Jong, R., Lens, S. M. & Van Lier, R. A. CD27: marker and mediator of T-cell activation? Immunol. Today 15, 307–311 (1994).

    CAS  PubMed  Google Scholar 

  90. de Jong, R. et al. The CD27 subset of peripheral blood memory CD4+ lymphocytes contains functionally differentiated T lymphocytes that develop by persistent antigenic stimulation in vivo. Eur. J. Immunol. 22, 993–999 (1992).

    CAS  PubMed  Google Scholar 

  91. Sallusto, F. & Lanzavecchia, A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev. 177, 134–140 (2000).

    CAS  PubMed  Google Scholar 

  92. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    CAS  PubMed  Google Scholar 

  93. He, X. S. et al. Analysis of the frequencies and of the memory T cell phenotypes of human CD8+ T cells specific for influenza A viruses. J. Infect. Dis. 187, 1075–1084 (2003).

    PubMed  Google Scholar 

  94. Chen, G. et al. CD8 T cells specific for human immunodeficiency virus, Epstein–Barr virus, and cytomegalovirus lack molecules for homing to lymphoid sites of infection. Blood 98, 156–164 (2001).

    CAS  PubMed  Google Scholar 

  95. Kern, F. et al. Distribution of human CMV-specific memory T cells among the CD8+ subsets defined by CD57, CD27, and CD45 isoforms. Eur. J. Immunol. 29, 2908–2915 (1999).

    CAS  PubMed  Google Scholar 

  96. Sandberg, J. K., Fast, N. M. & Nixon, D. F. Functional heterogeneity of cytokines and cytolytic effector molecules in human CD8+ T lymphocytes. J. Immunol. 167, 181–187 (2001).

    CAS  PubMed  Google Scholar 

  97. Gamadia, L. E. et al. Differentiation of cytomegalovirus-specific CD8+ T cells in healthy and immunosuppressed virus carriers. Blood 98, 754–761 (2001).

    CAS  PubMed  Google Scholar 

  98. He, X. S. et al. Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide–MHC tetramers. Proc. Natl Acad. Sci. USA 96, 5692–5697 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ogg, G. S. et al. Longitudinal phenotypic analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes: correlation with disease progression. J. Virol. 73, 9153–9160 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tomaru, U. et al. Detection of virus-specific T cells and CD8+ T-cell epitopes by acquisition of peptide–HLA–GFP complexes: analysis of T-cell phenotype and function in chronic viral infections. Nature Med. 9, 469–476 (2003).

    CAS  PubMed  Google Scholar 

  101. Nagai, M. et al. Increased activated human T cell lymphotropic virus type I (HTLV-I) Tax11–19-specific memory and effector CD8+ cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with HTLV-I provirus load. J. Infect. Dis. 183, 197–205 (2001).

    CAS  PubMed  Google Scholar 

  102. Lechner, F. et al. CD8+ T lymphocyte responses are induced during acute hepatitis C virus infection but are not sustained. Eur. J. Immunol. 30, 2479–2487 (2000).

    CAS  PubMed  Google Scholar 

  103. Croft, M. Co-stimulatory members of the TNFR family: keys to effective T cell immunity? Nature Rev. Immunol. 3, 609–620 (2003).

    CAS  Google Scholar 

  104. Lens, S. M. et al. Phenotype and function of human B cells expressing CD70 (CD27 ligand). Eur. J. Immunol. 26, 2964–2971 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr E. Eldering for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René A. W. van Lier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

2B4

CCL21

CCR5

CCR7

CD11A

CD27

CD28

CD38

CD56

CD57

CD62L

CD70

IFN-γ

IL-2

IL-4

IL-5

Entrez

CMV

EBV

HBV

HCV

HIV

LCMV

VZV

Glossary

PERFORIN

A calcium-sensitive membraneolytic protein that is found in cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells.

GRANZYME B

A member of a family of serine proteinases that are mainly found in the cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells.

MHC CLASS I TETRAMERS

Fluorescent-labelled tetravalent complexes of MHC class I or class II molecules complexed with antigenic peptide. They can be used to identify antigen-specific T cells by flow cytometry.

SEROPOSITIVITY

The presence of virus-specific antibodies in the serum of an individual.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Lier, R., ten Berge, I. & Gamadia, L. Human CD8+ T-cell differentiation in response to viruses. Nat Rev Immunol 3, 931–939 (2003). https://doi.org/10.1038/nri1254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing