Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combinatorial antibody libraries: new advances, new immunological insights

Key Points

  • This Review discusses the theory and practices behind the generation of combinatorial antibody libraries.

  • Such libraries give scientists unprecedented control over the antibody repertoire.

  • They have led to many antibody drugs, including adalimumab (Humira; AbbVie), which is the best-selling drug in the world.

  • As combinatorial antibody libraries allow a detailed analysis of the output of the immune response, they have allowed us to understand how the adaptive immune system copes with infection when there is not sufficient time to develop a mature antibody response. This has been termed an 'SOS response'.

  • In their intracellular format, antibodies can be used as selectable proteins that perturb cell fates. Such antibodies are usually gain-of-function agonists.

  • We have moved from the engineering of antibodies to engineering with antibodies — this represents a whole new dimension in immunochemistry.

Abstract

Immunochemists have become quite proficient in engineering existing antibody molecules to control their pharmacological properties. However, in terms of generating new antibodies, the combinatorial antibody library has become a central feature of modern immunochemistry. These libraries are essentially an immune system in a test tube and enable the selection of antibodies without the constraints of whole animal or cell-based systems. This Review provides an overview of how antibody libraries are constructed and discusses what can be learnt from these synthetic systems. In particular, the Review focuses on new biological insights from antibody libraries — such as the concept of 'SOS antibodies' — and the growing use of intracellular antibodies to perturb cellular functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common fragments of antibodies generated by antibody engineering.
Figure 2: Construction and selection from combinatorial antibody libraries.
Figure 3: Germ-line 'SOS' antibodies against influenza virus.
Figure 4: Agonist antibodies reveal receptor pleiotropism.

Similar content being viewed by others

References

  1. Edelman, G. M. Dissociation of γ-globulin. J. Am. Chem. Soc. 81, 3155–3156 (1959).

    Article  CAS  Google Scholar 

  2. Porter, R. R. The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem. J. 73, 119–126 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Romain, G. et al. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells. Blood 124, 3241–3249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chames, P. & Baty, D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? mAbs 1, 539–547 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hess, C., Venetz, D. & Neri, D. Emerging classes of armed antibody therapeutics against cancer. Med. Chem. Commun. 5, 408–431 (2014).

    Article  CAS  Google Scholar 

  7. Peng, Y. J. et al. A general method for insertion of functional proteins within proteins via combinatorial selection of permissive junctions. Chem. Biol. 22, 1134–1143 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. et al. Functional antibody CDR3 fusion proteins with enhanced pharmacological properties. Angew. Chem. Int. Ed. Engl. 52, 8295–8298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y. et al. An antibody CDR3-erythropoietin fusion protein. ACS Chem. Biol. 8, 2117–2121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y., Liu, Y., Wang, Y., Schultz, P. G. & Wang, F. Rational design of humanized dual-agonist antibodies. J. Am. Chem. Soc. 137, 38–41 (2015).

    Article  PubMed  Google Scholar 

  11. Bashford-Rogers, R. J. M. et al. Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res. 23, 1874–1884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lerner, R. A. Manufacturing immunity to disease in a test tube: the magic bullet realized. Angew. Chem. Int. Ed. Engl. 45, 8106–8125 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Sastry, L. et al. Cloning of the immunological repertoire in Escherichia coli for generation of monoclonal catalytic antibodies: construction of a heavy-chain variable region-specific cDNA library. Proc. Natl Acad. Sci. USA 86, 5728–5732 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Orlandi, R., Gussow, D. H., Jones, P. T. & Winter, G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl Acad. Sci. USA 86, 3833–3837 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Huse, W. D. et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281 (1989). This is the original paper describing combinatorial libraries.

    Article  CAS  PubMed  Google Scholar 

  17. Mccafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990). This study shows how antibodies can be expressed in a filamentous phage.

    Article  CAS  PubMed  Google Scholar 

  18. Barbas, C. F., Kang, A. S., Lerner, R. A. & Benkovic, S. J. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl Acad. Sci. USA 88, 7978–7982 (1991). This is an early report on the phagemid format.

    Article  CAS  PubMed  Google Scholar 

  19. Lerner, R. A., Kang, A. S., Bain, J. D., Burton, D. R. & Barbas, C. F. Antibodies without Immunization. Science 258, 1313–1314 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Persson, M. A. A. Twenty years of combinatorial antibody libraries, but how well do they mimic the immunoglobulin repertoire? Proc. Natl Acad. Sci. USA 106, 20137–20138 (2009). This paper is a thorough analysis of combinatorial library content.

    Article  CAS  PubMed  Google Scholar 

  21. Paul, W. E. Fundamental Immunology (Wolters Kluwer/Lippincott Williams & Wilkins, 2008).

    Google Scholar 

  22. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Melchers, F. et al. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol. Rev. 175, 33–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Schaffitzel, C., Hanes, J., Jermutus, L. & Pluckthun, A. Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J. Immunol. Methods 231, 119–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Breitling, F., Dubel, S., Seehaus, T., Klewinghaus, I. & Little, M. A surface expression vector for antibody screening. Gene 104, 147–153 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Boder, E. T. & Wittrup, K. D. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol. 328, 430–444 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Georgiou, G. et al. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, C., Jacobsen, F. W., Cai, L., Chen, Q. & Shen, W. D. Development of a novel mammalian cell surface antibody display platform. mAbs 2, 508–518 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Philippidis, A. The top 25 best-selling drugs of 2014. Genetic Engineering & Biotechnology News http://www.genengnews.com/insight-and-intelligence/the-top-25-best-selling-drugs-of-2014/77900383/#gsaccess (2015).

    Google Scholar 

  31. Taube, R. et al. Lentivirus display: stable expression of human antibodies on the surface of human cells and virus particles. PLoS ONE 3, e3181 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ponsel, D., Neugebauer, J., Ladetzki-Baehs, K. & Tissot, K. High Affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16, 3675–3700 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tiller, T. et al. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. mAbs 5, 445–470 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barbas, C. F., Rosenblum, J. S. & Lerner, R. A. Direct selection of antibodies that coordinate metals from semisynthetic combinatorial libraries. Proc. Natl Acad. Sci. USA 90, 6385–6389 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Kashyap, A. K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl Acad. Sci. USA 105, 5986–5991 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sui, J. H. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 65–273 (2009).

    Article  Google Scholar 

  38. Lerner, R. A. Rare antibodies from combinatorial libraries suggests an S.O.S. component of the human immunological repertoire. Mol. Biosyst. 7, 1004–1012 (2011). This is the first suggestion of an SOS component of the antibody repertoire.

    Article  CAS  PubMed  Google Scholar 

  39. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dreyfus, C. et al. Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Cohn, M. & Langman, R. E. The protection: the unit of humoral immunity selected by evolution. Immunol. Rev. 115, 7–147 (1990).

    Article  Google Scholar 

  43. Janeway, C. A. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Lingwood, D. et al. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489, 566–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Pappas, L. et al. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature 516, 418–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Yea, K. et al. Agonist antibody that induces human malignant cells to kill one another. Proc. Natl Acad. Sci. USA 112, E6158–E6165 (2015). This is a new approach to cancer therapy.

    Article  CAS  PubMed  Google Scholar 

  47. Xie, J., Zhang, H. K., Yea, K. & Lerner, R. A. Autocrine signaling based selection of combinatorial antibodies that transdifferentiate human stem cells. Proc. Natl Acad. Sci. USA 110, 8099–8104 (2013). This paper is a description of the power of autocrine selection.

    Article  CAS  PubMed  Google Scholar 

  48. Xie, J. et al. Prevention of cell death by antibodies selected from intracellular combinatorial libraries. Chem. Biol. 21, 274–283 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Yea, K. et al. Converting stem cells to dendritic cells by agonist antibodies from unbiased morphogenic selections. Proc. Natl Acad. Sci. USA 110, 14966–14971 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Yea, K., Xie, J., Zhang, H., Zhang, W. & Lerner, R. A. Selection of multiple agonist antibodies from intracellular combinatorial libraries reveals that cellular receptors are functionally pleiotropic. Curr. Opin. Chem. Biol. 26, 1–7 (2015). This paper is a detailed analysis of receptor pleiotropism.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, H. K., Wilson, I. A. & Lerner, R. A. Selection of antibodies that regulate phenotype from intracellular combinatorial antibody libraries. Proc. Natl Acad. Sci. USA 109, 15728–15733 (2012). This is the first description of using intracellular antibodies to regulate cell fates.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, H. K. et al. Selecting agonists from single cells infected with combinatorial antibody libraries. Chem. Biol. 20, 734–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Lerner, R. A. et al. Antibodies from combinatorial libraries use functional receptor pleiotropism to regulate cell fates. Q. Rev. Biophys. 48, 389–394 (2015).

    Article  PubMed  Google Scholar 

  54. Melidoni, A. N., Dyson, M. R., Wormald, S. & McCafferty, J. Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells. Proc. Natl Acad. Sci. USA 110, 17802–17807 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zebedee, S. L., et al. Human combinatorial antibody libraries to hepatitis B surface antigen. Proc. Natl Acad. Sci. USA 89, 3175–3179 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks I. Wilson, M. Pique, J. Joyce, D. Burton, R. Stanfield and W. Marisco for helpful discussions. M. Pique and I. Wilson helped with some of the figures. I thank the JPB Foundation and Zebra Biologics for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Lerner.

Ethics declarations

Competing interests

R.A.L. has a financial interest in Zebra Biologics.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, R. Combinatorial antibody libraries: new advances, new immunological insights. Nat Rev Immunol 16, 498–508 (2016). https://doi.org/10.1038/nri.2016.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.67

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research