Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Direct-acting antiviral agents for hepatitis C: structural and mechanistic insights

Key Points

  • Direct-acting antiviral agents targeting the viral NS3/4A protease, NS5B polymerase and NS5A protein have been developed

  • Combinations of antiviral agents with different mechanism of action lead to high rates of sustained virologic response without the need for PEG-IFN

  • Classes of direct-acting antiviral agents have different antiviral attributes such as barrier to resistance and genotypic coverage, and different clinical attributes such as adverse effects, dosing, and drug–drug interactions

  • The importance of resistance-associated variants present at baseline or after a course of unsuccessful therapy differs by antiviral class and the genotype subtype

Abstract

The treatment of HCV infection has evolved at an extremely rapid pace over the past few years. The development of direct-acting antiviral agents, which potently inhibit different stages in the viral life cycle, has led to the replacement of interferon with well-tolerated oral therapies with cure rates of >90% in most patient populations. Understanding the mechanisms of action of the various agents as well as related issues, including the molecular basis for resistance, helps to guide drug development and clinical use. In this Review, we provide a mechanistic description of NS3/4A protease inhibitors, nucleotide and non-nucleotide inhibitors of the NS5B viral polymerase and inhibitors of the NS5A protein, followed by a summary of clinical data from studies of each drug class alone and in combination. Remaining challenges in drug development efforts are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HCV life cycle and site of action of DAAs.
Figure 2: Location of resistance-associated amino acid substitutions in relation to drug binding.
Figure 3: Mechanisms of NS5B-mediated RNA synthesis.
Figure 4: Effect of baseline RAVs on different direct-acting antiviral regimens.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mohd Hanafiah, K., Groeger, J., Flaxman, A. D. & Wiersma, S. T. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology 57, 1333–1342 (2013).

    Article  PubMed  Google Scholar 

  2. Bialek, S. R. & Terrault, N. A. The changing epidemiology and natural history of hepatitis C virus infection. Clin. Liver Dis. 10, 697–715 (2006).

    Article  PubMed  Google Scholar 

  3. Rupp, D. & Bartenschlager, R. Targets for antiviral therapy of hepatitis C. Semin. Liver Dis. 34, 9–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Hézode, C. et al. Triple therapy in treatment-experienced patients with HCV-cirrhosis in a multicentre cohort of the French Early Access Programme (ANRS CO20-CUPIC) — NCT01514890. J. Hepatol. 59, 434–441 (2013).

    Article  PubMed  Google Scholar 

  5. Afdhal, N. et al. Ledipasvir and sofosbuvir for previously treated HCV genotype 1 infection. N. Engl. J. Med. 370, 1483–1493 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Feld, J. J. et al. Treatment of HCV with ABT-450/r-ombitasvir and dasabuvir with ribavirin. N. Engl. J. Med. 370, 1594–1603 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Bartenschlager, R., Lohmann, V. & Penin, F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat. Rev. Microbiol. 11, 482–496 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Lange, C. M., Jacobson, I. M., Rice, C. M. & Zeuzem, S. Emerging therapies for the treatment of hepatitis C. EMBO Mol. Med. 6, 4–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Scheel, T. K. & Rice, C. M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat. Med. 19, 837–849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl Acad. Sci. USA 102, 9294–9299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Love, R. A. et al. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87, 331–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Yao, N., Reichert, P., Taremi, S. S., Prosise, W. W. & Weber, P. C. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 7, 1353–1363 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426, 186–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Schiering, N. et al. A macrocyclic HCV NS3/4A protease inhibitor interacts with protease and helicase residues in the complex with its full-length target. Proc. Natl Acad. Sci. USA 108, 21052–21056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwong, A. D., Kauffman, R. S., Hurter, P. & Mueller, P. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat. Biotechnol. 29, 993–1003 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Hazuda, D. J., Burroughs, M., Howe, A. Y., Wahl, J. & Venkatraman, S. Development of boceprevir: a first-in-class direct antiviral treatment for chronic hepatitis C infection. Ann. NY Acad. Sci. 1291, 69–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Romano, K. P. et al. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog. 8, e1002832 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romano, K. P., Ali, A., Royer, W. E. & Schiffer, C. A. Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc. Natl Acad. Sci. USA 107, 20986–20991 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Romano, K. P. et al. Molecular mechanisms of viral and host cell substrate recognition by hepatitis C virus NS3/4A protease. J. Virol. 85, 6106–6116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pawlotsky, J. M. Hepatitis C treatment: the data flood goes on — an update from the liver meeting 2014. Gastroenterology 148, 468–479 (2015).

    Article  PubMed  Google Scholar 

  24. Summa, V. et al. MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob. Agents Chemother. 56, 4161–4167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang, Y. et al. Antiviral suppression versus restoration of RIG-I signaling by hepatitis C protease and polymerase inhibitors. Gastroenterology 135, 1710–1718.e2 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Sofia, M. J., Chang, W., Furman, P. A., Mosley, R. T. & Ross, B. S. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J. Med. Chem. 55, 2481–2531 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Lesburg, C. A. et al. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6, 937–943 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Bressanelli, S. et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl Acad. Sci. USA 96, 13034–13039 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Biswal, B. K. et al. Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J. Biol. Chem. 280, 18202–18210 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Appleby, T. C. et al. Structural basis for RNA replication by the hepatitis C virus polymerase. Science 347, 771–775 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Di Marco, S. et al. Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. J. Biol. Chem. 280, 29765–29770 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Rigat, K. L. et al. Mechanism of inhibition for BMS-791325, a novel non-nucleoside inhibitor of hepatitis C virus NS5B polymerase. J. Biol. Chem. 289, 33456–33468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kukolj, G. et al. Binding site characterization and resistance to a class of non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase. J. Biol. Chem. 280, 39260–39267 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Biswal, B. K. et al. Non-nucleoside inhibitors binding to hepatitis C virus NS5B polymerase reveal a novel mechanism of inhibition. J. Mol. Biol. 361, 33–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Dvory-Sobol, H. et al. Clinical and in vitro resistance to GS-9669, a thumb site II nonnucleoside inhibitor of the hepatitis C virus NS5B polymerase. Antimicrob. Agents Chemother. 58, 6599–6606 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kati, W. et al. In vitro activity and resistance profile of dasabuvir, a nonnucleoside hepatitis C virus polymerase inhibitor. Antimicrob. Agents Chemother. 59, 1505–1511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dutartre, H., Bussetta, C., Boretto, J. & Canard, B. General catalytic deficiency of hepatitis C virus RNA polymerase with an S282T mutation and mutually exclusive resistance towards 2′-modified nucleotide analogues. Antimicrob. Agents Chemother. 50, 4161–4169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Svarovskaia, E. S. et al. Infrequent development of resistance in genotype 1–6 hepatitis C virus-infected subjects treated with sofosbuvir in phase 2 and 3 clinical trials. Clin. Infect. Dis. 59, 1666–1674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tong, X. et al. In vivo emergence of a novel mutant L159F/L320F in the NS5B polymerase confers low-level resistance to the HCV polymerase inhibitors mericitabine and sofosbuvir. J. Infect. Dis. 209, 668–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen, L. T. Naturally occurring HCV NS5A/B inhibitor resistance-associated mutations to direct-acting antivirals. Antivir. Ther. http://dx.doi.org/10.3851/IMP3025 (2016).

  41. Donaldson, E. F., Harrington, P. R., O'Rear, J. J. & Naeger, L. K. Clinical evidence and bioinformatics characterization of potential hepatitis C virus resistance pathways for sofosbuvir. Hepatology 61, 56–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Ross-Thriepland, D. & Harris, M. Hepatitis C virus NS5A: enigmatic but still promiscuous 10 years on! J. Gen. Virol. 96, 727–738 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Tellinghuisen, T. L., Marcotrigiano, J. & Rice, C. M. Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature 435, 374–379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Love, R. A., Brodsky, O., Hickey, M. J., Wells, P. A. & Cronin, C. N. Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. J. Virol. 83, 4395–4403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lambert, S. M. et al. The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors. Protein Sci. 23, 723–734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verdegem, D. et al. Domain 3 of NS5A protein from the hepatitis C virus has intrinsic α-helical propensity and is a substrate of cyclophilin A. J. Biol. Chem. 286, 20441–20454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hanoulle, X., Badillo, A., Verdegem, D., Penin, F. & Lippens, G. The domain 2 of the HCV NS5A protein is intrinsically unstructured. Protein Pept. Lett. 17, 1012–1018 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Belema, M. & Meanwell, N. A. Discovery of daclatasvir, a pan-genotypic hepatitis C virus NS5A replication complex inhibitor with potent clinical effect. J. Med. Chem. 57, 5057–5071 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Feld, J. J. Interferon-free strategies with a nucleoside/nucleotide analogue. Semin. Liver Dis. 34, 37–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Barakat, K. H. et al. A refined model of the HCV NS5A protein bound to daclatasvir explains drug-resistant mutations and activity against divergent genotypes. J. Chem. Inf. Model. 55, 362–373 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Berger, C. et al. Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication. Gastroenterology 147, 1094–1105.e25 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Nettles, J. H. et al. Asymmetric binding to NS5A by daclatasvir (BMS-790052) and analogs suggests two novel modes of HCV inhibition. J. Med. Chem. 57, 10031–10043 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ascher, D. B. et al. Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci. Rep. 4, 4765 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sarrazin, C. et al. Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology 132, 1767–1777 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hézode, C. et al. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N. Engl. J. Med. 360, 1839–1850 (2009).

    Article  PubMed  Google Scholar 

  56. Feld, J. J. Is there a role for ribavirin in the era of hepatitis C virus direct-acting antivirals? Gastroenterology 142, 1356–1359 (2012).

    Article  PubMed  Google Scholar 

  57. Jacobson, I. M. et al. A practical guide for the use of boceprevir and telaprevir for the treatment of hepatitis C. J. Viral Hepat. 19 (Suppl. 2), 1–26 (2012).

    Article  PubMed  Google Scholar 

  58. Zeuzem, S. et al. Simeprevir increases rate of sustained virologic response among treatment-experienced patients with HCV genotype-1 infection: a phase IIb trial. Gastroenterology 146, 430–441.e6 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Dierynck, I. et al. Deep-sequencing analysis of the gene encoding the hepatitis C virus nonstructural 3-4A protease confirms a low prevalence of telaprevir-resistant variants at baseline and the end of the REALIZE study. J. Infect. Dis. 210, 1871–1880 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Nguyen, L. T. et al. Baseline prevalence and emergence of protease inhibitor resistance mutations following treatment in chronic HCV genotype-1-infected individuals. Antivir. Ther. 20, 865–869 (2014).

    Article  CAS  Google Scholar 

  61. Manns, M. et al. Simeprevir with pegylated interferon alfa 2a or 2b plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-2): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 384, 414–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Jacobson, I. M. et al. Simeprevir with pegylated interferon alfa 2a plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-1): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 384, 403–413 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Lok, A. S. et al. Preliminary study of two antiviral agents for hepatitis C genotype 1. N. Engl. J. Med. 366, 216–224 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Chayama, K. et al. Dual therapy with the nonstructural protein 5A inhibitor, daclatasvir, and the nonstructural protein 3 protease inhibitor, asunaprevir, in hepatitis C virus genotype 1b-infected null responders. Hepatology 55, 742–748 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Ribeiro, R. M. et al. Quantifying the diversification of hepatitis C virus (HCV) during primary infection: estimates of the in vivo mutation rate. PLoS Pathog. 8, e1002881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Powdrill, M. H. et al. Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc. Natl Acad. Sci. USA 108, 20509–20513 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chayama, K. & Hayes, C. N. HCV drug resistance challenges in Japan: the role of pre-existing variants and emerging resistant strains in direct acting antiviral therapy. Viruses 7, 5328–5342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lawitz, E. et al. Simeprevir plus sofosbuvir, with or without ribavirin, to treat chronic infection with hepatitis C virus genotype 1 in non-responders to pegylated interferon and ribavirin and treatment-naive patients: the COSMOS randomised study. Lancet 384, 1756–1765 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Kwo, P. et al. A phase 3, randomised, open-label study to evaluate the efficacy and safety of 8 and 12 weeks of simeprevir (SMV) plus sofosbuvir (SOF) in treatment-naïve and -experienced patients with chronic HCV genotype 1 infection without cirrhosis: optimist-1[abstract LP14]. J. Hepatol. 62, S270 (2015).

    Article  Google Scholar 

  70. Lawitz, E. et al. A phase 3, open-label, single-arm study to evaluate the efficacy and safety of 12 weeks of simeprevir (SMV) plus sofosbuvir (SOF) in treatment-naïve or -experienced patients with chronic HCV genotype 1 infection and cirrhosis: optimist-2 [abstract LP04]. J. Hepatol. 62, S264–S265 (2015).

    Article  Google Scholar 

  71. AASLD/IDSA HCV Guidance Panel. Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. Hepatology 62, 932–954 (2015).

  72. Poordad, F. et al. Fixed-dose combination therapy with daclatasvir, asunaprevir, and beclabuvir for noncirrhotic patients with HCV genotype 1 infection. JAMA 313, 1728–1735 (2015).

    Article  PubMed  Google Scholar 

  73. Lawitz, E. et al. Once daily sofosbuvir/ledipasvir fixed dose combination with or without ribavirin resulted in ≥95% sustained virologic response in patients with HCV genotype 1, including patients with cirrhosis: the LONESTAR trial [oral presentation]. Hepatology 58, 86A (2013).

    Google Scholar 

  74. Gentile, I. et al. ABT-450: a novel protease inhibitor for the treatment of hepatitis C virus infection. Curr. Med. Chem. 21, 3261–3270 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Ferenci, P. et al. ABT-450/r-ombitasvir and dasabuvir with or without ribavirin for HCV. N. Engl. J. Med. 370, 1983–1992 (2014).

    Article  PubMed  CAS  Google Scholar 

  76. Feld, J. J. et al. TURQUOISE-III: safety and efficacy of 12-week ribavirin-free treatment for patients with HCV genotype 1b and cirrhosis [poster presentation P226]. J. Viral Hepat. 22 (Suppl. 2), 134–135 (2015).

    Google Scholar 

  77. Poordad, F. et al. ABT-450/r-ombitasvir and dasabuvir with ribavirin for hepatitis C with cirrhosis. N. Engl. J. Med. 370, 1973–1982 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Pol, S. et al. Interferon-free regimens of ombitasvir and ABT-450/r with or without ribavirin in patients with HCV genotype 4 infection: PEARL-I study results [abstract 1928]. Hepatology 60 (Suppl. 1), 1128A (2014).

    Google Scholar 

  79. Forns, X. et al. C-SALVAGE: grazoprevir (GZR; MK-5172), elbasvir (EBR; MK-8742) and ribavirin (RBV) for chronic HCV-genotype 1 (GT1) infection after failure of direct-acting antiviral (DAA) therapy [abstract O001]. J. Hepatol. 62, S190 (2015).

    Article  Google Scholar 

  80. Zeuzem, S. et al. The phase 3 C-EDGE treatment-naïve (TN) study of a 12-week oral regimen of grazoprevir (GZR, MK-5172)/elbasvir (EBR, MK-8742) in patients with chronic HCV genotype (GT) 1, 4, or 6 infection [abstract G07]. J. Hepatol. 62, S213 (2015).

    Article  Google Scholar 

  81. Krishnan, P. et al. Long-term follow-up of treatment-emergent resistance-associated variants in NS3, NS5A and NS5B with paritaprevir/r-, ombitasvir- and dasabuvir-based regimens [abstract O057]. J. Hepatol. 62, S220 (2015).

    Article  Google Scholar 

  82. Kohli, A. et al. Virological response after 6 week triple-drug regimens for hepatitis C: a proof-of-concept phase 2A cohort study. Lancet 385, 1107–1113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McKenzie, R. et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 333, 1099–1105 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Dyson, J. K. et al. Liver toxicity associated with sofosbuvir, an NS5A inhibitor and ribavirin use. J. Hepatol. 64, 234–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Welker, M. W. et al. Lactic acidosis in patients with hepatitis C virus cirrhosis and combined ribavirin/sofosbuvir treatment. J. Hepatol. 64, 790–799 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Renet, S. et al. Extreme bradycardia after first doses of sofosbuvir and daclatasvir in patients receiving amiodarone: 2 cases including a rechallenge. Gastroenterology 149, 1378–1380.e1 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Lawitz, E. et al. Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 368, 1878–1887 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Jacobson, I. M. et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N. Engl. J. Med. 368, 1867–1877 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Gane, E. J. et al. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 368, 34–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Zeuzem, S. et al. Sofosbuvir and ribavirin in HCV genotypes 2 and 3. N. Engl. J. Med. 370, 1993–2001 (2014).

    Article  PubMed  CAS  Google Scholar 

  91. Lawitz, E. et al. Sofosbuvir and ledipasvir fixed-dose combination with and without ribavirin in treatment-naive and previously treated patients with genotype 1 hepatitis C virus infection (LONESTAR): an open-label, randomised, phase 2 trial. Lancet 383, 515–523 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Foster, G. R. et al. Sofosbuvir + peginterferon/ribavirin for 12 weeks versus sofosbuvir + ribavirin for 16 or 24 weeks in genotype 3 HCV infected patients and treatment-experienced cirrhotic patients with genotype 2 HCV: the Boson Study [abstract LO5]. J. Hepatol. 62, S259–S260 (2015).

    Article  Google Scholar 

  93. Sulkowski, M. S. et al. Daclatasvir plus sofosbuvir for previously treated or untreated chronic HCV infection. N. Engl. J. Med. 370, 211–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Afdhal, N. et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N. Engl. J. Med. 370, 1889–1898 (2014).

    Article  PubMed  CAS  Google Scholar 

  95. Kowdley, K. V. et al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. N. Engl. J. Med. 370, 1879–1888 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Brown, R. S. et al. Implications of baseline HCVRNA level and intrapatient viral load variability on OBV/PTV/R + DSV 12-week treatment outcomes[abstract LP39]. J. Hepatol. 62, S283 (2015).

    Article  Google Scholar 

  97. O'Brien, T. R., Feld, J. J., Kottilil, S. & Pfeiffer, R. M. No scientific basis to restrict 8 weeks of treatment with ledipasvir/sofosbuvir to patients with hepatitis C virus RNA <6,000,000 IU/mL. Hepatology 63, 28–30 (2016).

    Article  PubMed  Google Scholar 

  98. Bourliere, M. et al. Ledipasvir-sofosbuvir with or without ribavirin to treat patients with HCV genotype 1 infection and cirrhosis non-responsive to previous protease-inhibitor therapy: a randomised, double-blind, phase 2 trial (SIRIUS). Lancet Infect. Dis. 15, 397–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Charlton, M. et al. Ledipasvir and sofosbuvir plus ribavirin for treatment of HCV infection in patients with advanced liver disease. Gastroenterology 149, 649–659 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Gane, E. J. et al. Safety and efficacy of short-duration treatment with GS-9857 combined with sofosbuvir/GS-5816 in treatment-naïve and DAA-experienced genotype 1 patients with and without cirrhosis [abstract LP03]. J. Hepatol. 62, S264 (2015).

    Article  Google Scholar 

  101. Poordad, F. et al. C-swift: grazoprevir/elbasvir + sofosbuvir in cirrhotic and noncirrhotic, treatment-naïve patients with hepatitis C virus genotype 1 infection, for durations of 4, 6 or 8 weeks and genotype 3 infection for durations of 8 or 12 weeks [abstract O006]. J. Hepatol. 62, S192–S193 (2015).

    Article  Google Scholar 

  102. Lawitz, E. et al. Retreatment of patients who failed 8 or 12 weeks of ledipasvir/sofosbuvir-based regimens with ledipasvir/sofosbuvir for 24 weeks [abstract O005]. J. Hepatol. 62, S192 (2015).

    Article  Google Scholar 

  103. Manns, M. et al. All-oral daclatasvir plus asunaprevir for hepatitis C virus genotype 1b: a multinational, phase 3, multicohort study. Lancet 384, 1597–1605 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Sarrazin, C. et al. The prevalence and the effect of HCV NS5A resistance associated variants in subjects with compensated cirrhosis treated with ledipasvir/sofosbuvir ± RBV[abstract P0773]. J. Hepatol. 62, S620 (2015).

    Article  Google Scholar 

  105. Feld, J. J. et al. Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N. Engl. J. Med. 373, 2599–2607 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Foster, G. R. et al. Sofosbuvir and velpatasvir for HCV genotype 2 and 3 infection. N. Engl. J. Med. 373, 2608–2617 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Li, Q. et al. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc. Natl Acad. Sci. USA 106, 16410–16415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baugh, J. M., Garcia-Rivera, J. A. & Gallay, P. A. Host-targeting agents in the treatment of hepatitis C: a beginning and an end? Antiviral Res. 100, 555–561 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He, S. et al. Repurposing of the antihistamine chlorcyclizine and related compounds for treatment of hepatitis C virus infection. Sci. Transl. Med. 7, 282ra49 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Roth, D. et al. Grazoprevir plus elbasvir in treatment-naive and treatment-experienced patients with hepatitis C virus genotype 1 infection and stage 4–5 chronic kidney disease (the C-SURFER study): a combination phase 3 study. Lancet 386, 1537–1545 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Dore, G. J. & Feld, J. J. Hepatitis C virus therapeutic development: in pursuit of 'perfectovir'. Clin. Infect. Dis. 60, 1829–1836 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Jordan J. Feld.

Ethics declarations

Competing interests

M.G. has received scientific consulting fees and/or research support from AstraZeneca, Gilead Sciences, GlaxoSmithKline, Medivir, Merck, Microbiotix, Pfizer and Tibotec/Johnson & Johnson, as well as funding from the Canadian Institutes of Health Research. J.J.F. has received scientific consulting fees and/or research support from AbbVie, Bristol-Myers Squibb, Gilead Sciences, Janssen, Merck and Theravance, as well as grants from Physician Services' Incorporated Foundation, the National Institutes of Health and the Canadian Institutes of Health Research.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götte, M., Feld, J. Direct-acting antiviral agents for hepatitis C: structural and mechanistic insights. Nat Rev Gastroenterol Hepatol 13, 338–351 (2016). https://doi.org/10.1038/nrgastro.2016.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing