Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel functional roles for enteric glia in the gastrointestinal tract

Abstract

Enteric glia are a unique class of peripheral glial cells within the gastrointestinal tract. Major populations of enteric glia are found in enteric ganglia in the myenteric and submucosal plexuses of the enteric nervous system (ENS); these cells are also found outside of the ENS, within the circular muscle and in the lamina propria of the mucosa. These different populations of cells probably represent unique classes of glial cells with differing functions. In the past few years, enteric glia have been found to be involved in almost every gut function including motility, mucosal secretion and host defence. Subepithelial glia seem to have a trophic and supporting relationship with intestinal epithelial cells, but the necessity of these roles in the maintenance of normal epithelial functions remains to be shown. Likewise, glia within enteric ganglia are activated by synaptic stimulation, suggesting an active role in synaptic transmission, but the precise role of glial activation in normal enteric network activity is unclear. Excitingly, enteric glia can also give rise to new neurons, but seemingly only under limited circumstances. In this Review, we discuss the current body of evidence supporting functional roles of enteric glia and identify key gaps in our understanding of the physiology of these unique cells.

Key Points

  • Unique populations of glial cells reside at multiple levels through the gut wall along the length of the gastrointestinal tract

  • At the level of the mucosa, enteric glia influence epithelial cells and, thus, epithelial barrier function

  • Within enteric ganglia, enteric glia are similar to the astrocytes of the central nervous system, detecting and integrating neural activity

  • Enteric glia have the potential to modulate enteric neurotransmission, but exactly how they influence enteric circuits is unknown

  • Enteric glia have a neurogenic capacity in vitro that seems to be largely suppressed in vivo

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Astrocytes and enteric glia.
Figure 2: Subpopulations of enteric glia.
Figure 3: Types of enteric glial cells.

Similar content being viewed by others

References

  1. Dogiel, A. S. Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugetiere [German]. Arch. Anat. Physiol. Leipzig. Anat. Abt. Jg. 1899, 130–158 (1899).

    Google Scholar 

  2. Gabella, G. Fine structure of the myenteric plexus in the guinea-pig ileum. J. Anat. 111, 69–97 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gershon, M. D. & Rothman, T. P. Enteric glia. Glia 4, 195–204 (1991).

    Article  CAS  Google Scholar 

  4. Hanani, M. et al. Patch-clamp study of neurons and glial cells in isolated myenteric ganglia. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G644–G651 (2000).

    Article  CAS  Google Scholar 

  5. Jessen, K. R. & Mirsky, R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286, 736–737 (1980).

    Article  CAS  Google Scholar 

  6. Ferri, G. L. et al. Evidence for the presence of S-100 protein in the glial component of the human enteric nervous system. Nature 297, 409–410 (1982).

    Article  CAS  Google Scholar 

  7. Hoff, S. et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J. Comp. Neurol. 509, 356–371 (2008).

    Article  Google Scholar 

  8. Laranjeira, C. & Pachnis, V. Enteric nervous system development: recent progress and future challenges. Auton. Neurosci. 151, 61–69 (2009).

    Article  CAS  Google Scholar 

  9. Dulac, C. & Le Douarin, N. M. Phenotypic plasticity of Schwann cells and enteric glial cells in response to the microenvironment. Proc. Natl Acad. Sci. USA 88, 6358–6362 (1991).

    Article  CAS  Google Scholar 

  10. Hanani, M. & Reichenbach, A. Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig. Cell Tissue Res. 278, 153–160 (1994).

    Article  CAS  Google Scholar 

  11. Jessen, K. R. & Mirsky, R. Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J. Neurosci. 3, 2206–2218 (1983).

    Article  CAS  Google Scholar 

  12. Chen, H. et al. Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am. J. Physiol. Cell. Physiol. 292, C497–C507 (2007).

    Article  CAS  Google Scholar 

  13. Nasser, Y., Ho, W. & Sharkey, K. A. Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat. J. Comp. Neurol. 495, 529–553 (2006).

    Article  CAS  Google Scholar 

  14. Costagliola, A., Van Nassauw, L., Snyders, D., Adriaensen, D. & Timmermans, J. P. Voltage-gated delayed rectifier K v 1-subunits may serve as distinctive markers for enteroglial cells with different phenotypes in the murine ileum. Neurosci. Lett. 461, 80–84 (2009).

    Article  CAS  Google Scholar 

  15. Maudlej, N. & Hanani, M. Modulation of dye coupling among glial cells in the myenteric and submucosal plexuses of the guinea pig. Brain Res. 578, 94–98 (1992).

    Article  CAS  Google Scholar 

  16. Savidge, T. C. et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132, 1344–1358 (2007).

    Article  CAS  Google Scholar 

  17. Bach-Ngohou, K. et al. Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12, 14-prostaglandin J2. J. Physiol. 588, 2533–2544 (2010).

    Article  CAS  Google Scholar 

  18. Neunlist, M. et al. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-β1-dependent pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G231–G241 (2007).

    Article  CAS  Google Scholar 

  19. Van Landeghem, L. et al. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G976–G987 (2011).

    Article  CAS  Google Scholar 

  20. Van Landeghem, L. et al. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. BMC Genomics 10, 507 (2009).

    Article  Google Scholar 

  21. Aube, A. C. et al. Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. Gut 55, 630–637 (2006).

    Article  CAS  Google Scholar 

  22. Bush, T. G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    Article  CAS  Google Scholar 

  23. Cornet, A. et al. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease? Proc. Natl Acad. Sci. USA 98, 13306–13311 (2001).

    Article  CAS  Google Scholar 

  24. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  Google Scholar 

  25. von Boyen, G. B. et al. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol. 11, 3 (2011).

    Article  CAS  Google Scholar 

  26. Bradley, J. S. Jr, Parr, E. J. & Sharkey, K. A. Effects of inflammation on cell proliferation in the myenteric plexus of the guinea-pig ileum. Cell Tissue Res. 289, 455–461 (1997).

    Article  Google Scholar 

  27. Joseph, N. M. et al. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J. Clin. Invest. 121, 3398–3411 (2011).

    Article  CAS  Google Scholar 

  28. Nasser, Y., Keenan, C. M., Ma, A. C., McCafferty, D. M. & Sharkey, K. A. Expression of a functional metabotropic glutamate receptor 5 on enteric glia is altered in states of inflammation. Glia 55, 859–872 (2007).

    Article  Google Scholar 

  29. Geboes, K. et al. Major histocompatibility class II expression on the small intestinal nervous system in Crohn's disease. Gastroenterology 103, 439–447 (1992).

    Article  CAS  Google Scholar 

  30. Nasser, Y. et al. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G912–G927 (2006).

    Article  CAS  Google Scholar 

  31. Aikawa, H. & Suzuki, K. Enteric gliopathy in niacin-deficiency induced by CNS glio-toxin. Brain Res. 334, 354–356 (1985).

    Article  CAS  Google Scholar 

  32. Aikawa, H. & Suzuki, K. Lesions in the skin, intestine, and central nervous system induced by an antimetabolite of niacin. Am. J. Pathol. 122, 335–342 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Krum, J. M. Age-dependent susceptibility of CNS glial populations in situ to the antimetabolite 6-aminonicotinamide. Mol. Chem. Neuropathol. 26, 79–94 (1995).

    Article  CAS  Google Scholar 

  34. Costantini, T. W. et al. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1308–G1318 (2010).

    Article  CAS  Google Scholar 

  35. Vanderwinden, J. M., Timmermans, J. P. & Schiffmann, S. N. Glial cells, but not interstitial cells, express P2X7, an ionotropic purinergic receptor, in rat gastrointestinal musculature. Cell Tissue Res. 312, 149–154 (2003).

    PubMed  Google Scholar 

  36. Fields, R. D. & Ni, Y. Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci. Signal 3, ra73 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Stys, P. K. The axo-myelinic synapse. Trends Neurosci. 34, 393–400 (2011).

    Article  CAS  Google Scholar 

  38. Broadhead, M. J., Bayguinov, P. O., Okamoto, T., Heredia, D. J. & Smith, T. K. Ca2+ transients in myenteric glial cells during the colonic migrating motor complex in the isolated murine large intestine. J. Physiol. 590, 335–350 (2012).

    Article  CAS  Google Scholar 

  39. Garrido, R., Segura, B., Zhang, W. & Mulholland, M. Presence of functionally active protease-activated receptors 1 and 2 in myenteric glia. J. Neurochem. 83, 556–564 (2002).

    Article  CAS  Google Scholar 

  40. Gomes, P. et al. ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice. Neurogastroent. Motil. 21, 870-e62 (2009).

    Article  Google Scholar 

  41. Gulbransen, B. D., Bains, J. S. & Sharkey, K. A. Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J. Neurosci. 30, 6801–6809 (2010).

    Article  CAS  Google Scholar 

  42. Gulbransen, B. D. & Sharkey, K. A. Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136, 1349–1358 (2009).

    Article  CAS  Google Scholar 

  43. Segura, B. J. et al. Lysophosphatidic acid stimulates calcium transients in enteric glia. Neuroscience 123, 687–693 (2004).

    Article  CAS  Google Scholar 

  44. Segura, B. J. et al. Sphingosine-1-phosphate mediates calcium signaling in guinea pig enteroglial cells. J. Surg. Res. 116, 42–54 (2004).

    Article  CAS  Google Scholar 

  45. Van Nassauw, L. et al. Region-specific distribution of the P2Y4 receptor in enteric glial cells and interstitial cells of Cajal within the guinea-pig gastrointestinal tract. Auton. Neurosci. 126127, 299–306 (2006).

    Article  Google Scholar 

  46. Christofi, F. L. et al. Differential gene expression of adenosine A1, A2a, A2b, and A3 receptors in the human enteric nervous system. J. Comp. Neurol. 439, 46–64 (2001).

    Article  CAS  Google Scholar 

  47. Gulbransen, B. D. et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat. Med. 18, 600–604 (2012).

    Article  CAS  Google Scholar 

  48. Christofi, F. L., Hanani, M., Maudlej, N. & Wood, J. D. Enteric glial cells are major contributors to formation of cyclic AMP in myenteric plexus cultures from adult guinea-pig small intestine. Neurosci. Lett. 159, 107–110 (1993).

    Article  CAS  Google Scholar 

  49. Chandrasekharan, B. P. et al. Adenosine 2B receptors (A2BAR) on enteric neurons regulate murine distal colonic motility. FASEB J. 23, 2727–2734 (2009).

    Article  CAS  Google Scholar 

  50. Pankratov, Y., Lalo, U., Verkhratsky, A. & North, R. A. Vesicular release of ATP at central synapses. Pflugers Arch. 452, 589–597 (2006).

    Article  CAS  Google Scholar 

  51. Kimball, B. C. & Mulholland, M. W. Enteric glia exhibit P2U receptors that increase cytosolic calcium by a phospholipase C-dependent mechanism. J. Neurochem. 66, 604–612 (1996).

    Article  CAS  Google Scholar 

  52. Sarosi, G. A., Barnhart, D. C., Turner, D. J. & Mulholland, M. W. Capacitative Ca2+ entry in enteric glia induced by thapsigargin and extracellular ATP. Am. J. Physiol. 275, G550–G555 (1998).

    CAS  PubMed  Google Scholar 

  53. Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011).

    Article  CAS  Google Scholar 

  54. MacEachern, S. J., Patel, B. A., McKay, D. M. & Sharkey, K. A. Nitric oxide regulation of colonic epithelial ion transport: a novel role for enteric glia in the myenteric plexus. J. Physiol. 589, 3333–3348 (2011).

    Article  CAS  Google Scholar 

  55. Nurgali, K., Furness, J. B. & Stebbing, M. J. Analysis of purinergic and cholinergic fast synaptic transmission to identified myenteric neurons. Neuroscience 116, 335–347 (2003).

    Article  CAS  Google Scholar 

  56. White, T. D. Release of ATP from isolated myenteric varicosities by nicotinic agonists. Eur. J. Pharmacol. 79, 333–334 (1982).

    Article  CAS  Google Scholar 

  57. Braun, N. et al. Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45, 124–132 (2004).

    Article  Google Scholar 

  58. Lavoie, E. G. et al. Ectonucleotidases in the digestive system: focus on NTPDase3 localization. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G608–G620 (2011).

    Article  CAS  Google Scholar 

  59. Decker, D. A. & Galligan, J. J. Cross-inhibition between nicotinic acetylcholine receptors and P2X receptors in myenteric neurons and HEK-293 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1267–G1276 (2009).

    Article  CAS  Google Scholar 

  60. Fletcher, E. L., Clark, M. J. & Furness, J. B. Neuronal and glial localization of GABA transporter immunoreactivity in the myenteric plexus. Cell Tissue Res. 308, 339–346 (2002).

    Article  CAS  Google Scholar 

  61. Ruhl, A., Hoppe, S., Frey, I., Daniel, H. & Schemann, M. Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. J. Comp. Neurol. 490, 1–11 (2005).

    Article  Google Scholar 

  62. Nagahama, M., Semba, R., Tsuzuki, M. & Aoki, E. L-arginine immunoreactive enteric glial cells in the enteric nervous system of rat ileum. Biol. Signals Recept. 10, 336–340 (2001).

    Article  CAS  Google Scholar 

  63. Zhang, W., Segura, B. J., Lin, T. R., Hu, Y. & Mulholland, M. W. Intercellular calcium waves in cultured enteric glia from neonatal guinea pig. Glia 42, 252–262 (2003).

    Article  Google Scholar 

  64. Johnson, P. J. & Bornstein, J. C. Neurokinin-1 and -3 receptor blockade inhibits slow excitatory synaptic transmission in myenteric neurons and reveals slow inhibitory input. Neuroscience 126, 137–147 (2004).

    Article  CAS  Google Scholar 

  65. Grider, J. R. Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J. Pharmacol. Exp. Ther. 307, 460–467 (2003).

    Article  CAS  Google Scholar 

  66. Copel, C. et al. Activation of neurokinin 3 receptor increases Nav1.9 current in enteric neurons. J. Physiol. 587, 1461–1479 (2009).

    Article  CAS  Google Scholar 

  67. Holzer, P. & Holzer-Petsche, U. Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol. Ther. 73, 219–263 (1997).

    Article  CAS  Google Scholar 

  68. Hyland, N. P. & Cryan, J. F. A gut feeling about GABA: focus on GABAB receptors. Front. Pharmacol. 1, 124 (2010).

    Article  Google Scholar 

  69. Kaszaki, J. et al. Kynurenines and intestinal neurotransmission: the role of N-methyl-D-aspartate receptors. J. Neural. Transm. 119, 211–223 (2012).

    Article  CAS  Google Scholar 

  70. Gershon, M. D. Manipulating the ENS stem cell in adults. Presented at Digestive Disease Week 2012, San Diego, CA, USA.

  71. Abdo, H. et al. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J. 24, 1082–1094 (2010).

    Article  CAS  Google Scholar 

  72. Abdo, H. et al. The omega-6 derivative 15d-PGJ2 is involved in neuroprotection by enteric glial cells against oxidative stress. J. Physiol. 590, 2739–2750 (2012).

    Article  CAS  Google Scholar 

  73. Anitha, M. et al. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J. Clin. Invest. 116, 344–356 (2006).

    Article  CAS  Google Scholar 

  74. Rodrigues, D. M., Li, A. Y., Nair, D. G. & Blennerhassett, M. G. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol. Motil. 23, e44–e56 (2011).

    Article  CAS  Google Scholar 

  75. Kirchgessner, A. L., Liu, M. T. & Alcantara, F. Excitotoxicity in the enteric nervous system. J. Neurosci. 17, 8804–8816 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K. Sharkey is supported by grants from the Canadian Institutes of Health Research (CIHR) and is an Alberta Innovates–Health Solutions (AI–HS) Medical Scientist who holds the Crohn's & Colitis Foundation of Canada (CCFC) Chair in IBD Research at the University of Calgary. B. Gulbransen holds fellowships from the Canadian Association of Gastroenterology (CAG)/CIHR and AI–HS/ CCFC. The authors thank Winnie Ho for technical assistance with Figure 1.

Author information

Authors and Affiliations

Authors

Contributions

B. Gulbransen researched data for the article. Both authors contributed equally to discussion of content, writing and review or editing the manuscript before submission.

Corresponding author

Correspondence to Keith A. Sharkey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulbransen, B., Sharkey, K. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9, 625–632 (2012). https://doi.org/10.1038/nrgastro.2012.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing