Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human hepatocyte transplantation: current experience and future challenges

Abstract

Hepatocyte transplantation has shown potential as an additional treatment modality for certain diseases of the liver. To date, patients with liver-based metabolic disorders or acute liver failure have undergone hepatocyte transplantation in several centers around the world. Results from individual patients are promising, especially for the treatment of liver-based metabolic disorders, but the lack of controlled trials makes the interpretation of the findings difficult. The current source of isolated hepatocytes is donor organs that are unused or deemed unsuitable for liver transplantation. Hence the major challenge that this field is facing is the limited supply of donor organs that can provide good quality cells. Alternative sources of cells, including stem cells, are under investigation. This Review discusses the current bench-to-bedside issues and future challenges that need to be faced to allow the wider application of hepatocyte transplantation.

Key Points

  • Human hepatocytes are isolated from donor livers that are unused or deemed unsuitable for transplantation

  • Hepatocytes are usually infused intraportally (up to 100 × 106 cells/kg), and conventional immunosuppression regimes are followed (that is, those used after liver transplantation)

  • Limited efficacy and safety has been established for human hepatocyte transplantation in the clinical studies performed so far

  • New methods are needed to improve hepatocyte engraftment and liver repopulation, such as partial hepatic embolization or hepatic irradiation

  • New sources of hepatocytes (for example, stem cells and/or progenitor cells) are needed to increase the number of patients who undergo hepatocyte transplantation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allen, K. J. & Soriano, H. E. Liver cell transplantation: the road to clinical application. J. Lab. Clin. Med. 138, 298–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Dhawan, A., Mitry, R. R. & Hughes, R. D. Hepatocyte transplantation for liver-based metabolic disorders. J. Inherit. Metab. Dis. 29, 431–435 (2006).

    Article  PubMed  Google Scholar 

  3. Fisher, R. A. & Strom, S. C. Human hepatocyte transplantation: worldwide results. Transplantation 82, 441–449 (2006).

    Article  PubMed  Google Scholar 

  4. Matas, A. J. et al. Hepatocellular transplantation for metabolic deficiencies: decrease of plasma bilirubin in Gunn rats. Science 192, 892–894 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Minato, M. et al. Transplantation of hepatocytes for treatment of surgically induced acute hepatic failure in the rat. Eur. Surg. Res. 16, 162–169 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Sutherland, D. E., Numata, M., Matas, A. J., Simmons, R. L. & Najarian, J. S. Hepatocellular transplantation in acute liver failure. Surgery 82, 124–132 (1977).

    CAS  PubMed  Google Scholar 

  7. Yoshida, Y., Tokusashi, Y., Lee, G. H. & Ogawa, K. Intrahepatic transplantation of normal hepatocytes prevents Wilson's disease in Long-Evans cinnamon rats. Gastroenterology 111, 1654–1660 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. De Vree, J. M. et al. Correction of liver disease by hepatocyte transplantation in a mouse model of progressive familial intrahepatic cholestasis. Gastroenterology 119, 1720–1730 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wilson, J. M., Johnston, D. E., Jefferson, D. M. & Mulligan, R. C. Correction of the genetic defect in hepatocytes from the Watanabe heritable hyperlipidemic rabbit. Proc. Natl Acad. Sci. USA 85, 4421–4425 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joseph, B. et al. Kupffer cells participate in early clearance of syngeneic hepatocytes transplanted in the rat liver. Gastroenterology 123, 1677–1685 (2002).

    Article  PubMed  Google Scholar 

  11. Krohn, N. et al. Hepatocyte transplantation-induced liver inflammation is driven by cytokines-chemokines associated with neutrophils and Kupffer cells. Gastroenterology 136, 1806–1817 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Gupta, S. et al. Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium. Hepatology 29, 509–519 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Rajvanshi, P., Kerr, A., Bhargava, K. K., Burk, R. D. & Gupta, S. Efficacy and safety of repeated hepatocyte transplantation for significant liver repopulation in rodents. Gastroenterology 111, 1092–1102 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Slehria, S. et al. Hepatic sinusoidal vasodilators improve transplanted cell engraftment and ameliorate microcirculatory perturbations in the liver. Hepatology 35, 1320–1328 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, K. S., Joseph, B., Inada, M. & Gupta, S. Regulation of hepatocyte engraftment and proliferation after cytotoxic drug-induced perturbation of the rat liver. Transplantation 80, 653–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Malhi, H. et al. Cyclophosphamide disrupts hepatic sinusoidal endothelium and improves transplanted cell engraftment in rat liver. Hepatology 36, 112–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Laconi, E. et al. Long-term, near-total liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine. Am. J. Pathol. 153, 319–329 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhi, H., Gorla, G. R., Irani, A. N., Annamaneni, P. & Gupta, S. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia-reperfusion leads to extensive liver repopulation. Proc. Natl Acad. Sci. USA 99, 13114–13119 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhim, J. A., Sandgren, E. P., Degen, J. L., Palmiter, R. D. & Brinster, R. L. Replacement of diseased mouse liver by hepatic cell transplantation. Science 263, 1149–1152 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Azuma, H. et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat. Biotechnol. 25, 903–910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Overturf, K., al-Dhalimy, M., Ou, C. N., Finegold, M. & Grompe, M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151, 1273–1280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guha, C. et al. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation. Cancer Res. 59, 5871–5874 (1999).

    CAS  PubMed  Google Scholar 

  23. Guha, C. et al. Feasibility of hepatocyte transplantation-based therapies for primary hyperoxalurias. Am. J. Nephrol. 25, 161–170 (2005).

    Article  PubMed  Google Scholar 

  24. Joseph, B. et al. Monocrotaline promotes transplanted cell engraftment and advances liver repopulation in rats via liver conditioning. Hepatology 44, 1411–1420 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Mignon, A. et al. Selective repopulation of normal mouse liver by Fas/CD95-resistant hepatocytes. Nat. Med. 4, 1185–1188 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Grompe, M. Principles of therapeutic liver repopulation. J. Inherit. Metab. Dis. 29, 421–425 (2006).

    Article  PubMed  Google Scholar 

  27. Dagher, I. et al. Efficient hepatocyte engraftment in a nonhuman primate model after partial portal vein embolization. Transplantation 82, 1067–1073 (2006).

    Article  PubMed  Google Scholar 

  28. Lainas, P. et al. Liver regeneration and recanalization time course following reversible portal vein embolization. J. Hepatol. 49, 354–362 (2008).

    Article  PubMed  Google Scholar 

  29. Dagher, I. et al. Efficient hepatocyte engraftment and long-term transgene expression after reversible portal embolization in nonhuman primates. Hepatology 49, 950–959 (2009).

    Article  PubMed  Google Scholar 

  30. Koenig, S. et al. Irradiation as preparative regimen for hepatocyte transplantation causes prolonged cell cycle block. Int. J. Radiat. Biol. 84, 285–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Malhi, H., Joseph, B., Schilsky, M. L. & Gupta, S. Development of cell therapy strategies to overcome copper toxicity in the LEC rat model of Wilson disease. Regen. Med. 3, 165–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Yamanouchi, K. et al. Hepatic irradiation augments engraftment of donor cells following hepatocyte transplantation. Hepatology 49, 258–267 (2009).

    Article  PubMed  Google Scholar 

  33. Mitry, R. R. et al. Human hepatocyte isolation and relationship of cell viability to early graft function. Cell Transplant. 12, 69–74 (2003).

    Article  PubMed  Google Scholar 

  34. Strom, S. C., Dorko, K., Thompson, M. T., Pisarov, L. A. & Nussler, A. K. in Îlots de Langerhans et hépatocytes: vers une utilisation therapeutique (eds Franco, D., Boudjema, K. & Varet, B.) 195–205 (Les Editions INSERM, Paris, 1998).

    Google Scholar 

  35. Hughes, R. D. et al. Isolation of hepatocytes from livers from non-heart-beating donors for cell transplantation. Liver Transpl. 12, 713–717 (2006).

    Article  PubMed  Google Scholar 

  36. Terry, C. et al. The effects of cryopreservation on human hepatocytes obtained from different sources of liver tissue. Cell Transplant. 14, 585–594 (2005).

    Article  PubMed  Google Scholar 

  37. Terry, C., Dhawan, A., Mitry, R. R. & Hughes, R. D. Cryopreservation of isolated human hepatocytes for transplantation: state of the art. Cryobiology 53, 149–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Terry, C., Dhawan, A., Mitry, R. R., Lehec, S. C. & Hughes, R. D. Optimization of the cryopreservation and thawing protocol for human hepatocytes for use in cell transplantation. Liver Transpl. 16, 229–237 (2010).

    Article  PubMed  Google Scholar 

  39. David, P. et al. Engraftment and albumin production of intrasplenically transplanted rat hepatocytes (Sprague-Dawley), freshly isolated versus cryopreserved, into Nagase analbuminemic rats (NAR). Cell Transplant. 10, 67–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Arikura, J. et al. UW solution: a promising tool for cryopreservation of primarily isolated rat hepatocytes. J. Hepatobiliary Pancreat. Surg. 9, 742–749 (2002).

    Article  PubMed  Google Scholar 

  41. Meyburg, J. et al. One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 87, 636–641 (2009).

    Article  PubMed  Google Scholar 

  42. Puppi, J. et al. Hepatocyte transplantation followed by auxiliary liver transplantation—a novel treatment for ornithine transcarbamylase deficiency. Am. J. Transplant. 8, 452–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Stephenne, X. et al. Cryopreserved liver cell transplantation controls ornithine transcarbamylase deficient patient while awaiting liver transplantation. Am. J. Transplant. 5, 2058–2061 (2005).

    Article  PubMed  Google Scholar 

  44. Fisher, R. A., Bu, D., Thompson, M., Wolfe, L. & Ritter, J. K. Optimization of conditions for clinical human hepatocyte infusion. Cell Transplant. 13, 677–689 (2004).

    Article  PubMed  Google Scholar 

  45. Darwish, A. A. et al. Permanent access to the portal system for cellular transplantation using an implantable port device. Liver Transpl. 10, 1213–1215 (2004).

    Article  PubMed  Google Scholar 

  46. Strom, S. C., Chowdhury, J. R. & Fox, I. J. Hepatocyte transplantation for the treatment of human disease. Semin. Liver Dis. 19, 39–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Habibullah, C. M., Syed, I. H., Qamar, A. & Taher-Uz, Z. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation 58, 951–952 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Mai, G. et al. Treatment of fulminant liver failure by transplantation of microencapsulated primary or immortalized xenogeneic hepatocytes. Xenotransplantation 12, 457–464 (2005).

    Article  PubMed  Google Scholar 

  49. Allen, K. J., Mifsud, N. A., Williamson, R., Bertolino, P. & Hardikar, W. Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl. 14, 688–694 (2008).

    Article  PubMed  Google Scholar 

  50. Stephenne, X. et al. Tissue factor-dependent procoagulant activity of isolated human hepatocytes: relevance to liver cell transplantation. Liver Transpl. 13, 599–606 (2007).

    Article  PubMed  Google Scholar 

  51. Dhawan, A. et al. Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 78, 1812–1814 (2004).

    Article  PubMed  Google Scholar 

  52. Sokal, E. M. et al. Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76, 735–738 (2003).

    Article  PubMed  Google Scholar 

  53. Gupta, S. et al. A novel system for transplantation of isolated hepatocytes utilizing HBsAg-producing transgenic donor cells. Transplantation 50, 472–475 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Ponder, K. P. et al. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc. Natl Acad. Sci. USA 88, 1217–1221 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu, B., Gupta, S. & Federoff, H. Ex vivo hepatic gene transfer in mouse using a defective herpes simplex virus-1 vector. Hepatology 21, 752–759 (1995).

    CAS  PubMed  Google Scholar 

  56. Rajvanshi, P., Kerr, A., Bhargava, K. K., Burk, R. D. & Gupta, S. Studies of liver repopulation using the dipeptidyl peptidase IV-deficient rat and other rodent recipients: cell size and structure relationships regulate capacity for increased transplanted hepatocyte mass in the liver lobule. Hepatology 23, 482–496 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Stephenne, X. et al. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology 130, 1317–1323 (2006).

    Article  PubMed  Google Scholar 

  58. Mas, V. R., Maluf, D. G., Thompson, M., Ferreira-Gonzalez, A. & Fisher, R. A. Engraftment measurement in human liver tissue after liver cell transplantation by short tandem repeats analysis. Cell Transplant. 13, 231–236 (2004).

    Article  PubMed  Google Scholar 

  59. Wang, L. J. et al. Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y chromosome sequences. Liver Transpl. 8, 822–828 (2002).

    Article  PubMed  Google Scholar 

  60. Quaglia, A. et al. Liver after hepatocyte transplantation for liver-based metabolic disorders in children. Cell Transplant. 17, 1403–1414 (2008).

    Article  PubMed  Google Scholar 

  61. Modo, M. Noninvasive imaging of transplanted cells. Curr. Opin. Organ Transplant. 13, 654–658 (2008).

    Article  PubMed  Google Scholar 

  62. Cheng, K. et al. Hepatic targeting and biodistribution of human fetal liver stem/progenitor cells and adult hepatocytes in mice. Hepatology 50, 1194–1203 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Bohnen, N. I. et al. Use of indium-111-labeled hepatocytes to determine the biodistribution of transplanted hepatocytes through portal vein infusion. Clin. Nucl. Med. 25, 447–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Bulte, J. W. & Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Fox, I. J. et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 338, 1422–1426 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Muraca, M. et al. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359, 317–318 (2002).

    Article  PubMed  Google Scholar 

  67. Batshaw, M. L. Sodium benzoate and arginine: alternative pathway therapy in inborn errors of urea synthesis. Prog. Clin. Biol. Res. 127, 69–83 (1983).

    CAS  PubMed  Google Scholar 

  68. Bachmann, C. Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur. J. Pediatr. 162, 410–416 (2003).

    Article  PubMed  Google Scholar 

  69. Strom, S. C. et al. Transplantation of human hepatocytes. Transplant. Proc. 29, 2103–2106 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Horslen, S. P. et al. Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111, 1262–1267 (2003).

    Article  PubMed  Google Scholar 

  71. Land, V. J., Zarkowsky, H. S. & Vietti, T. J. Phototherapy for jaundice. N. Engl. J. Med. 282, 397 (1970).

    CAS  PubMed  Google Scholar 

  72. Horslen, S. P. & Fox, I. J. Hepatocyte transplantation. Transplantation 77, 1481–1486 (2004).

    Article  PubMed  Google Scholar 

  73. Lysy, P. A. et al. Liver cell transplantation for Crigler-Najjar syndrome type I: update and perspectives. World J. Gastroenterol. 14, 3464–3470 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ambrosino, G. et al. Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transplant. 14, 151–157 (2005).

    Article  PubMed  Google Scholar 

  75. Cori, G. T. & Cori, C. F. Glucose-6-phosphatase of the liver in glycogen storage disease. J. Biol. Chem. 199, 661–667 (1952).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, K. W. et al. Hepatocyte transplantation for glycogen storage disease type Ib. Cell Transplant. 16, 629–637 (2007).

    Article  PubMed  Google Scholar 

  77. Grossman, M. et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat. Med. 1, 1148–1154 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Weglage, J., Pietsch, M., Funders, B., Koch, H. G. & Ullrich, K. Neurological findings in early treated phenylketonuria. Acta Paediatr. 84, 411–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Hoppe, B., Beck, B. B. & Milliner, D. S. The primary hyperoxalurias. Kidney Int. 75, 1264–1271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Khan, A. A. et al. Peritoneal transplantation of human fetal hepatocytes for the treatment of acute fatty liver of pregnancy: a case report. Trop. Gastroenterol. 25, 141–143 (2004).

    CAS  PubMed  Google Scholar 

  81. Schneider, A. et al. Hepatocyte transplantation in an acute liver failure due to mushroom poisoning. Transplantation 82, 1115–1116 (2006).

    Article  PubMed  Google Scholar 

  82. Schmelzer, E., Wauthier, E. & Reid, L. M. The phenotypes of pluripotent human hepatic progenitors. Stem Cells 24, 1852–1858 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Tanimizu, N., Nishikawa, M., Saito, H., Tsujimura, T. & Miyajima, A. Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J. Cell Sci. 116, 1775–1786 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, L., Theise, N., Chua, M. & Reid, L. M. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology 48, 1598–1607 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Dan, Y. Y. et al. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc. Natl Acad. Sci. USA 103, 9912–9917 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alison, M. R., Choong, C. & Lim, S. Application of liver stem cells for cell therapy. Semin. Cell. Dev. Biol. 18, 819–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Fausto, N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39, 1477–1487 (2004).

    Article  PubMed  Google Scholar 

  88. Roskams, T. A. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 39, 1739–1745 (2004).

    Article  PubMed  Google Scholar 

  89. Terrace, J. D. et al. Progenitor cell characterization and location in the developing human liver. Stem Cells Dev. 16, 771–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Oertel, M. et al. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology 134, 823–832 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Yasui, O. et al. Isolation of oval cells from Long-Evans Cinnamon rats and their transformation into hepatocytes in vivo in the rat liver. Hepatology 25, 329–334 (1997).

    CAS  PubMed  Google Scholar 

  92. Wang, X. et al. The origin and liver repopulating capacity of murine oval cells. Proc. Natl Acad. Sci. USA 100 (Suppl. 1), 11881–11888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Najimi, M. et al. Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes? Cell Transplant. 16, 717–728 (2007).

    Article  PubMed  Google Scholar 

  94. Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Theise, N. D. et al. Liver from bone marrow in humans. Hepatology 32, 11–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Campard, D., Lysy, P. A., Najimi, M. & Sokal, E. M. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134, 833–848 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Tsai, P. C. et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fibrosis. Liver Transpl. 15, 484–495 (2009).

    Article  PubMed  Google Scholar 

  100. Banas, A. et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46, 219–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Aurich, I. et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56, 405–415 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Kuo, T. K. et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134, 2111–2121 (2008).

    Article  PubMed  Google Scholar 

  103. Houlihan, D. D. & Newsome, P. N. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology 135, 438–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Pera, M. F. Scientific considerations relating to the ethics of the use of human embryonic stem cells in research and medicine. Reprod. Fertil. Dev. 13, 23–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Werbowetski-Ogilvie, T. E. et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat. Biotechnol. 27, 91–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Yamamoto, H. et al. Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology 37, 983–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Heo, J. et al. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 44, 1478–1486 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Yin, Y. et al. AFP(+), ESC-derived cells engraft and differentiate into hepatocytes in vivo. Stem Cells 20, 338–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Nagata, H. et al. Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology 132, 321–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Byrne, G. W. et al. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation 63, 149–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Phelps, C. J. et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Yamada, K. et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat. Med. 11, 32–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Chen, G. et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat. Med. 11, 1295–1298 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Poncelet, A. J., Denis, D. & Gianello, P. Cellular xenotransplantation. Curr. Opin. Organ Transplant. 14, 168–174 (2009).

    Article  PubMed  Google Scholar 

  115. Soriano, H. et al. Hepatocellular transplantation in children with fulminant liver failure. Hepatology 26, 239A (1997).

    Article  Google Scholar 

  116. Bilir, B. M. et al. Hepatocyte transplantation in acute liver failure. Liver Transpl 6, 32–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Fisher, R. A. et al. Defining hepatocellular chimerism in a liver failure patient bridged with hepatocyte infusion. Transplantation 69, 303–307 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Liver Transplant Surgeons and Co-ordinators and the Hepatocyte Transplantation team at King's College Hosptial for contributing to the studies to establish hepatocyte transplantation at our center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Dhawan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhawan, A., Puppi, J., Hughes, R. et al. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol 7, 288–298 (2010). https://doi.org/10.1038/nrgastro.2010.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing