Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Turning straw into gold: directing cell fate for regenerative medicine

Key Points

  • Both in vitro study and transplantation therapy in human patients require large numbers of cells of a desired type. Often, such cells cannot be readily obtained from primary sources (such as patient biopsies or cadavers). As a result, the development of methods to convert plentiful, readily available cell types into the types needed for study and therapy is highly desirable.

  • One strategy for producing cells of a desired type is termed 'directed differentiation'. In this process, a pluripotent stem cell, such as an embryonic stem cell or induced pluripotent stem cell, is pushed through a series of cell-fate decisions in order to achieve the desired fate.

  • Cell-fate decisions can be directed in vitro using a variety of methods, including the application of growth factors or small molecules, and through the use of co-culture systems.

  • Another strategy for producing desired cells is to begin with fully differentiated cells of a readily available type, such as fibroblasts, and convert them directly into the desired cell type through a process called 'reprogramming'.

  • A reprogramming strategy usually relies on the overexpression of key transcription factors that can activate the transcriptional programme that leads to the desired cellular phenotype.

  • Cells produced by either reprogramming or directed differentiation must be carefully evaluated and compared with their endogenous counterparts to determine the extent to which the cells produced in vitro are the functional equivalent of those produced in vivo.

  • Both directed-differentiation and reprogramming methods are currently extremely inefficient, and typically generate cells with an immature or embryonic phenotype. These challenges must be overcome in order for cells produced by these methods to achieve their full potential.

  • In spite of these limitations, two Phase I clinical trials on the safety of transplantable cells generated in vitro are currently under way, providing evidence of the promise of the methods described in this Review for research and medicine.

Abstract

Regenerative medicine offers the hope that cells for disease research and therapy might be created from readily available sources. To fulfil this promise, the cells available need to be converted into the desired cell types. We review two main approaches to accomplishing this goal: in vitro directed differentiation, which is used to push pluripotent stem cells, including embryonic stem cells or induced pluripotent stem cells, through steps similar to those that occur during embryonic development; and reprogramming (also known as transdifferentiation), in which a differentiated cell is converted directly into the cell of interest without proceeding through a pluripotent intermediate. We analyse the status of progress made using these strategies and highlight challenges that must be overcome to achieve the goal of cell-replacement therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The central strategies of regenerative medicine.
Figure 2: Directed differentiation.
Figure 3: Reprogramming.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Lengner, C. J. iPS cell technology in regenerative medicine. Ann. N. Y. Acad. Sci. 1192, 38–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Laustriat, D., Gide, J. & Peschanski, M. Human pluripotent stem cells in drug discovery and predictive toxicology. Biochem. Soc. Trans. 38, 1051–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kiskinis, E. & Eggan, K. Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest. 120, 51–59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, Q. & Melton, D. A. Extreme makeover: converting one cell into another. Cell Stem Cell 3, 382–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010). This paper was the first to demonstrate the feasibility of producing neurons, a cell type that is highly desirable for both study and therapy, using a reprogramming strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010). This work demonstrates that fibroblasts, which are a derivative of the ectoderm, can be reprogrammed into a mesodermal derivative, cardiomyocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szabo, E. et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468, 521–526 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Manohar, R. & Lagasse, E. Transdetermination: a new trend in cellular reprogramming. Mol. Ther. 17, 936–938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell 116, 639–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Moustakas, A. & Heldin, C. H. The regulation of TGFβ signal transduction. Development 136, 3699–3714 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Rao, T. P. & Kuhl, M. An updated overview on Wnt signaling pathways: a prelude for more. Circ. Res. 106, 1798–1806 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nature Rev. Cancer 10, 116–129 (2010).

    Article  CAS  Google Scholar 

  14. Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotech. 26, 443–452 (2008).

    Article  CAS  Google Scholar 

  16. Oldershaw, R. A. et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nature Biotech. 28, 1187–1194 (2010).

    Article  CAS  Google Scholar 

  17. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Lamba, D. A., Karl, M. O., Ware, C. B. & Reh, T. A. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 12769–12774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oshima, K. et al. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 141, 704–716 (2010). This elegant study used various methods, including growth factors, small molecules and co-culture, to produce an extremely scarce cell type, the hair cell of the ear, by directed differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D'Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotech. 24, 1392–1401 (2006).

    Article  CAS  Google Scholar 

  21. Ding, S. & Schultz, P. G. A role for chemistry in stem cell biology. Nature Biotech. 22, 833–840 (2004).

    Article  CAS  Google Scholar 

  22. Rubin, L. L. Stem cells and drug discovery: the beginning of a new era? Cell 132, 549–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002). This work identified small-molecule modulators of the Hedgehog pathway, a developmental signalling network that is important to the specification of many tissues. This demonstrates the ability of small molecules to significantly influence cell-fate decisions through a known mechanism.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Rubin, L. L. & de Sauvage, F. J. Targeting the Hedgehog pathway in cancer. Nature Rev. Drug Discov. 5, 1026–1033 (2006).

    Article  CAS  Google Scholar 

  26. Laping, N. J. et al. Inhibition of transforming growth factor (TGF)-β1-induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol. Pharmacol. 62, 58–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotech. 27, 275–280 (2009).

    Article  CAS  Google Scholar 

  28. Smith, J. R. et al. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev. Biol. 313, 107–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Touboul, T. et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51, 1754–1765 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Jinnin, M., Ihn, H. & Tamaki, K. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-β1-induced extracellular matrix expression. Mol. Pharmacol. 69, 597–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, S. et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature Chem. Biol. 5, 258–265 (2009). This study demonstrates the efficacy of chemical screening for the identification of compounds that can affect cell fate — in this case, the conversion of endoderm cells into pancreatic progenitors.

    Article  CAS  Google Scholar 

  32. Zhu, S. et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4, 416–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. McLean, A. B. et al. Activin A efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25, 29–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi, T. et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107, 1912–1916 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Osakada, F. et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 122, 3169–3179 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Dhara, S. K. & Stice, S. L. Neural differentiation of human embryonic stem cells. J. Cell. Biochem. 105, 633–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G. & Elefanty, A. G. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106, 1601–1603 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotech. 21, 183–186 (2003).

    Article  CAS  Google Scholar 

  39. Di Giorgio, F. P., Boulting, G. L., Bobrowicz, S. & Eggan, K. C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3, 637–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ikeda, H. et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl Acad. Sci. USA 102, 11331–11336 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arai, A., Yamamoto, K. & Toyama, J. Murine cardiac progenitor cells require visceral embryonic endoderm and primitive streak for terminal differentiation. Dev. Dyn. 210, 344–353 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Mummery, C. L. et al. Visceral-endoderm-like cell lines induce differentiation of murine P19 embryonal carcinoma cells. Differentiation 46, 51–60 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kodama, H. et al. MC3T3-G2/PA6 preadipocytes support in vitro proliferation of hemopoietic stem cells through a mechanism different from that of interleukin 3. J. Cell. Physiol. 129, 20–26 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sun, N., Longaker, M. T. & Wu, J. C. Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle 9, 880–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Ishii, S. et al. Stromal cell-secreted factors promote the survival of embryonic stem cell-derived early neural stem/progenitor cells via the activation of MAPK and PI3K-Akt pathways. J. Neurosci. Res. 88, 722–734 (2010).

    CAS  PubMed  Google Scholar 

  49. Swistowska, A. M. et al. Stage-specific role for shh in dopaminergic differentiation of human embryonic stem cells induced by stromal cells. Stem Cells Dev. 19, 71–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Vazin, T. et al. A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS ONE 4, e6606 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kim, D. S. et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev. 6, 270–281 (2010).

    Article  CAS  Google Scholar 

  52. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotech. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  53. Perrier, A. L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 12543–12548 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Fischer, Y. et al. NANOG reporter cell lines generated by gene targeting in human embryonic stem cells. PLoS ONE 5, e12533 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rashid, S. T. et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Kondo, M. et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407, 383–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Bussmann, L. H. et al. A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5, 554–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Schafer, B. W., Blakely, B. T., Darlington, G. J. & Blau, H. M. Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature 344, 454–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008). The authors of this paper succeeded in reprogramming pancreatic exocrine cells into insulin-producing β-cells in vivo through the expression of three reprogramming factors.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Collombat, P. et al. Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 117, 961–970 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Collombat, P. et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138, 449–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Nishimura, K. et al. Development of defective and persistent sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J. Biol. Chem. 286, 4760–4771 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou, W. & Freed, C. R. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27, 2667–2674 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Si-Tayeb, K. et al. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev. Biol. 10, 81 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010). This paper describes the transfection of modified mRNAs as a means of expressing reprogramming factors in a target cell without permanent genetic modification of the cell. The high efficiency of this method, combined with the potential to make mRNA encoding any reprogramming factor of interest, suggest that this method may gain widespread use for various reprogramming applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotech. 26, 795–797 (2008).

    Article  CAS  Google Scholar 

  80. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotech. 26, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  81. Lyssiotis, C. A. et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl Acad. Sci. USA 106, 8912–8917 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Fomina-Yadlin, D. et al. Small-molecule inducers of insulin expression in pancreatic α-cells. Proc. Natl Acad. Sci. USA 107, 15099–15104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Idelson, M. et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5, 396–408 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Lamba, D. A., Gust, J. & Reh, T. A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4, 73–79 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peljto, M., Dasen, J. S., Mazzoni, E. O., Jessell, T. M. & Wichterle, H. Functional diversity of ESC-derived motor neuron subtypes revealed through intraspinal transplantation. Cell Stem Cell 7, 355–366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. D'Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotech. 23, 1534–1541 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose studies could not be cited owing to space limitations. Work in the laboratory of D.M. is funded by the US National Institutes of Health, The Leona M. and Harry B. Helmsley Charitable Trust, the Juvenile Diabetes Research Foundation and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Melton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage

Glossary

Directed differentiation

The process by which pluripotent stem cells are induced to assume a particular cell fate, through the application of specific culture conditions designed to produce cell-fate changes similar to those observed in the formation of the target cell type in vivo.

Reprogramming

(Also referred to as transdifferentiation.) The direct interconversion of one fully differentiated cell type to another without a pluripotent or multipotent intermediate, often achieved through transcription-factor overexpression.

Transdetermination

A switch in commitment from one lineage to another, closely related lineage that occurs in a multipotent stem or progenitor cell.

Embryonic stem cells

(ESCs). Pluripotent stem cells derived from the inner cell mass of a mammalian embryo.

Induced pluripotent stem cells

(iPSCs). Pluripotent stem cells derived from somatic cells by reprogramming.

Ectoderm

One of the three germ layers formed in early embryonic development; this layer gives rise to tissues including the skin and the nervous system.

Mesoderm

One of the three embryonic germ layers; the mesoderm gives rise to connective tissue, the heart and blood, among other tissue types.

Endoderm

One of the three embryonic germ layers; this layer produces tissues such as the gut, liver, pancreas and lungs.

Spontaneous differentiation

The process by which pluripotent stem cells take on a mixture of cell fates in vitro on transfer from media containing factors that maintain pluripotency to media lacking such factors.

Embryoid bodies

Clusters of pluripotent stem cells, usually grown in suspension culture, that are undergoing spontaneous differentiation.

Multiplicity of infection

The ratio of viral particles present in a transduction experiment divided by the number of target cells present.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, D., Melton, D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet 12, 243–252 (2011). https://doi.org/10.1038/nrg2938

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2938

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research