Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Segmental patterning of the vertebrate embryonic axis

Key Points

  • Segmentation of the vertebrate body is first established during embryogenesis by the periodic formation of pairs of somites — for example, every 120 minutes in mouse, 90 minutes in chicken and 30 minutes in zebrafish — added sequentially from a tissue precursor called the presomitic mesoderm (PSM).

  • The 'clock and wavefront model' is a theoretical model of somitogenesis proposed by J. Cooke and E. C. Zeeman in which they postulated the existence of an oscillator that sets the pace of somite formation and of a front of maturation of the PSM cells towards a somitic fate.

  • The identification of the periodic expression pattern of the Hairy1 gene in the PSM provided the first molecular evidence of an oscillator linked to somitogenesis. Genes with such a similar periodic pattern, called cyclic genes, were subsequently identified in other species, suggesting that the clock is conserved among vertebrates.

  • The position of the wavefront or determination front in the PSM corresponds to specific thresholds of FGF (fibroblast growth factor) and Wnt molecules that are distributed in gradients along the PSM.

  • PSM cells passing the wavefront become competent to respond to the periodic signal of the clock and are characterized by a bistable state, allowing the simultaneous segmental determination of a cohort of cells in response to the clock.

  • Retinoic acid is involved in the control of the bilateral symmetry of somite formation by preventing the PSM from responding to the left–right asymmetry machinery.

  • Whereas the zebrafish oscillator seems to be simpler, the amniote oscillator involves a large network of cyclic genes belonging to three signalling pathways (Notch, Wnt and FGF) and is composed of recurring motifs of negative feedback loops.

  • The Notch pathway is proposed to synchronize the oscillations between neighbouring PSM cellular oscillators.

  • The nature and the composition of the segmentation clock pacemaker still remain unidentified.

Abstract

The body axis of vertebrates is composed of a serial repetition of similar anatomical modules that are called segments or metameres. This particular mode of organization is especially conspicuous at the level of the periodic arrangement of vertebrae in the spine. The segmental pattern is established during embryogenesis when the somites — the embryonic segments of vertebrates — are rhythmically produced from the paraxial mesoderm. This process involves the segmentation clock, which is a travelling oscillator that interacts with a maturation wave called the wavefront to produce the periodic series of somites. Here, we review our current understanding of the segmentation process in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of segmentation during embryogenesis.
Figure 2: The clock and wavefront model and the segmentation clock oscillator.
Figure 3: The mouse oscillator.
Figure 4: A somitogenesis model integrating the segmentation clock and determination front.
Figure 5: Model for segment determination.

Similar content being viewed by others

References

  1. Sadler, T. W. in Langman's Medical Embryology (ed. Wilkins, W.A.) (Lippincott Williams & Wilkins, Baltimore, 2000).

    Google Scholar 

  2. Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A. & Hanken, J. Somite number and vertebrate evolution. Development 125, 151–160 (1998).

    CAS  PubMed  Google Scholar 

  3. Couly, G., Coltey, P. & Le Douarin, N. M. The triple origin of skull in higher vertebrates: a study in quail–chick chimeras. Development 117, 409–429 (1993).

    CAS  PubMed  Google Scholar 

  4. Kuan, C. Y., Tannahill, D., Cook, G. M. & Keynes, R. J. Somite polarity and segmental patterning of the peripheral nervous system. Mech. Dev. 121, 1055–1068 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Kulesa, P. M. & Fraser, S. E. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298, 991–995 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Hirsinger, E., Jouve, C., Dubrulle, J. & Pourquié, O. Somite formation and patterning. Int. Rev. Cytol. 198, 1–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Wellik, D. M. Hox patterning of the vertebrate axial skeleton. Dev. Dyn. 236, 2454–2463 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kmita, M. & Duboule, D. Organizing axes in time and space; 25 years of colinear tinkering. Science 301, 331–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Saga, Y. & Takeda, H. The making of the somite: molecular events in vertebrate segmentation. Nature Rev. Genet. 2, 835–845 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Brent, A. E. & Tabin, C. J. Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr. Opin. Genet. Dev. 12, 548–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Bothe, I., Ahmed, M. U., Winterbottom, F. L., von Scheven, G. & Dietrich, S. Extrinsic versus intrinsic cues in avian paraxial mesoderm patterning and differentiation. Dev. Dyn. 236, 2397–2409 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Wilkins, A. S. The Evolution Of Developmental Pathways (Sinauer Associates, Sunderland, 2001).

    Google Scholar 

  14. Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J.Theor. Biol. 58, 455–476 (1976). The authors propose a theoretical model for somitogenesis postulating the existence of a clock and a wavefront.

    Article  CAS  PubMed  Google Scholar 

  15. Goldbeter, A., Gonze, D. & Pourquié, O. Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn. 236, 1495–1508 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Dale, J. K. & Pourquié, O. A clock-work somite. Bioessays 22, 72–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Kulesa, P. M., Schnell, S., Rudloff, S., Baker, R. E. & Maini, P. K. From segment to somite: Segmentation to epithelialization analyzed within quantitative frameworks. Dev. Dyn. 236, 1392–1402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesiss. Cell 91, 639–648 (1997). This work provides the first molecular evidence of the existence of a molecular oscillator — called the segmentation clock — linked to somitogenesis, on the basis of the periodic transcriptional expression in the presomitic mesoderm of HES1.

    Article  CAS  PubMed  Google Scholar 

  19. Holley, S. A., Geisler, R. & Nusslein-Volhard, C. Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev. 14, 1678–1690 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Forsberg, H., Crozet, F. & Brown, N. A. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr.Biol. 8, 1027–1030 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, Y. J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000). The authors propose a role for Notch signalling in the synchronization between neighbouring cellular oscillators in the PSM.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y., Fenger, U., Niehrs, C. & Pollet, N. Cyclic expression of esr9 gene in Xenopus presomitic mesoderm. Differentiation 71, 83–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Muller, M., v Weizsacker, E. & Campos-Ortega, J. A. Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. Development 122, 2071–2078 (1996).

    CAS  PubMed  Google Scholar 

  24. Oates, A. C. & Ho, R. K. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129, 2929–2946 (2002).

    CAS  PubMed  Google Scholar 

  25. Henry, C. A. et al. Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development 129, 3693–3704 (2002).

    CAS  PubMed  Google Scholar 

  26. Gajewski, M., Elmasri, H., Girschick, M., Sieger, D. & Winkler, C. Comparative analysis of her genes during fish somitogenesis suggests a mouse/chick-like mode of oscillation in medaka. Dev. Genes Evol. 216, 315–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Shankaran, S. S. et al. Completing the set of h/E(spl) cyclic genes in zebrafish: her12 and her15 reveal novel modes of expression and contribute to the segmentation clock. Dev. Biol. 304, 615–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Sieger, D., Tautz, D. & Gajewski, M. her11 is involved in the somitogenesis clock in zebrafish. Dev. Genes Evol. 214, 393–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. van Eeden, F. J. et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123, 153–164 (1996).

    CAS  PubMed  Google Scholar 

  30. Holley, S. A., Julich, D., Rauch, G. J., Geisler, R. & Nusslein-Volhard, C. her1 and the Notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129, 1175–1183 (2002).

    CAS  PubMed  Google Scholar 

  31. Julich, D. et al. beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Dev. Biol. 286, 391–404 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 67–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Takke, C. & Campos-Ortega, J. A. her1, a zebrafish pair-rule like gene, acts downstream of notch signalling to control somite development. Development 126, 3005–3014 (1999).

    CAS  PubMed  Google Scholar 

  34. Gajewski, M. et al. Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish. Development 130, 4269–4278 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Giudicelli, F., Ozbudak, E. M., Wright, G. J. & Lewis, J. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol. 5, e150 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408 (2003). This paper proposes a mathematical model for the segmentation clock oscillator in zebrafish, based on a negative feedback loop with delay.

    Article  CAS  PubMed  Google Scholar 

  37. Oates, A. C., Mueller, C. & Ho, R. K. Cooperative function of deltaC and her7 in anterior segment formation. Dev. Biol. 280, 133–149 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Riedel-Kruse, I. H., Muller, C. & Oates, A. C. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317, 1911–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Davis, R. L. & Turner, D. L. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20, 8342–8357 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Mara, A., Schroeder, J., Chalouni, C. & Holley, S. A. Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nature Cell Biol. 9, 523–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Kawamura, A. et al. Zebrafish hairy/enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites. Genes Dev. 19, 1156–1161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewis, J. & Ozbudak, E. M. Deciphering the somite segmentation clock: beyond mutants and morphants. Dev. Dyn. 236, 1410–1415 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Jouve, C. et al. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 127, 1421–1429 (2000).

    CAS  PubMed  Google Scholar 

  44. Leimeister, C. et al. Oscillating expression of c-hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev. Biol. 227, 91–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Dunwoodie, S. L. et al. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129, 1795–1806 (2002).

    CAS  PubMed  Google Scholar 

  46. Bessho, Y., Miyoshi, G., Sakata, R. & Kageyama, R. Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 6, 175–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Maruhashi, M., Van De Putte, T., Huylebroeck, D., Kondoh, H. & Higashi, Y. Involvement of SIP1 in positioning of somite boundaries in the mouse embryo. Dev. Dyn. 234, 332–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. McGrew, M. J., Dale, J. K., Fraboulet, S. & Pourquié, O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 979–982 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Aulehla, A. & Johnson, R. L. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev. Biol. 207, 49–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Prince, V. E. et al. Zebrafish lunatic fringe demarcates segmental boundaries. Mech. Dev. 105, 175–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Pourquié, O . Notch around the clock. Curr. Opin. Genet. Dev. 9, 559–565 (1999).

    Article  PubMed  Google Scholar 

  52. Jiang, Y. J., Smithers, L. & Lewis, J. The clock is linked to notch signalling. Curr. Biol. 8, R868–R871 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. del Barco Barrantes, I. et al. Interaction between Notch signalling and Lunatic Fringe during somite boundary formation in the mouse. Curr. Biol. 9, 470–480 (1999).

    Article  CAS  Google Scholar 

  54. Huppert, S. S., Ilagan, M. X., De Strooper, B. & Kopan, R. Analysis of Notch function in presomitic mesoderm suggests a gamma-secretase-independent role for presenilins in somite differentiation. Dev. Cell 8, 677–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Morimoto, M., Takahashi, Y., Endo, M. & Saga, Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435, 354–359 (2005). The authors characterize the role of Mesp2 in defining the segment boundary.

    Article  CAS  PubMed  Google Scholar 

  56. Dale, J. K. et al. Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock. Nature 421, 275–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Serth, K., Schuster-Gossler, K., Cordes, R. & Gossler, A. Transcriptional oscillation of Lunatic fringe is essential for somitogenesis. Genes Dev. 17, 912–925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bessho, Y., Hirata, H., Masamizu, Y. & Kageyama, R. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 17, 1451–1456 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ishibashi, M. et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136–3148 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Ohtsuka, T. et al. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kokubo, H., Miyagawa-Tomita, S., Nakazawa, M., Saga, Y. & Johnson, R. L. Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev. Biol. 278, 301–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Bessho, Y. et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev. 15, 2642–2647 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morales, A. V., Yasuda, Y. & Ish-Horowicz, D. Periodic lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to Notch signaling. Dev. Cell 3, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Cole, S. E., Levorse, J. M., Tilghman, S. M. & Vogt, T. F. Clock regulatory elements control cyclic expression of lunatic fringe during somitogenesis. Dev. Cell 3, 75–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Shifley, E. T. et al. Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton. Development 135, 899–908 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Hirata, H. et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nature Genet. 36, 750–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Monk, N. A. M. Oscillatory expression of Hes1, p53 and NF-kB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002). This work shows that Hes1 oscillations are induced by serum stimulation in mouse fibroblasts, with a period similar to the mouse segmentation clock.

    Article  CAS  PubMed  Google Scholar 

  69. Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003). The authors first report the implication of Wnt signalling in the mouse segmentation clock.

    Article  CAS  PubMed  Google Scholar 

  70. Dequeant, M. L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006). This work provides the first systematic approach of the segmentation clock regulatory network uncovering the existence of a large number of cyclic genes participating in negative feedback loops linked to the Notch, Wnt and FGF pathways.

    Article  CAS  PubMed  Google Scholar 

  71. Weidinger, G., Thorpe, C. J., Wuennenberg-Stapleton, K., Ngai, J. & Moon, R. T. The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning. Curr. Biol. 15, 489–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Yu, H. M. et al. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132, 1995–2005 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. MacDonald, B. T., Adamska, M. & Meisler, M. H. Hypomorphic expression of Dkk1 in the doubleridge mouse: dose dependence and compensatory interactions with Lrp6. Development 131, 2543–2552 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Harrison, S. M., Houzelstein, D., Dunwoodie, S. L. & Beddington, R. S. Sp5, a new member of the Sp1 family, is dynamically expressed during development and genetically interacts with Brachyury. Dev. Biol. 227, 358–372. (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Camenisch, T. D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dunty, W. C., Jr . et al. Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135, 85–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Aulehla, A. et al. A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nature Cell Biol. 10, 186–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Lamar, E. et al. Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev. 15, 1885–1899 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krebs, L. T., Deftos, M. L., Bevan, M. J. & Gridley, T. The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signaling pathway. Dev. Biol. 238, 110–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Pirot, P., van Grunsven, L. A., Marine, J. C., Huylebroeck, D. & Bellefroid, E. J. Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochem. Biophys. Res. Commun. 322, 526–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Ishitani, T., Matsumoto, K., Chitnis, A. B. & Itoh, M. Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nature Cell Biol. 7, 1106–1112 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Ishikawa, A. et al. Mouse Nkd1, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling. Mech. Dev. 121, 1443–1453 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Dale, J. K. et al. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev. Cell 10, 355–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Niwa, Y. et al. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock. Dev. Cell 13, 298–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Wahl, M. B., Deng, C., Lewandoski, M. & Pourquié, O. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development 134, 4033–4041 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Aulehla, A. & Herrmann, B. G. Segmentation in vertebrates: clock and gradient finally joined. Genes Dev. 18, 2060–2067 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Nakaya, M. A. et al. Wnt3a links left-right determination with segmentation and anteroposterior axis elongation. Development 132, 5425–5436 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Elsdale, T., Pearson, M. & Whitehead, M. Abnormalities in somite segmentation following heat shock to Xenopus embryos. J. Embryol. Exp. Morphol. 35, 625–635 (1976).

    CAS  PubMed  Google Scholar 

  92. Dubrulle, J., McGrew, M. J. & Pourquié, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001). This work reports the first evidence of the role of FGF signalling as a key component of the wavefront in the chicken embryo.

    Article  CAS  PubMed  Google Scholar 

  93. Delfini, M. C., Dubrulle, J., Malapert, P., Chal, J. & Pourquié, O. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc. Natl Acad. Sci. USA 102, 11343–11348 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Linask, K. K. et al. N.-cadherin/catenin-mediated morphoregulation of somite formation. Dev. Biol. 202, 85–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Duband, J. L. et al. Adhesion molecules during somitogenesis in the avian embryo. J. Cell Biol. 104, 1361–1374 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Horikawa K, R. G., Takeichi M, Chisaka O . Adhesive subdivisions intrinsic to the epithelial somites. Dev. Biol. 215, 182–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Burgess, R., Cserjesi, P., Ligon, K. L. & Olson, E. N. Paraxis: a basic helix-loop-helix protein expressed in paraxial mesoderm and developing somites. Dev. Biol. 168, 296–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Nakaya, Y., Kuroda, S., Katagiri, Y. T., Kaibuchi, K. & Takahashi, Y. Mesenchymal–epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev. Cell 7, 425–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873–4880 (2001).

    CAS  PubMed  Google Scholar 

  100. Dubrulle, J. & Pourquié, O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998).

    CAS  PubMed  Google Scholar 

  102. Perantoni, A. O. et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132, 3859–3871 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Draper, B. W., Stock, D. W. & Kimmel, C. B. Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 130, 4639–4654 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Vermot, J. et al. Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 308, 563–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Vermot, J. & Pourquie, O. Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature 435, 215–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Kawakami, Y., Raya, A., Raya, R. M., Rodriguez-Esteban, C. & Belmonte, J. C. Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435, 165–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Sirbu, I. O. & Duester, G. Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nature Cell Biol. 8, 271–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Diez del Corral, R. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Moreno, T. A. & Kintner, C. Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis. Dev. Cell 6, 205–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Niederreither, K., Fraulob, V., Garnier, J. M., Chambon, P. & Dolle, P. Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech. Dev. 110, 165–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Abu-Abed, S. et al. The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev. 15, 226–240 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Niederreither, K. et al. Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nature Genet. 31, 84–88 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Dubrulle, J. & Pourquié, O. Coupling segmentation to axis formation. Development 131, 5783–5793 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Takahashi, Y. et al. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nature Genet. 25, 390–396. (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Morimoto, M. et al. The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development 134, 1561–1569 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Kawamura, A. et al. Groucho-associated transcriptional repressor ripply1 is required for proper transition from the presomitic mesoderm to somites. Dev. Cell 9, 735–744 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H. & Saga, Y. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development 133, 2517–2525 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Francois, P., Hakim, V. & Siggia, E. D. Deriving structure from evolution: metazoan segmentation. Mol. Syst. Biol. 3, 154 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Davis, G. K. & Patel, N. H. The origin and evolution of segmentation. Trends Cell Biol. 9, 68–72 (1999).

    Article  Google Scholar 

  120. Stollewerk, A., Schoppmeier, M. & Damen, W. G. Involvement of Notch and Delta genes in spider segmentation. Nature 423, 863–865 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Dunlap, J. C. & Loros, J. J. The neurospora circadian system. J. Biol. Rhythms 19, 414–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Yoshiura, S. et al. Ultradian oscillations of Stat., Smad, and Hes1 expression in response to serum. Proc. Natl Acad. Sci. USA 104, 11292–11297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. William, D. A. et al. Identification of oscillatory genes in somitogenesis from functional genomic analysis of a human mesenchymal stem cell model. Dev. Biol. 305, 172–186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Turnpenny, P. D. et al. Abnormal vertebral segmentation and the notch signaling pathway in man. Dev. Dyn. 236, 1456–1474 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Bulman, M. P. et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nature Genet. 24, 438–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Whittock, N. V. et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am. J. Hum. Genet. 74, 1249–1254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sparrow, D. B. et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am. J. Hum. Genet. 78, 28–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S. & Takeda, H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441, 719–723 (2006). This work provides experimental evidence supporting the role of Notch in the synchronization between neighbouring PSM cells oscillations.

    Article  CAS  PubMed  Google Scholar 

  129. Ishimatsu, K., Horikawa, K. & Takeda, H. Coupling cellular oscillators: a mechanism that maintains synchrony against developmental noise in the segmentation clock. Dev. Dyn. 236, 1416–1421 (2007).

    Article  PubMed  Google Scholar 

  130. Maroto, M., Dale, J. K., Dequeant, M. L., Petit, A. C. & Pourquié, O. Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int. J. Dev. Biol. 49, 309–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl Acad. Sci. USA 103, 1313–1318 (2006). This work provides the first real-time imaging of the segmentation clock oscillations in mouse presomitic mesoderm using a luciferase-based reporter fused to the Hes1 promoter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pourquié, O. & Tam, P. P. A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Dev. Cell 1, 619–620 (2001).

    Article  PubMed  Google Scholar 

  133. Ordahl, C. P. in Molecular Basis of Morphogenesis (ed. Bernfield, M.) pp 165–176 (John Wiley and Sons, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Aulehla and to E. Ozbudak for critical reading of the manuscript. Work in the Pourquié laboratory is supported by NIH grant R02HD043,158 to O.P. and by Stowers Institute for Medical Research. O.P. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pourquié.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Olivier Pourquié's homepage

Glossary

Somites

Embryonic segments (epithelial blocks of tissue surrounding a cavity called somitocoele) giving rise to the sclerotome (precursors of the axial skeleton) and dermomyotome (precursors of the dermis of the back and skeletal muscles).

Presomitic mesoderm

A mesoderm-derived mesenchymal tissue lying on both sides of the neural tube that gives rise to the somites.

Paraxial mesoderm

A mesodermal tissue comprising the head mesoderm and the somitic mesoderm.

Otic vesicle

One of the paired sacs of invaginated ectoderm that develops into the inner ear.

Amniotes

Group of tetrapod vertebrates including mammals, reptiles and birds, the embryo of which is protected by a membrane called the amnion, in particular from dehydration.

Epiblast

Tissue precursor of the three germ layers during gastrulation.

Metamery

A segmented organization of the body plan along the anterior–posterior axis.

Morpholinos

Synthetic molecules of antisense oligonucleotides used for gene expression knock-down.

Mesenchyme

Tissue consisting of loosely packed cells.

Basal lamina

A layer of extracellular matrix that underlies the epithelium and is secreted by the epithelial cells.

Suprathreshold stimulation

Stimulation of sufficient strength to produce a perceptible effect; in the current context a catastrophe leading to somite determination.

Urbilateria

Hypothetical last common ancestor of all bilaterians.

Bilateria

Members of the animal kingdom that have bilateral symmetry — the property of having two similar sides, with definite upper and lower surfaces, and anterior and posterior ends.

Ultradian oscillator

Oscillator with a period of less than 24 hours.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dequéant, ML., Pourquié, O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 9, 370–382 (2008). https://doi.org/10.1038/nrg2320

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing