Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Haemophilia A: from mutation analysis to new therapies

Key Points

  • Mutations in the X-linked coagulation factor VIII (F8) gene lead to haemophilia A of different grades of severity in humans.

  • Approximately half the severe cases are due to intron-22 inversions. For smaller deletions, insertions or point mutations, the degree of severity depends on the function of the affected domains. Surprisingly, in about 4% of the haemophiliacs no mutation can be found in the coding exons and their flanking sequences.

  • Several hundred missense mutations in the F8 gene have been identified; these are used to understand the function of the various domains of the F8 protein.

  • Many proteins interact with F8 during its transport through cellular compartments, and regulate its activation and inactivation. Mutations in genes that code for these proteins lead to haemophilia-like symptoms (in particular mutations in the VWD, LMAN1 and MCFD2 genes).

  • Because 2% of haemophiliacs do not carry mutations in the coding regions of the F8 gene, further efforts are needed to analyse the F8 mRNA (and the corresponding cDNA) from its ectopic expression in lymphocytes.

  • Haemophilia A has been a leading model in the field of gene therapy; however, the disappointingly low levels and short time range of F8 expression need to be increased.

  • Current research focuses on increasing the yield of recombinant F8, improving its transport, extending its half-life and reducing its antigenicity.

Abstract

Haemophilia is caused by hundreds of different mutations and manifests itself in clinical conditions of varying severity. Despite being inherited in monogenic form, the clinical features of haemophilia can be influenced by other genetic factors, thereby confounding the boundary between monogenic and multifactorial disease. Unlike sufferers of other genetic diseases, haemophiliacs can be treated successfully by intravenous substitution of coagulation factors. Haemophilia is also the most attractive model for developing gene-therapy protocols, as the normal life expectancy of haemophiliacs allows the side effects of gene therapy, as well as its efficiency, to be monitored over long periods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principal features of the coagulation factor VIII gene and protein.
Figure 2: Properties and interaction sites of the coagulation factor VIII protein.
Figure 3: Pathological inversions of the coagulation factor VIII gene.

Similar content being viewed by others

References

  1. Otto, J. C. An account of an haemorrhagic disposition existing in certain families. Med. Repos. 6, 1–4 (1803).

    Google Scholar 

  2. Hoppf, F. Über die Hämophilie oder die erbliche Anlage zu tödlichen Blutungen. Thesis, Univ. Zurich (1828).

    Google Scholar 

  3. Aggeler, P. M. et al. Plasma thromboplastin component (PTC) deficiency: a new disease resembling hemophilia. Proc. Soc. Exp. Biol. Med. 79, 692–694 (1952).

    Article  CAS  PubMed  Google Scholar 

  4. Biggs, R. et al. Christmas disease: a condition previously mistaken for haemophilia. Brit. Med. J. 2, 1378–1382 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ingram, G. I. C. The history of haemophilia. J. Clin. Path. 29, 469–479 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rotblat, F. et al. Monoclonal antibodies to human procoagulant factor VIII. J. Lab. Clin. Med. 101, 736–746 (1983).

    CAS  PubMed  Google Scholar 

  7. Hilgartner, M. W. The need for recombinant factor FVIII. Historical background and rationale. Semin. Hematol. 28, 6–9 (1991).

    CAS  PubMed  Google Scholar 

  8. Gitschier, J. et al. Characterization of the human factor VIII gene. Nature 312, 326–330 (1984). Characterization of the large F8 gene in humans — 20 years before the human genome sequence was published.

    Article  CAS  PubMed  Google Scholar 

  9. Oldenburg, J., Ananyeva, N. M. & Saenko, E. L. Molecular basis of haemophilia A. Haemophilia 10 (Suppl. 4), 133–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. McGlynn, L. K., Mueller, C. R., Begbie, M., Notley, C. R. & Lillicrap, D. Role of the liver-enriched transcription factor hepatocyte nuclear factor-1 in transcriptional regulation of the factor VIII gene. Mol. Cell. Biol. 16, 1936–1945 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghosh, K. Management of haemophilia and its complications in developing countries. Clin. Lab. Haem. 26, 243–251 (2004).

    Article  CAS  Google Scholar 

  12. Antonarakis, S. E., Kazazian, H. H. & Tuddenham, G. D. Molecular etiology of Factor VIII deficiency in hemophilia. Hum. Mutat. 5, 1–22 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Nichols, W. C. et al. Mutations in the ER–Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Nichols, W. C. et al. ERGIC-53 gene structure and mutation analysis in 19 combined factors V and VIII deficiency families. Blood 93, 2261–2266 (1999).

    CAS  PubMed  Google Scholar 

  15. Zhang, B. et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nature Genet. 34, 220–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, B. & Ginsburg, D. Familial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disorders. J. Thromb. Haemost. 2, 1564–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Nishino, M., Girma, J. P., Rothschild, C., Fressinaud, E. & Meyer, D. New variant of von Willebrand disease with defective binding to factor VIII. Blood 74, 1591–1599 (1989).

    CAS  PubMed  Google Scholar 

  18. Gaucher, C., Mercier, B., Jorieux, S., Oufkir, D. & Mazurier, C. Identification of two point mutations in the von Willebrand factor gene of three families with the 'Normandy' variant of von Willebrand disease. Br. J. Haematol. 78, 506–514 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Hilbert, L., D'Oiron, R., Fressinaud, E., Meyer, D. & Mazurier, C. INSERM network on molecular abnormalities in von Willebrand disease. First identification and expression of a type 2N von Willebrand disease mutation (E1078K) located in exon 25 of von Willebrand factor gene. J. Thromb. Haemost. 2, 2271–2273 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Schneppenheim, R. et al. Results of a screening for von Willebrand disease type 2N in patients with suspected haemophilia A or von Willebrand disease type 1. Thromb. Haemostas. 76, 598–602 (1996).

    Article  CAS  Google Scholar 

  21. Klopp, N., Oldenburg, J., Uen, C., Schneppenheim, R. & Graw, J. 11 hemophilia A patients without mutations in the factor VIII encoding gene. Thromb. Haemost. 88, 357–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Peerlinck, K. et al. A patient with von Willebrand's disease characterized by a compound heterozygosity for a substitution of Arg854 by Gln in the putative factor-VIII-binding domain of von Willebrand factor (vWF) on one allele and very low levels of mRNA from the second vWF allele. Br. J. Haematol. 80, 358–363 (1992).

    Article  PubMed  Google Scholar 

  23. Harvey, D. & Lowe, G. M. Factor V Leiden: association with venous thromboembolism in pregnancy and screening issues. Br. J. Biomed. Sci. 61, 157–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Zivelin, A. et al. A single genetic origin for the common prothrombotic G20210A polymorphism in the prothrombin gene. Blood 92, 1119–1124 (1998).

    CAS  PubMed  Google Scholar 

  25. Ahmed, R., Kannan, M., Choudhry, V. P. & Saxena, R. Does the MTHFR 677T allele alter the clinical phenotype in severe haemophilia A? Thromb. Res. 109, 71–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. van Dijk, K., van der Bom, J. G., Fischer, K., Grobbee, D. E. & van den Berg, H. M. Do prothrombotic factors influence clinical phenotype of severe haemophilia? A review of the literature. Thromb. Haemost. 92, 305–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Poustka, A. et al. Physical map of human Xq27-qter: localizing the region of the fragile X mutation. Proc. Natl Acad. Sci. USA 88, 8302–8306 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freije, D. & Schlessinger, D. A 1.6-Mb contig of yeast artificial chromosomes around the human factor VIII gene reveals three regions homologous to probes for the DXS115 locus and two for the DXYS64 locus. Am. J. Hum. Genet. 51, 66–80 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Levinson, B., Kenwrick, S., Lakich, D., Hammonds, G. Jr, Gitschier, J. A transcribed gene in an intron of the human factor VIII gene. Genomics 7, 1–11 (1990). This paper describes the surprising discovery of a second transcribed gene in the large intron of F8 , one of only a few findings of its kind in eukaryotes.

    Article  CAS  PubMed  Google Scholar 

  30. Levinson, B. et al. Sequence of the human factor VIII-associated gene is conserved in the mouse. Genomics 13, 862–865 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Peters, M. F. & Ross, C. A. Isolation of a 40-kDa Huntingtin-associated protein. J. Biol. Chem. 276, 3188–3194 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Valleix, S. et al. Expression of human F8B, a gene nested within the coagulation factor VIII gene, produces multiple eye defects and developmental alterations in chimeric and transgenic mice. Hum. Mol. Genet. 8, 1291–1301 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Brinke, A. et al. Two chimaeric transcription units result from an inversion breaking intron 1 of the factor VIII gene and a region reportedly affected by reciprocal translocations in T-cell leukaemia. Hum. Mol. Genet. 5, 1945–1951 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Bagnall, R. D., Waseem, N., Green, P. M. & Gianelli, F. Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A. Blood 99, 168–174 (2002). This paper demonstrates the presence of intron-1 inversions in the human F8 gene; the inversions were explained as being caused by homologous recombination between intron 1 and a homologous sequence outside the F8 gene.

    Article  CAS  PubMed  Google Scholar 

  35. Salviato, R., Belvini, D., Radossi, P. & Tagariello, G. Factor VIII gene intron-1 inversion: lower than expected prevalence in Italian haemophiliac severe patients. Haemophilia 10, 194–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Naylor, J. A. et al. Investigation of the factor VIII intron 22 repeated region (int22h) and the associated inversion junctions. Hum. Mol. Genet. 4, 1217–1224 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Rossiter, J. P. et al. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum. Mol. Genet. 3, 1035–1039 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Vidal, F., Farssac, E., Tusell, J., Puig, L. & Gallardo, D. First molecular characterization of an unequal homologous Alu-mediated recombination event responsible for hemophilia. Thromb. Haemost. 88, 12–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Rossetti, L. C., Goodeve, A., Larripa, I. B. & De Brasi, C. D. Homeologous recombination between AluSx-sequences as a cause of Hemophilia. Hum. Mut. 24, 440 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Nakaya, S. M., Hsu, T. C., Geraghty, S. J., Manco-Johnson, M. J. & Thompson, A. R. Severe hemophilia A due to a 1.3 kb factor VIII gene deletion including exon 24: homologous recombination between 41 bp within an Alu repeat sequence in introns 23 and 24. J. Thromb. Haemost. 2, 1941–1945 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Mukherjee, S., Mukhopadhyay, A., Chaudhuri, K. & Ray, K. Analysis of haemophilia B database and strategies for common point mutations in the factor IX gene. Haemophilia 9, 187–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Young, M. et al. Partial correction of a severe molecular defect in hemophilia A, because of errors during expression of the factor VIII gene. Am. J. Hum. Genet. 60, 565–573 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Burns, D. P. W. & Temin, H. M. High rates of frameshift mutations within homo-oligomeric runs during a single cycle of retroviral replication. J. Virol. 68, 4196–4203 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. El-Maarri, O. et al. Analysis of mRNA in hemophilia A patients with undetectable mutations reveals normal splicing in the factor VIII gene. J. Thromb. Haemost. 3, 332–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Figueiredo, M. S. & Brownlee, G. G. cis-Acting elements and transcription factors involved in the promoter activity of the human factor VIII gene. J. Biol. Chem. 270, 11828–11838 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Begbie, M., Notley, C., Tinlin, S., Sawyer, L. & Lillicrap, D. The factor VIII acute phase response requires the participation of NFκB and C/EBP. Thromb. Haemost. 84, 216–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Wood, W. I. et al. Expression of active human factor VIII from recombinant DNA clones. Nature 312, 330–337 (1984). The authors describe for the first time the successful expression of recombinant F8, providing the means to replace the use of plasma-derived factors in the treatment of haemophilia.

    Article  CAS  PubMed  Google Scholar 

  48. Roelse, J. C. et al. Altered sensitivity towards factor IXa explains assay discrepancies in plasma of haemophilia A patients with a Glu720Lys substitution in factor VIII. Thromb. Haemost. 82, 5a (1999).

    Google Scholar 

  49. Goodeve, A. C. et al. Unusual discrepant factor VIII:C assays in haemophilia A patients with TYR346CYS and GLU321LYS FVIII gene mutations. Thromb. Haemost. (Suppl.), P1370 (2001).

  50. Mumford, A. D. et al. A Tyr346–Cys substitution in the interdomain acidic region a1 of factor VIII in an individual with factor VIII:C assay discrepancy. Br. J. Haemotol. 118, 589–594 (2002).

    Article  CAS  Google Scholar 

  51. Pattinson, J. K., McVey, J. H., Boon, M., Ajani, A. & Tuddenham, E. G. CRM+ haemophilia A due to a missense mutation (372–Cys) at the internal heavy chain thrombin cleavage site. Br. J. Haematol. 75, 73–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Arai, M. et al. Direct characterization of factor VIII in plasma: detection of a mutation altering a thrombin cleavage site (arginine–372histidine). Proc. Natl Acad. Sci. USA 86, 4277–4281 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arai, M. et al. Characterization of a thrombin cleavage site mutation (Arg1689 to Cys) in the factor VIII gene of two unrelated patients with cross-reacting material-positive hemophilia A. Blood 75, 384–389 (1990).

    CAS  PubMed  Google Scholar 

  54. Higuchi, M. et al. Characterization of mutations in the factor VIII gene by direct sequencing of amplified genomic DNA. Genomics 61, 65–71 (1990).

    Article  Google Scholar 

  55. Gitschier, J., Kogan, S., Levinson, B. & Tuddenham, E. G. Mutations of factor VIII cleavage sites in hemophilia A. Blood 72, 1022–1028 (1988).

    CAS  PubMed  Google Scholar 

  56. Hakeos, W. H. et al. Hemophilia A mutations within the factor VIII A2–A3 subunit interface destabilize factor VIIIa and cause one-stage/two-stage activity discrepancy. Thromb. Haemost. 88, 781–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Keeling, D. M. et al. Diagnostic importance of the two-stage factor VIII:C assay demonstrated by a case of mild haemophilia associated with His1954–Leu substitution in the factor VIII A3 domain. Br. J. Haematol. 105, 1123–1126 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Rudzki, Z. et al. Mutations in a subgroup of patients with mild haemophilia A and a familial discrepancy between the one-stage and two-stage factor VIII:C methods. Br. J. Haematol. 94, 400–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Oldenburg, J. & Schwaab, R. Molecular biology of blood coagulation. Semin. Thromb. Hemost. 27, 313–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Ananyeva, N. M. et al. Inhibitors in hemophilia A: mechanisms of inhibition, management and perspectives. Blood Coag. Fibrinol. 15, 109–124 (2004).

    Article  CAS  Google Scholar 

  61. Amano, K. et al. The molecular basis for cross-reacting material-positive hemophilia A due to missense mutations within the A2-domain of factor VIII. Blood 91, 538–548 (1998).

    CAS  PubMed  Google Scholar 

  62. Holbrook, J. A., Neu-Yilik, G., Hentze, M. W. & Kulozik, A. E. Nonsense-mediated decay approaches the clinic. Nature Genet. 36, 801–808 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Thompson, A. R. Structure and function of the factor VIII gene and protein. Semin. Thromb. Hemost. 29, 11–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Vehar, G. A. et al. Structure of the human factor VIII. Nature 312, 337–342 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, M. L. et al. Hemophilic factor VIII C1- and C2-domain missense mutations and their modeling to the 1.5-Ångstrom human C2-domain crystal structure. Blood. 96, 979–987 (2000).

    CAS  PubMed  Google Scholar 

  66. Jacquemin, M. et al. Point mutations scattered in the FVIII C1 and C2 domains reduce FVIII binding to vWF and are associated to mild/moderate haemophilia A. Thromb, Haemost. (Suppl.), 222 (1999).

  67. Jacquemin, M. et al. A novel cause of mild/moderate hemophilia A: mutations scattered in the factor VIII C1 domain reduce factor VIII binding to von Willebrand factor. Blood 96, 958–965 (2000).

    CAS  PubMed  Google Scholar 

  68. Stoilova-McPhie, S., Villoutreix, B. O., Mertens, K., Kemball-Cook, G. & Holzenburg, A. 3-Dimensional structure of membrane-bound coagulation factor VIII: modelling of the factor VIII heterodimer within a 3-dimensional density map derived by electron microscopy. Blood 99, 1215–1223 (2002). An impressive paper that reports the three-dimensional structure of the F8 protein.

    Article  CAS  PubMed  Google Scholar 

  69. Purohit, V. S. et al. Topology of factor VIII bound to phosphatidylserine-containing model membranes. Biochim. Biophys. Acta 1617, 31–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Purohit, V. S., Ramani, K., Sarkar, S., Kazazian, H. H. Jr & Balasubramanian, S. V. Lower inhibitor development in Hemophilia A mice following administration of recombinant factor VIII-O-phospho-L-serine complex. J. Biol. Chem. 23 February 2005 [epub ahead of print].

  71. Oldenburg, J. et al. De novo factor VIII gene intron 22 inversion in a female carrier presents as a somatic mosaicism. Blood 96, 2905–2906 (2000).

    CAS  PubMed  Google Scholar 

  72. Goodeve, A. C. & Peake, I. R. The molecular basis of Hemophilia A: genotype–phenotype relationships and inhibitor development. Semin. Thromb. Hemostas. 29, 23–30 (2003).

    Article  CAS  Google Scholar 

  73. Fakharzadeh, S. S. & Kazazian, H. H. Jr. Correlation between factor VIII genotype and inhibitor development in hemophilia A. Semin. Thromb. Hemost. 26, 167–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Fay, P. J. & Jenkins, P. V. Mutating factor FVIII: lesions from structure to function. Blood Rev. 19, 15–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Saenko, E. L., Ananyeva, N. M., Shima, M., Hauser, C. A. E. & Pipe, S. W. The future of recombinant coagulation factors. J. Thromb. Haemost. 1, 922–930 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Bolton-Maggs, P. H. & Pasi, K. J. Haemophilias A and B. Lancet. 361, 1801–1809 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Nathwani, A. C., Davidoff, A. M. & Tuddenham, E. G. D. Prospects for gene therapy of haemophilia. Haemophilia 10, 309–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Gruppo, R. A., Brown, D., Wilkes, M. M. & Navickis, R. J. Meta-analytic evidence of increased breakthrough bleeding during prophylaxis with B-domain deleted factor VIII. Haemophilia 10, 747–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Gruppo, R. A., Brown, D., Wilkes, M. M. & Navickis, R. J. Increased breakthrough bleeding during prophylaxis with B-domain deleted factor VIII — a robust meta-analytic finding. Haemophilia 10, 449–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Kessler, C. M. et al. B-domain deleted recombinant factor VIII preparations are bioequivalent to a monoclonal antibody purified plasma-derived factor VIII concentrate: a randomized, three-way crossover study. Haemophilia 11, 84–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Courter, S. G. & Bedrosian, C. L. Clinical evaluation of B-domain deleted recombinant factor VIII in previously untreated patients. Semin. Hematol. 38, 52–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Swaroop, M., Moussalli, M., Pipe, S. W. & Kaufman, R. J. Mutagenesis of a potential immunoglobulin-binding protein-binding site enhances secretion of coagulation factor VIII. J. Biol. Chem. 272, 24121–24124 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Miao, H. Z. et al. Bioengineering of coagulation factor VIII for improved secretion. Blood 103, 3412–3419 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Pipe, S. W. & Kaufmann, R. J. Characterization of a genetically engineered inactivation-resistant coagulation factor VIIIa. Proc. Natl Acad. Sci. USA 94, 11851–11856 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thornburg, C. D. et al. Inactivation-resistant factor VIII provides superior hemostasis to wild-type factor VIII in a murine hemophilia A model without increased thrombogenicity. Blood 102, 299 (2003).

    Google Scholar 

  86. Gale, A. J., Pellequer, J. L. & Griffin, J. H. A novel engineered interdomain disulfide bond stabilizes human blood coagulation factor VIIIa. J. Thromb. Haemost. 1, OC094 (2003).

    Article  Google Scholar 

  87. Barrow, R. T., Healey, J. F., Gailani, D., Scandella, D., & Lollar, P. Reduction of the antigenicity of factor VIII toward complex inhibitory antibody plasmas using multiply-substituted hybrid human/porcine factor VIII molecules. Blood 95, 564–568 (2000).

    CAS  PubMed  Google Scholar 

  88. Villard, S. et al. Low molecular weight peptides restore the procoagulant activity of factor VIII in the presence of the potent inhibitor antibody ESH8. J. Biol. Chem. 277, 27232–27239 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Villard, S. et al. Peptide decoys selected by phage display block in vitro and in vivo activity of a human anti-FVIII inhibitor. Blood 102, 949–952 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Scandella, D. et al. Some factor VIII inhibitor antibodies recognize a common epitope corresponding to C2 domain amino acids 2248 through 2312, which overlap a phospholipid-binding site. Blood 86, 1811–1819 (1995).

    CAS  PubMed  Google Scholar 

  91. Dazzi, F. et al. High incidence of anti-FVIII antibodies against non-coagulant epitopes in haemophilia A patients: a possible role for the half-life of transfused FVIII. Br. J. Haematol. 93, 688–693 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Lacroix-Desmazes, S. et al. Antibodies with hydrolytic activity towards factor VIII in patients with hemophilia A. J. Immunol. Methods 269, 251–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Brackmann, H. H. & Gormsen, J. Massive factor-VIII infusion in haemophiliac with factor-VIII inhibitor, high responder. Lancet 2, 933 (1977). This case report was the basis of the immune-tolerance therapy.

    Article  CAS  PubMed  Google Scholar 

  94. Moreau, A. et al. Antibodies to the FVIII light chain that neutralize FVIII procoagulant activity are present in plasma of nonresponder patients with severe hemophilia A and in normal polyclonal human IgG. Blood 95, 3435–3441 (2000).

    CAS  PubMed  Google Scholar 

  95. Gilles, J. G., Vanzieleghem, B. & Saint-Remy, J. M. Factor VIII inhibitors. Natural autoantibodies and anti-idiotypes. Semin. Thromb. Hemost. 26, 151–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Reddy, P. S. et al. Sustained human factor VIII expression in hemophilia A mice following systemic delivery of a gutless adenoviral vector. Mol. Ther. 5, 63–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Connelly, S. et al. Complete short-term correction of canine hemophilia A by in vivo gene therapy. Blood 88, 3846–3853 (1996).

    CAS  PubMed  Google Scholar 

  98. Brown, B. D. et al. Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A. Blood 103, 804–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Chao, H., Mao, L., Bruce, A. T. & Walsh, C. E. Sustained expression of human factor VIII in mice using a parvovirus-based vector. Blood 95, 1594–1599 (2000).

    CAS  PubMed  Google Scholar 

  100. Chua, M. K. L., Collen, D. & VandenDriessche, T. Clinical gene transfer studies for Hemophilia A. Sem. Thromb. Hemost. 30, 249–256 (2004).

    Article  Google Scholar 

  101. Powell, J. S. et al. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood 102, 2038–2045 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Stein, C. S. et al. In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol. Ther. 3, 850–856 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Roth, D. A., Tawa, N. E. Jr, O'Brien, J. M., Treco, D. A. & Selden, R. F. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N. Engl. J. Med. 344, 1735–1742 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Roth, D. A. et al. Implantation of non-viral ex vivo genetically modified autologous dermal fibroblasts that express B-domain deleted human factor VIII in 12 severe hemophilia A study subjects. Blood Abstr. 100, 116 (2002).

    Google Scholar 

  105. Elder, B., Lakich, D. & Gitschier, J. Sequence of the murine factor VIII cDNA. Genomics 16, 374–379 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Watzka, M., Geisen, C., Seifried, E. & Oldenburg, J. Sequence of the rat factor VIII cDNA. Thromb. Haemost. 91, 38–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Myles, T., Yun, T. H. & Leung, L. K. Structural requirements for the activation of human factor VIII by thrombin. Blood 100, 2820–2826 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Mannucci, P. M. & Tuddenham, E. G. The Hemophilias — from royal genes to gene therapy. N. Engl. J. Med. 334, 1773–1779 (2001).

    Article  Google Scholar 

  109. Lenting, P. J., van Mourik, J. A. & Mertens, K. The life cycle of coagulation factor VIII in view of its structure and function. Blood 92, 3983–3996 (1998).

    CAS  PubMed  Google Scholar 

  110. Lakich, D., Kazazian, H. H. Jr, Antonarakis, S. E. & Gitschier, J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nature Genet. 5, 236–241 (1993). The paper identifies the intron-22 inversion in the F8 gene as being caused by homologous recombination of intron-22 sequences with repetitive sequences outside the F8 gene.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work of H.H.B., J.G., J.O., R.S. and W.S. was supported in part by a grant from the German Human Genome Project (DHGP) to the 'Genotype–Phenotype Correlation in Haemophilia A' consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Graw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

APC

CEBPA

CEBPB

F5

F8

F8A

F9

F10

HNF1

HNF4

LMAN1

MCFD2

MTHFR

VWF

OMIM

Haemophilia A

Haemophilia B

Huntington disease

von Willebrand disease

FURTHER INFORMATION

HAMSTeRS

International Society on Thrombosis and Haemostasis web site

Nature Genetics

Glossary

ANTI-IDIOTYPIC ANTIBODIES

Antibodies that bind to the specific antigen-binding sites of other antibodies.

CD4+ CELLS

A subset of white blood cells that identify, attack and destroy infection and cancerous cells.

CHRONIC SYNOVITIS

The concurrent non-use of muscles around a joint that is subject to repeated bleeding leads to a periarticular muscular atrophy with loss of dynamic support, which predisposes the joint to further bleeding.

THROMBOPHILIA

Abnormal haemostasis parameters, as assessed in the laboratory, that are associated with an increased risk of blood clotting in veins or arteries.

CERULOPLASMIN

A plasma metalloprotein that binds most copper ions in the plasma. It is involved in the peroxidation of Fe2+ transferrin to form Fe3+ transferrin. Ceruloplasmin, F5 and F8 have a common evolutionary origin. Loss of ceruloplasmin activity leads to diabetes mellitus, retinal degeneration and dementia.

ONE-STAGE CLOTTING ASSAY

Plasma from a patient is mixed with plasma that is known to be deficient in F8, and the time of formation of a fibrin clot is measured. The assay therefore compares the activity of the blood coagulation cascade in the patient's plasma with the normal activity.

CHROMOGENIC ASSAY

Diluted patient plasma is mixed with thrombin, F10 and activated F9 reagents. Activated F9 hydrolyses the chromogenic substrate S–2,765 and releases a chromophore. The colour intensity released by the chromophore is proportional to F8 activity in the sample.

ALLOANTIBODY

Usually refers to an antibody that is raised naturally against foreign tissues from a member of the same species; in the case of haemophilia it describes the formation of antibodies against the therapeutic F8 protein. As the recombinant protein is of human origin it should be recognized as 'self', but it is not.

TRANSAMINASE

A class of enzymes that causes transamination; that is, the transfer of an amino group. Elevated levels of transminase indicate various hepatic disorders.

OMENTUM

A sheet of fat that is covered by peritoneum. The greater omentum is attached to the bottom edge of the stomach and hangs down in front of the intestine. Its other edge is attached to the transverse colon. The lesser omentum is attached to the top edge of the stomach and extends to the lower surface of the liver.

RANDOMIZED THREE-WAY CROSS-OVER STUDY

Three groups of patients are formed by the random distribution of probands. Participants in one group receive one intervention for a period of time, then switch over to a second intervention and then to a third intervention (participants in the second group start with the second intervention and switch to the third, then the first, and so on). The result is that all groups will be treated with all three protocols (so, the term 'cross-over' is used).

HAEMOSTASIS

A balanced interaction of blood cells, vasculature, plasma proteins and low molecular weight substances. Perfect homeostasis means absence of bleeding and of thrombosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graw, J., Brackmann, HH., Oldenburg, J. et al. Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet 6, 488–501 (2005). https://doi.org/10.1038/nrg1617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing