Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cognitive function, dementia and type 2 diabetes mellitus in the elderly

Abstract

Increasing numbers of people are developing type 2 diabetes mellitus, but interventions to prevent and treat the classic microvascular and macrovascular complications have improved, so that people are living longer with the condition. This trend means that novel complications of type 2 diabetes mellitus, which are not targeted by current management strategies, could start to emerge. Cognitive impairment and dementia could come into this category. Type 2 diabetes mellitus is associated with a 1.5–2.5-fold increased risk of dementia. The etiology of dementia and cognitive impairment in people with type 2 diabetes mellitus is probably multifactorial. Chronic hyperglycemia is implicated, perhaps by promoting the development of cerebral microvascular disease. Data suggest that the brains of older people with type 2 diabetes mellitus might be vulnerable to the effects of recurrent, severe hypoglycemia. Other possible moderators of cognitive function include inflammatory mediators, rheological factors and dysregulation of the hypothalamic–pituitary–adrenal axis. Cognitive function should now be included as a standard end point in randomized trials of therapeutic interventions in patients with type 2 diabetes mellitus.

Key Points

  • Type 2 diabetes mellitus is associated with a 1.5–2.5-fold increased risk of dementia

  • The etiology of cognitive dysfunction in patients with type 2 diabetes mellitus is probably multifactorial

  • Chronic hyperglycemia might impair cognition by promoting cerebral microvascular disease; recurrent episodes of severe hypoglycemia could also be detrimental to cognitive function

  • Novel risk factors for cognitive impairment in patients with type 2 diabetes mellitus might include inflammatory mediators, rheological factors and dysregulation of the hypothalamic–pituitary–adrenal axis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The hypothalamic–pituitary–adrenal axis.

Similar content being viewed by others

References

  1. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes. Estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).

    PubMed  Google Scholar 

  2. Personal Social Services Research Unit Dementia UK 2007 [online], (2007).

  3. Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C. & Scheltens, P. Risk of dementia in diabetes: a systematic review. Lancet Neurol. 5, 64–74 (2006).

    Article  PubMed  Google Scholar 

  4. Cukierman, T., Gerstein, H. C. & Williamson, J. D. Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies. Diabetologia 48, 2460–2469 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Strachan, M. W., Deary, I. J., Ewing, F. M. & Frier, B. M. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 20, 438–445 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. McGuinness, B., Craig, D., Bullock, R. & Passmore, P. Statins for the prevention of dementia. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD003160 doi: 10.1002/14651858.CD003160.pub2 (2009).

  7. Shah, K. et al. Does use of antihypertensive drugs affect the incidence or progression of dementia? A systematic review. Am. J. Geriatr. Pharmacother. 7, 250–261 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. McGuinness, B., Todd, S., Passmore, P. & Bullock, R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD004034 doi: 10.1002/14651858.CD004034.pub3 (2009).

  9. Tzourio, C. et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med. 163, 1069–1075 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Kang, J. H., Cook, N., Manson, J., Buring, J. E. & Grodstein, F. Low dose aspirin and cognitive function in the women's health study cognitive cohort. BMJ 334, 987 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Price, J. F. et al. Low dose aspirin and cognitive function in middle aged to elderly adults: randomised controlled trial. BMJ 337, a1198 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sommerfield, A. J., Deary, I. J. & Frier, B. M. Acute hyperglycemia alters mood state and impairs cognitive performance in people with type 2 diabetes. Diabetes Care 27, 2335–2340 (2004).

    Article  PubMed  Google Scholar 

  13. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Long-term effect of diabetes and its treatment on cognitive function. N. Engl. J. Med. 356, 1842–1852 (2007).

  14. Cukierman-Yaffe, T. et al. Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the action to control cardiovascular risk in diabetes-memory in diabetes (ACCORD-MIND) trial. Diabetes Care 32, 221–226 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ding, J. et al. Retinal microvascular abnormalities and cognitive dysfunction: a systematic review. Br. J. Ophthalmol. 92, 1017–1025 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Ding, J. et al. Diabetic retinopathy and cognitive decline in older people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes 59, 2883–2889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

  18. Deary, I. J. & Frier, B. M. Severe hypoglycaemia and cognitive impairment in diabetes. BMJ 313, 767–768 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitmer, R. A., Karter, A. J., Yaffe, K., Quesenberry, C. P. Jr & Selby, J. V. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 301, 1565–1572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Galan, B. E. et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia 52, 2328–2336 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Bruce, D. G. et al. Severe hypoglycaemia and cognitive impairment in older patients with diabetes: the Fremantle Diabetes Study. Diabetologia 52, 1808–1815 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Nesto, R. C-reactive protein, its role in inflammation, type 2 diabetes and cardiovascular disease, and the effects of insulin-sensitizing treatment with thiazolidinediones. Diabet. Med. 21, 810–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Brunner, E. J. et al. Inflammation, insulin resistance, and diabetes--Mendelian randomization using CRP haplotypes points upstream. PLoS Med. 5, e155 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Halliday, G., Robinson, S. R., Shepherd, C. & Kril, J. Alzheimer's disease and inflammation: a review of cellular and therapeutic mechanisms. Clin. Exp. Pharmacol. Physiol. 27, 1–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Rogers, J., Mastroeni, D., Leonard, B., Joyce, J. & Grover, A. Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder? Int. Rev. Neurobiol. 82, 235–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Campbell, I. L. et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl Acad. Sci. USA 90, 10061–10065 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, C. C. et al. Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia 52, 1040–1047 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt, M. I. et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 353, 1649–1652 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Banks, W. A. Blood–brain barrier transport of cytokines: a mechanism for neuropathology. Curr. Pharm. Des. 11, 973–984 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Alley, D. E., Crimmins, E. M., Karlamangla, A., Hu, P. & Seeman, T. E. Inflammation and rate of cognitive change in high-functioning older adults. J. Gerontol. A Biol. Sci. Med. Sci. 63, 50–55 (2008).

    Article  PubMed  Google Scholar 

  31. Luciano, M., Marioni, R. E., Gow, A. J., Starr, J. M. & Deary, I. J. Reverse causation in the association between C-reactive protein and fibrinogen levels and cognitive abilities in an aging sample. Psychosom. Med. 71, 404–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Rafnsson, S. B. et al. Cognitive decline and markers of inflammation and hemostasis: the Edinburgh Artery Study. J. Am. Geriatr. Soc. 55, 700–707 (2007).

    Article  PubMed  Google Scholar 

  33. Schram, M. T. et al. Systemic markers of inflammation and cognitive decline in old age. J. Am. Geriatr. Soc. 55, 708–716 (2007).

    Article  PubMed  Google Scholar 

  34. Dik, M. G. et al. Contribution of metabolic syndrome components to cognition in older individuals. Diabetes Care 30, 2655–2660 (2007).

    Article  PubMed  Google Scholar 

  35. Yaffe, K. et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 292, 2237–2242 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Marioni, R. E. et al. Association between raised inflammatory markers and cognitive decline in elderly people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes 59, 710–713 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Lowe, G. D. Is sticky blood a treatable determinant of cognitive decline and of dementia? Age Ageing 30, 101–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Lowe, G. D. Can haematological tests predict cardiovascular risk? The 2005 Kettle Lecture. Br. J. Haematol. 133, 232–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Elwood, P. C., Pickering, J. & Gallacher, J. E. Cognitive function and blood rheology: results from the Caerphilly cohort of older men. Age Ageing 30, 135–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Marioni, R. E. et al. Peripheral levels of fibrinogen, C-reactive protein, and plasma viscosity predict future cognitive decline in individuals without dementia. Psychosom. Med. 71, 901–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stott, D. J. et al. Haemostasis in ischaemic stroke and vascular dementia. Blood Coagul. Fibrinolysis 12, 651–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. van Oijen, M. et al. Haplotypes of the fibrinogen gene and cerebral small vessel disease: the Rotterdam scan study. J. Neurol. Neurosurg. Psychiatry 79, 799–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. van Oijen, M., Witteman, J. C., Hofman, A., Koudstaal, P. J. & Breteler, M. M. Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke 36, 2637–2641 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Marioni, R. E. et al. Blood rheology and cognition in the Edinburgh Type 2 Diabetes Study. Age Ageing 39, 354–359 (2010).

    Article  PubMed  Google Scholar 

  45. Lee, Z. S. et al. Plasma insulin, growth hormone, cortisol, and central obesity among young Chinese type 2 diabetic patients. Diabetes Care 22, 1450–1457 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Reynolds, R. M. et al. Altered control of cortisol secretion in adult men with low birthweight and cardiovascular risk factors. J. Clin. Endocrinol. Metab. 86, 245–250 (2001).

    CAS  PubMed  Google Scholar 

  47. Liu, H., Bravata, D. M., Cabaccan, J., Raff, H. & Ryzen, E. Elevated late-night salivary cortisol levels in elderly male type 2 diabetic veterans. Clin. Endocrinol. (Oxf.) 63, 642–649 (2005).

    Article  CAS  Google Scholar 

  48. Cameron, O. G., Thomas, B., Tiongco, D., Hariharan, M. & Greden, J. F. Hypercortisolism in diabetes mellitus. Diabetes Care 10, 662–664 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Cameron, O. G., Kronfol, Z., Greden, J. F. & Carroll, B. J. Hypothalamic–pituitary–adrenocortical activity in patients with diabetes mellitus. Arch. Gen. Psychiatry 41, 1090–1095 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Hudson, J. I. et al. Abnormal results of dexamethasone suppression tests in nondepressed patients with diabetes mellitus. Arch. Gen. Psychiatry 41, 1086–1089 (1984).

    Article  CAS  PubMed  Google Scholar 

  51. Reynolds, R. M., Sydall, H. E., Wood, P. J., Phillips, D. I. W. & Walker, B. R. Elevated plasma cortisol in glucose intolerant men: differences in responses to glucose and habituation to venepuncture. J. Clin. Endocrinol. Metab. 86, 1149–1153 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Oltmanns, K. M. et al. Cortisol correlates with metabolic disturbances in a population study of type 2 diabetic patients. Eur. J. Endocrinol. 154, 325–331 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Reynolds, R. M. et al. Elevated fasting plasma cortisol is associated with ischemic heart disease and its risk factors in people with type 2 diabetes: the Edinburgh type 2 diabetes study. J. Clin. Endocrinol. Metab. 95, 1602–1608 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Chiodini, I. et al. Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care 30, 83–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. McEwen, B. S. Stress and the aging hippocampus. Front. Neuroendocrinol. 20, 49–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Landfield, P. W., Waymire, J. C. & Lynch, G. Hippocampal aging and adrenocorticoids: quantitative correlations. Science 202, 1098–1102 (1978).

    Article  CAS  PubMed  Google Scholar 

  57. Meaney, M. J. et al. Individual differences in hypothalamic-pituitary-adrenal activity in later life and hippocampal aging. Exp. Gerontol. 30, 229–251 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Landfield, P. W., Baskin, R. K. & Pitler, T. A. Brain aging correlates: retardation by hormonal-pharmacological treatments. Science 214, 581–584 (1981).

    Article  CAS  PubMed  Google Scholar 

  59. Vallée, M. et al. Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur. J. Neurosci. 11, 2906–2916 (1999).

    Article  PubMed  Google Scholar 

  60. Yau, J. L. et al. Chronic treatment with the antidepressant amitriptyline prevents impairments in water maze learning in aging rats. J. Neurosci. 22, 1436–1442 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Swaab, D. F., Bao, A. M. & Lucassen, P. J. The stress system in the human brain in depression and neurodegeneration. Ageing Res. Rev. 4, 141–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Wolf, O. T., Convit, A., Thorn, E. & de Leon, M. J. Salivary cortisol day profiles in elderly with mild cognitive impairment. Psychoneuroendocrinology 27, 777–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. de Leon, M. J. et al. Abnormal cortisol response in Alzheimer's disease linked to hippocampal atrophy. Lancet 2, 391–392 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. O'Brien, J. T. et al. Clinical and magnetic resonance imaging correlates of hypothalamic–pituitary–adrenal axis function in depression and Alzheimer's disease. Br. J. Psychiatry 168, 679–687 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. MacLullich, A. M. et al. Plasma cortisol levels, brain volumes and cognition in healthy elderly men. Psychoneuroendocrinology 30, 505–515 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Lupien, S. J. et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1, 69–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Bruehl, H. et al. Hypothalamic–pituitary–adrenal axis dysregulation and memory impairments in type 2 diabetes. J. Clin. Endocrinol. Metab. 92, 2439–2445 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Bruehl, H. et al. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res. 1280, 186–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reynolds, R. M. et al. Morning cortisol levels and cognitive abilities in people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care 33, 714–720 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Finkel, D., Reynolds, C. A., McArdle, J. J. & Pedersen, N. L. Age changes in processing speed as a leading indicator of cognitive aging. Psychol. Aging 22, 558–568 (2007).

    Article  PubMed  Google Scholar 

  71. Price, J. F. et al. The Edinburgh Type 2 Diabetes Study: study protocol. BMC Endocr. Disord. 8, 18 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moisan, M.-P., Seckl, J. R. & Edwards, C. R. W. 11β-Hydroxysteroid dehydrogenase bioactivity and messenger RNA expression in rat forebrain: localization in hypothalamus, hippocampus and cortex. Endocrinology 127, 1450–1455 (1990).

    Article  CAS  PubMed  Google Scholar 

  73. Sandeep, T. C. et al. 11β-Hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proc. Natl Acad. Sci. 101, 6734–6739 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pirraglia, P. A. & Gupta, S. The interaction of depression and diabetes: a review. Curr. Diabetes Rev. 3, 249–251 (2007).

    Article  PubMed  Google Scholar 

  75. Pariante, C. M. The glucocorticoid receptor: part of the solution or part of the problem? J. Psychopharmacol. 20 (Suppl. 4), 79–84 (2006).

    Article  PubMed  Google Scholar 

  76. Zunszain, P. A., Anacker, C., Cattaneo, A., Carvalho, L. A. & Pariante, C. M. Glucocorticoids, cytokines and brain abnormalities in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2010.04.011.

    Article  CAS  PubMed  Google Scholar 

  77. Spijker, A. T. & van Rossum, E. F. Glucocorticoid receptor polymorphisms in major depression. Focus on glucocorticoid sensitivity and neurocognitive functioning. Ann. NY Acad. Sci. 1179, 199–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Boyle, S. H. et al. Depressive symptoms, race, and glucose concentrations: the role of cortisol as mediator. Diabetes Care 30, 2484–2488 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Wiener, D. N. Subtle and obvious keys for the Minnesota multiphasic personality inventory. J. Consult. Psychol. 12, 164–170 (1948).

    Article  CAS  PubMed  Google Scholar 

  80. Labad, J. et al. Symptoms of depression but not anxiety are associated with central obesity and cardiovascular disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetologia 53, 467–471 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Bjelland, I., Dahl, A. A., Haug, T. T. & Neckelmann, D. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J. Psychosom. Res. 52, 69–77 (2002).

    Article  PubMed  Google Scholar 

  82. Mattsson, C., Reynolds, R. M., Simonyte, K., Olsson, T. & Walker, B. R. Combined receptor antagonist stimulation of the hypothalamic–pituitary–adrenal axis test identifies impaired negative feedback sensitivity to cortisol in obese men. J. Clin. Endocrinol. Metab. 94, 1347–1352 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Williamson, J. D. et al. The Action to Control Cardiovascular Risk in Diabetes Memory in Diabetes Study (ACCORD-MIND): rationale, design and methods. Am. J. Cardiol. 99, 112i–122i (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of the co-investigators, collaborators and staff of the Edinburgh Type 2 Diabetes Study (ET2DS). The main funding for the ET2DS was provided by the Medical Research Council. The authors are extremely grateful to all the participants of the ET2DS.

Author information

Authors and Affiliations

Authors

Contributions

M. W. J. Strachan, R. M. Reynolds and R. E. Marioni researched data for the article and wrote the first draft. All authors contributed equally to discussion of the content and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Mark W. J. Strachan.

Ethics declarations

Competing interests

M. W. J. Strachan has received fees for consultancy and lecturing from GlaxoSmithKline and sat on a GlaxoSmithKline Independent Data Monitoring Committee. M. W. J. Strachan has received funds to support staff members from Takeda, Pfizer and Sanofi-Aventis and speaking fees and hospitality from Eli Lilly, Novo Nordisk, Sanofi-Aventis and Takeda. J. F. Price has received research funding from Bayer Healthcare. M. J. W. Strachan, R. M. Reynolds and J. F. Price have received funding for a substudy of the Edinburgh Type 2 Diabetes Study from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strachan, M., Reynolds, R., Marioni, R. et al. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 7, 108–114 (2011). https://doi.org/10.1038/nrendo.2010.228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing