Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aromatase deficiency in men: a clinical perspective

Abstract

Human aromatase deficiency is a very rare syndrome characterized by congenital estrogen deprivation that is caused by loss-of-function mutations in CYP19A1, which encodes aromatase. Here, we review the presentation, diagnosis and treatment of aromatase deficiency in men to provide useful advice for clinical management of the condition. At presentation, all men with aromatase deficiency have tall stature, delayed bone maturation, osteopenia or osteoporosis and eunuchoid skeletal proportions. Diagnosis of the condition is supported by the presence of unfused epiphyses and undetectable serum estradiol levels; the condition can be further substantiated by genetic sequencing of CYP19A1. Transdermal estradiol treatment at a daily dose of about 25 µg might be adequate for lifelong replacement therapy. BMD and levels of serum estradiol, luteinizing hormone and testosterone should be monitored carefully and considered powerful biochemical markers of adequate estrogen substitution in clinical practice. Early diagnosis is important to initiate estrogen therapy as soon after puberty as possible to avoid the skeletal complications that are associated with this condition.

Key Points

  • Aromatase deficiency in men often remains undiagnosed until adulthood, which results in delayed and insufficient treatment

  • Aromatase deficiency should be strongly suspected in adult men with continued linear growth of bones, height increases in adulthood and/or documented unfused epiphyses

  • All newborn boys whose mothers exhibited unexplained signs of progressive virilization during pregnancy and all newborn babies with siblings who have documented aromatase deficiency should be screened for aromatase deficiency

  • Hand and wrist radiography and measurement of serum estradiol, testosterone and luteinizing hormone levels help to diagnose aromatase deficiency in men; if the condition is suspected, genetic testing is recommended

  • Adult men with aromatase deficiency should receive estradiol at a high starting dose for a quick completion of bone maturation, followed by a reduced dosage for lifelong replacement therapy

  • An early diagnosis of aromatase deficiency is advocated before irreversible abnormalities develop

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An algorithm of the optimal clinical management of aromatase deficiency.

Similar content being viewed by others

References

  1. Faustini-Fustini, M., Rochira, V. & Carani, C. Oestrogen deficiency in men: where are we today? Eur. J. Endocrinol. 140, 111–129 (1999).

    Article  CAS  Google Scholar 

  2. Grumbach, M. M. & Auchus, R. J. Estrogen: consequences and implications of human mutations in synthesis and action. J. Clin. Endocrinol. Metab. 84, 4677–4694 (1999).

    CAS  PubMed  Google Scholar 

  3. Deladöey, J. et al. Aromatase deficiency caused by a novel P450arom gene mutation: impact of absent estrogen production on serum gonadotropin concentration in a boy. J. Clin. Endocrinol. Metab. 84, 4050–4054 (1999).

    PubMed  Google Scholar 

  4. Bouillon, R., Bex, M., Vanderschueren, D. & Boonen, S. Estrogens are essential for male pubertal periosteal bone expansion. J. Clin. Endocrinol. Metab. 89, 6025–6029 (2004).

    Article  CAS  Google Scholar 

  5. Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C. & Qin, K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80, 3689–3698 (1995).

    CAS  PubMed  Google Scholar 

  6. Carani, C. et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337, 91–95 (1997).

    Article  CAS  Google Scholar 

  7. Herrmann, B. L. et al. Impact of estrogen replacement therapy in a male with congenital aromatase decifiency caused by a novel mutation in the CYP19 gene. J. Clin. Endocrinol. Metab. 87, 5476–5484 (2002).

    Article  CAS  Google Scholar 

  8. Pura, M., Mittre, H., Carreau, S. & Kottler, M. L. Clinical findings in an adult man with a novel mutation in the aromatase gene [abstract]. In Program of the 85th Annual Meeting of the Endocrine Society 243 (The Endocrine Society, Philadelphia, 2003).

    Google Scholar 

  9. Maffei, L. et al. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J. Clin. Endocrinol. Metab. 89, 61–70 (2004).

    Article  CAS  Google Scholar 

  10. Maffei, L. et al. A novel compound heterozygous mutation of the aromatase gene in an adult man: reinforced evidence on the relationship between congenital estrogen deficiency, adiposity and the metabolic syndrome. Clin. Endocrinol. (Oxf.) 67, 218–224 (2007).

    Article  CAS  Google Scholar 

  11. Lanfranco, F. et al. A novel mutation in the human aromatase gene: Insights on the relationship among serum estradiol, longitudinal growth and bone mineral density in an adult man under estrogen replacement treatment. Bone 43, 628–635 (2008).

    Article  CAS  Google Scholar 

  12. Rochira, V., Balestrieri, A., Madeo, B., Spaggiari, A. & Carani, C. Congenital estrogen deficiency in men: a new syndrome with different phenotypes; clinical and therapeutic implications in men. Mol. Cell. Endocrinol. 193, 19–28 (2002).

    Article  CAS  Google Scholar 

  13. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  Google Scholar 

  14. Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. J. Clin. Invest. 116, 561–570 (2006).

    Article  CAS  Google Scholar 

  15. Rochira, V. et al. Estrogens in males: what have we learned in the last 10 years? Asian J. Androl. 7, 3–20 (2005).

    Article  CAS  Google Scholar 

  16. Balestrieri, A., Faustini-Fustini, M., Rochira, V. & Carani, C. Clinical implications and management of estrogen deficiency in the male. Clin. Endocrinol. (Oxf.) 54, 431–432 (2001).

    Article  CAS  Google Scholar 

  17. Rochira, V., Balestrieri, A., Faustini-Fustini, M. & Carani, C. Role of estrogen on bone in the human male: insights from the natural models of congenital estrogen deficiency. Mol. Cell. Endocrinol. 178, 215–220 (2001).

    Article  CAS  Google Scholar 

  18. Zirilli, L., Rochira, V., Diazzi, C., Caffagni, G. & Carani, C. Human models of aromatase deficiency. J. Steroid Biochem. Mol. Biol. 109, 212–218 (2008).

    Article  CAS  Google Scholar 

  19. Lee, P. A. & Witchel, S. F. The influence of estrogen on growth. Curr. Opin. Pediatr. 9, 431–436 (1997).

    Article  CAS  Google Scholar 

  20. Jones, M. E. et al. Recognizing rare disorders: aromatase deficiency. Nat. Clin. Pract. Endocrinol. Metab. 3, 414–421 (2007).

    Article  CAS  Google Scholar 

  21. Mullis, P. E. et al. Aromatase deficiency in a female who is compound heterozygote for new point mutations in the P450arom gene: impact of estrogens on hypergonadotropic hypogonadism, multicistic ovaries, and bone densitometry in childhood. J. Clin. Endocrinol. Metab. 82, 1739–1745 (1997).

    CAS  PubMed  Google Scholar 

  22. Belgorosky, A. et al. Hypotalamic-pituitary-ovarian axis during infancy, early and late prepuberty in an aromatase-deficient girl who is a compound heterocygote for two new point mutations of the CYP19 gene. J. Clin. Endocrinol. Metab. 88, 5127–5131 (2003).

    Article  CAS  Google Scholar 

  23. Lin, L. et al. Variable phenotypes associated with aromatase (CYP19) insufficiency in humans. J. Clin. Endocrinol. Metab. 92, 982–990 (2007).

    Article  CAS  Google Scholar 

  24. Manganiello, P. D., Adams, L. V., Harris, R. D. & Ornvold, K. Virilization during pregnancy with spontaneous resolution postpartum: a case report and review of the English literature. Obstet. Gynecol. Surv. 50, 404–410 (1995).

    Article  CAS  Google Scholar 

  25. Ogilvie, M., Davidson, J. S., Cuttance. P. & Milsom. S. Severe maternal virilisation of benign etiology in two successive pregnancies. BJOG 112, 1443–1445 (2005).

    Article  Google Scholar 

  26. Scott, R. R. & Miller, W. L. Genetic and clinical features of p450 oxidoreductase deficiency. Horm. Res. 69, 266–275 (2008).

    Article  CAS  Google Scholar 

  27. Fukami, M. et al. Cytochrome P450 Oxidoreductase deficiency: identification and characterization of biallelic mutations and genotype-phenotype correlations in 35 Japanese patients. J. Clin. Endocrinol. Metab. 94, 1723–1731 (2009).

    Article  CAS  Google Scholar 

  28. Costa-Santos, M., Kater, C. E., Auchus, R. J. & Brazilian Congenital Adrenal Hyperplasia Multicenter Study Group. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 89, 49–60 (2004).

    Article  CAS  Google Scholar 

  29. Rosa, S. et al. P450c17 deficiency: clinical and molecular characterization of six patients. J. Clin. Endocrinol. Metab. 92, 1000–1007 (2007).

    Article  CAS  Google Scholar 

  30. Finkelstein, J. S. et al. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann. Intern. Med. 106, 354–361 (1987).

    Article  CAS  Google Scholar 

  31. Nieschlag, E. & Behre, H. M. in Testosterone Action Deficiency Substitution 3rd edn (eds Nieschlag, E. & Bhere, H. M.) 375–403 (Cambridge University Press, Cambridge, UK, 2004).

    Book  Google Scholar 

  32. Rochira, V. et al. Osteoporosis and male age-related hypogonadism: role of sex steroids on bone (patho)physiology. Eur. J. Endocrinol. 154, 175–185 (2006).

    Article  CAS  Google Scholar 

  33. Rodd, C., Jourdain, N. & Alini, M. Action of estradiol on epiphyseal growth plate chondrocytes. Calcif. Tissue Int. 75, 214–224 (2004).

    Article  CAS  Google Scholar 

  34. Greulich, W. W. & Pyle, S. I. (eds) in Radiographic Atlas of Skeletal Development of the Hand and Wrist 2nd edn (Stanford University Press, Stanford, 1959).

    Book  Google Scholar 

  35. Tanner, J. M., Whitehouse, R. H., Marshall, W. A., Healy, M. J. R. & Goldstein, H. The Assessment of Skeletal Maturity and the Prediction of Adult Height (TW2 method) 2nd edn (Academic, London, 1983).

    Google Scholar 

  36. Bay, K., Andersson, A. M. & Skakkebaek, N. E. Estradiol levels in prepubertal boys and girls—analytical challenges. Int. J. Androl. 27, 266–273 (2004).

    Article  CAS  Google Scholar 

  37. Santen, R. J. et al. Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids 72, 666–671 (2007).

    Article  CAS  Google Scholar 

  38. Rochira, V., Faustini-Fustini, M., Balestrieri, A. & Carani, C. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J. Clin. Endocrinol. Metab. 85, 1841–1845 (2000).

    Article  CAS  Google Scholar 

  39. Rochira, V. et al. Hypothalamic-pituitary-gonadal axis in two men with aromatase deficiency: evidence that circulating estrogens are required at the hypothalamic level for the integrity of gonadotropin negative feedback. Eur. J. Endocrinol. 155, 513–522 (2006).

    Article  CAS  Google Scholar 

  40. Rochira, V. et al. Oestradiol replacement treatment and glucose homeostasis in two men with congenital aromatase deficiency: evidence for a role of estradiol and sex steroids imbalance on insulin sensitivity in men. Diabet. Med. 24, 1491–1495 (2007).

    Article  CAS  Google Scholar 

  41. Jones, M. E., McInnes, K. J., Boon, W. C. & Simpson, E. R. Estrogen and adiposity--utilizing models of aromatase deficiency to explore the relationship. J. Steroid Biochem. Mol. Biol. 106, 3–7 (2007).

    Article  CAS  Google Scholar 

  42. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  CAS  Google Scholar 

  43. Neuschwander-Tetri, B. A. & Caldwell, S. H. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37, 1202–1219 (2003).

    Article  Google Scholar 

  44. Lonardo, A., Carani, C., Carulli, N. & Loria, P. 'Endocrine NAFLD' a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis. J. Hepatol. 44, 1196–1207 (2006).

    Article  CAS  Google Scholar 

  45. Bilezikian, J. P., Morishima, A., Bell, J. & Grumbach, M. M. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N. Engl. J. Med. 339, 599–603 (1998).

    Article  CAS  Google Scholar 

  46. Rochira, V. et al. Pituitary function in a man with congenital aromatase deficiency: effect of different doses of transdermal E2 on basal and stimulated pituitary hormones. J. Clin. Endocrinol. Metab. 87, 2857–2862 (2002).

    Article  CAS  Google Scholar 

  47. Zimmet, P., Magliano, D., Matsuzawa, Y., Alberti, G. & Shaw, J. The metabolic syndrome: a global public health problem and a new definition. J. Atheroscler. Thromb. 12, 295–300 (2005).

    Article  CAS  Google Scholar 

  48. van den Bosch, J. S., Smals, A. G., Pieters, G. F., Valk, I. M. & Kloppenborg, P. W. Instant growth inhibition by low dose estrogens in excessively tall boys. Acta Endocrinol. (Copenh.) 100, 327–332 (1982).

    Article  CAS  Google Scholar 

  49. Caruso-Nicoletti, M. et al. Short term, low dose estradiol accelerates ulnar growth in boys. J. Clin. Endocrinol. Metab. 61, 896–898 (1985).

    Article  CAS  Google Scholar 

  50. Cutler, G. B. Jr . The role of estrogen in bone growth and maturation during childhood and adolescence. J. Steroid Biochem. Mol. Biol. 61, 141–144 (1997).

    Article  CAS  Google Scholar 

  51. Weise, M. et al. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc. Natl Acad. Sci. USA 98, 6871–6876 (2001).

    Article  CAS  Google Scholar 

  52. Rochira, V. et al. Sex steroids and body proportions in two men with aromatase deficiency: evidences for a key role of estrogen deficiency on eunuchoid skeleton [abstract]. In 7th European Congress of Endocrinology 270 (2005).

    Google Scholar 

  53. Andersson, A. M. et al. Serum inhibin B in healthy pubertal and adolescent boys: relation to age, stage of puberty, and follicle-stimulating hormone, luteinizing hormone, testosterone, and estradiol levels. J. Clin. Endocrinol. Metab. 82, 3976–3981 (1997).

    CAS  PubMed  Google Scholar 

  54. Rochira, V. et al. Skeletal effects of long-term estrogen and testosterone replacement treatment in a man with congenital aromatase deficiency: evidences of a priming effect of estrogen for sex steroids action on bone. Bone 40, 1662–1668 (2007).

    Article  CAS  Google Scholar 

  55. Khosla, S., Melton, L. J. 3rd, Atkinson, E. J. & O'Fallon, W. M. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J. Clin. Endocrinol. Metab. 86, 3555–3561 (2001).

    Article  CAS  Google Scholar 

  56. Herrmann, B. L., Janssen, O. E., Hahn, S., Broecker-Preuss, M. & Mann, K. Effects of estrogen replacement therapy on bone and glucose metabolism in a male with congenital aromatase deficiency. Horm. Metab. Res. 37, 178–183 (2005).

    Article  CAS  Google Scholar 

  57. Vanderschueren, D., Venken, K., Ophoff, J., Bouillon, R. & Boonen, S. Clinical Review: Sex steroids and the periosteum--reconsidering the roles of androgens and estrogens in periosteal expansion. J. Clin. Endocrinol. Metab. 91, 378–382 (2006).

    Article  CAS  Google Scholar 

  58. Balestrieri, A., Madeo, B., Rochira, V., Baldini, L. & Carani, C. Bilateral osteonecrosis of the femoral head in an adult man affected by congenital estrogen deficiency. J. Endocrinol. Invest. 26, 762–764 (2003).

    Article  CAS  Google Scholar 

  59. Zirilli, L. et al. The effects of long-term raloxifene and estradiol treatments on bone in a patient with congenital aromatase deficiency. Bone doi:10.1016/j.bone.2009.03.672.

    Article  CAS  Google Scholar 

  60. Carani, C., Rochira, V., Faustini-Fustini, M., Balestrieri, A. & Granata, A. R. Role of estrogen in male sexual behavior: insights from the natural model of aromatase deficiency. Clin. Endocrinol. (Oxf.) 51, 517–524 (1999).

    Article  CAS  Google Scholar 

  61. Carani, C. et al. Sex steroids and sexual desire in a man with a novel mutation of aromatase gene and hypogonadism. Psychoneuroendocrinology 30, 413–417 (2005).

    Article  CAS  Google Scholar 

  62. Sudhir, K. & Komesaroff, P. A. Clinical review 110: Cardiovascular actions of estrogens in men. J. Clin. Endocrinol. Metab. 84, 3411–3415 (1999).

    Article  CAS  Google Scholar 

  63. Mendelsohn, M. E. & Karas, R. H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 340, 1801–1811 (1999).

    Article  CAS  Google Scholar 

  64. Pitteloud, N. et al. Inhibition of luteinizing hormone secretion by testosterone in men requires aromatization for its pituitary but not its hypothalamic effects: evidence from the tandem study of normal and gonadotropin-releasing hormone-deficient men. J. Clin. Endocrinol. Metab. 93, 784–791 (2008).

    Article  CAS  Google Scholar 

  65. Smith, E. P. et al. Impact on bone of an estrogen receptor-alpha gene loss of function mutation. J. Clin. Endocrinol. Metab. 93, 3088–3096 (2008).

    Article  CAS  Google Scholar 

  66. Mitamura, R. et al. Diurnal rhythms of luteinizing hormone, follicle-stimulating hormone, and testosterone secretion before the onset of male puberty. J. Clin. Endocrinol. Metab. 84, 29–37 (1999).

    CAS  PubMed  Google Scholar 

  67. Vottero, A. et al. Aromatase is differentially expressed in peripheral blood leukocytes from children, and adult female and male subjects. Eur. J. Endocrinol. 154, 425–431 (2006).

    Article  CAS  Google Scholar 

  68. Pepe, C. M. et al. The cytochrome P450 aromatase lacking exon 5 is associated with a phenotype of nonclassic aromatase deficiency and is also present in normal human steroidogenic tissues. Clin. Endocrinol. (Oxf.) 67, 698–705 (2007).

    Article  CAS  Google Scholar 

  69. Pandey, A. V., Kempná, P., Hofer, G., Mullis, P. E. & Flück, C. E. Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase. Mol. Endocrinol. 21, 2579–2595 (2007).

    Article  CAS  Google Scholar 

  70. Choi, B. G. & McLaughlin, M. A. Why men's hearts break: cardiovascular effects of sex steroids. Endocrinol. Metab. Clin. North Am. 36, 365–377 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G. Rossi (University of Modena and Reggio Emilia) for providing technical support and help in writing the manuscript; to E. Pignatti (University of Modena and Reggio Emilia) for help with the genetic and biomolecular analyses; and to Y. Ukmar (University of Bologna) for proofreading and editing the manuscript. Part of this study was presented at the 32nd National Congress of the Italian Society of Endocrinology, Verona, Italy, 13–16 June 2007. Some of the underlying concepts and ideas were presented in the PhD thesis of V. Rochira, Fisiopatologia degli estrogeni nel maschio? The work was supported by a grant from the Ministero dell'Università e della Ricerca (MUR ex-40%-2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Rochira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochira, V., Carani, C. Aromatase deficiency in men: a clinical perspective. Nat Rev Endocrinol 5, 559–568 (2009). https://doi.org/10.1038/nrendo.2009.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing