Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical biosensors in drug discovery

Key Points

  • Optical biosensors have been commercially available since the early 1990s, and have been used extensively in many areas of research in life sciences.

  • Optical biosensors use the evanescent-wave phenomenon to characterize interactions between 'receptors' attached to the biosensor surface and 'ligands' in solution above the surface.

  • Many of the best-known optical biosensors use surface plasmon resonance. Binding of molecules in solution to surface-immobilized receptors alters the refractive index of the medium near the surface. This change can be monitored in real time to accurately measure the amount of bound analyte, its affinity for the receptor and the association and dissociation kinetics of the interaction.

  • Most importantly, binding affinities and kinetics can be determined using very low amounts of compound without the need for prior chemical or radiolabelling.

  • An extremely wide range of molecules can by analysed, from low-molecular-mass drugs to multiprotein complexes, with interaction affinities ranging from millimolar to picomolar in strength.

  • This article includes descriptions of the following application areas for biosensors in drug discovery:

  • Ligand fishing.

  • Conformation of high-throughput screening (HTS) hits using optical biosensors as an information-rich secondary screen.

  • Real-time characterization of interaction kinetics and affinities of confirmed hits.

  • Integration with mass spectometry in proteomics.

  • Determination of drug binding to serum proteins.

  • Adsorption of a drug to membrane interfaces.

  • Process control and production for Good Laboratory Practice (GLP)/Good Manufacturing Practice (GMP) validation.

  • Analysis of clinical samples.

  • Screening against membrane receptors.

  • Development of multiplexed assays for high-information-content, high-throughput screening.

Abstract

Optical biosensors that exploit surface plasmon resonance, waveguides and resonant mirrors have been used widely over the past decade to analyse biomolecular interactions. These sensors allow the determination of the affinity and kinetics of a wide variety of molecular interactions in real time, without the need for a molecular tag or label. Advances in instrumentation and experimental design have led to the increasing application of optical biosensors in many areas of drug discovery, including target identification, ligand fishing, assay development, lead selection, early ADME and manufacturing quality control. This article reviews important advances in optical-biosensor instrumentation and applications, and also highlights some exciting developments, such as highly multiplexed optical-biosensor arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified outline of the drug discovery process.
Figure 2: Typical set-up for an SPR biosensor.
Figure 3: A typical binding cycle observed with an optical biosensor.
Figure 4: Examples of direct drug-screening assay using an optical biosensor.
Figure 5: Model membrane systems that are used with optical biosensors.
Figure 6: Examples of arrayed SPR detection.

Similar content being viewed by others

References

  1. Wood, R. W. Diffraction gratings with controlled groove form and adnormal distribution of intensity. Phil. Mag. 23, 310–317 (1912).

    Article  Google Scholar 

  2. Burstein, E., Chen, W. P., Chen, W. J. & Hartstein, A. Surface polaritons — propagating electromagnetic modes at interfaces. J. Vac. Sci. Technol. 11, 1004–1019 (1974).

    Article  CAS  Google Scholar 

  3. Bernard, B. & Lengeler, B. Electronic Structure of Noble Metals and Polariton-Mediated Light Scattering (eds Agranovich, V. M. & Mills, D. L.) (Springer–Verlag, Berlin, 1978).

    Google Scholar 

  4. Liedberg, B., Nylander, C. & Lundstroem, I. Surface plasmon resonance for gas detection and biosensing. Lab. Sensors Actuators 4, 299–304 (1983).

    Article  CAS  Google Scholar 

  5. Flanagan, M. T. & Pantell, R. H. Surface plasmon resonance and immunosensors. Electron Lett. 20, 968–970 (1984).

    Article  Google Scholar 

  6. Guermazi, S. et al. Further evidence for the presence of anti-protein S autoantibodies in patients with systemic lupus erythematosus. Blood Coagul. Fibrinolysis 11, 491–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Catimel, B., Weinstock, J., Nerrie, M., Domagala, T. & Nice, E. C. Micropreparative ligand fishing with a cuvette-based optical mirror resonance biosensor. J. Chromatogr. A 869, 261–273 (2000).An example of a cuvette-based biosensor that was used with a specific monoclonal antibody to isolate and concentrate a ligand in a form suitable for subsequent sensitive and specific downstream analysis (HPLC, SDS–PAGE and western blotting).

    Article  CAS  PubMed  Google Scholar 

  8. Elliott, J. L., Mogridge, J. & Collier, R. J. A quantitative study of the interactions of Bacillus anthracis edema factor and lethal factor with activated protective antigen. Biochemistry 39, 6706–6713 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Charalambous, B. M. & Feavers, I. M. Peptide mimics elicit antibody responses against the outer-membrane lipooligosaccharide of group B Neisseria meningitidis FEMS Microbiol. Lett. 19, 45–50 (2000).

    Article  Google Scholar 

  10. Chen, H. M., Clayton, A. H., Wang, W. & Sawyer, W. H. Kinetics of membrane lysis by custom lytic peptides and peptide orientations in membrane. Eur. J. Biochem. 268, 1659–1669 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Xing, L. et al. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19, 1207–1216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Inoue, K., Arai, T. & Aoyagi, M. Sensitivity of real time viral detection by an optical biosensor system using a crude home-made antiserum against measles virus as a ligand. Biol. Pharm. Bull. 22, 210–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. McDermott, B. M. Jr, Rux, A. H., Eisenberg, R. J., Cohen, G. H. & Racaniello, V. R. Two distinct binding affinities of poliovirus for its cellular receptor. J. Biol. Chem. 275, 23089–23096 (2000).The kinetics and equilibrium of poliovirus binding to the poliovirus receptor was determined using surface plasmon resonance, which allowed elucidation of the mode of interaction of a soluble form of the receptor with poliovirus.

    Article  CAS  PubMed  Google Scholar 

  14. Achen, M. G. et al. Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3. Eur. J. Biochem. 267, 2505–2515 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Jokiranta, T. S., Hellwage, J., Koistinen, V., Zipfel, P. F. & Meri, S. Each of the three binding sites on complement factor H interacts with a distinct site on C3b. J. Biol. Chem. 275, 27657–27662 (2000).

    CAS  PubMed  Google Scholar 

  16. Vogel, M. et al. Mimicry of human IgE epitopes by anti-idiotypic antibodies. J. Mol. Biol. 298, 729–735 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stoop, A. A., Jespers, L., Lasters, I., Eldering, E. & Pannekoek, H. High-density mutagenesis by combined DNA shuffling and phage display to assign essential amino acid residues in protein–protein interactions: application to study structure–function of plasminogen activation inhibitor I (PAI-I). J. Mol. Biol. 301, 1135–1147 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Andersen, O. M. et al. Identification of the minimal functional unit in the low density lipoprotein receptor-related protein for binding the receptor-associated protein (RAP). J. Biol. Chem. 275, 21017–21024 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Holaska, J. M. et al. Calreticulin is a receptor for nuclear export. J. Cell Biol. 152, 127–140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uegaki, K. et al. Structure of the CAD domain of caspase-activated DNase and interaction with the CAD domain of its inhibitor. J. Mol. Biol. 297, 1121–1128 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen, P. K. et al. Identification of a major heparin and cell binding site in the LG4 module of the laminin α5 chain. J. Biol. Chem. 275, 14517–14523 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Li, S. Y., Ramsden, J. J., Prenosil, J. E. & Heinzle, E. Measurement of adhesion and spreading kinetics of baby hamster kidney and hybridoma cells using an integrated optical method. Biotechnol. Prog. 10, 520–524 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Gaullier, J. M., Ronning, E., Gillooly, D. J. & Stenmark, H. Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J. Biol. Chem. 275, 24595–24600 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Ellson, C. D. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nature Cell Biol. 3, 679–682 (2001).An important paper that shows how optical biosensors, together with functional assays, can be used to rapidly determine how the production of reactive oxygen species (ROS) by neutrophils is driven by the assembly of a multiprotein, membrane-associated complex.

    Article  CAS  PubMed  Google Scholar 

  25. Jensen, K. K., Orum, H., Nielsen, P. E. & Norden, B. Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36, 5072–5077 (1997).A demonstration of the ability of SPR biosensors to rapidly determine DNA, RNA and PNA hybridization kinetics and affinities.

    Article  CAS  PubMed  Google Scholar 

  26. Sando, S., Saito, I. & Nakatani, K. Scanning of guanine–guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nature Biotechnol. 19, 51–55 (2001).

    Article  CAS  Google Scholar 

  27. Bier, F. F., Kleinjung, F. & Scheller, F. W. Real time measurement of nucleic acid hybridization using evanescent wave sensors — steps towards the genosensor. Sensors Actuators B 38–39, 78–82 (1997).

    Article  Google Scholar 

  28. Hart, D. J., Speight, R. E., Cooper, M. A., Sutherland, J. D. & Blackburn, J. M. The salt dependence of DNA recognition by NF-κB p50: a detailed kinetic analysis of the effects on affinityand specificity. Nucleic Acids Res. 27, 1063–1069 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blaesing, F., Weigel, C., Welzeck, M. & Messer, W. Analysis of the DNA-binding domain of Escherichia coli DnaA protein. Mol. Microbiol. 36, 557–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Steinrucke, P. et al. Design of helical proteins for real-time endoprotease assays. Anal. Biochem. 286, 26–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Scire, A., Tanfani, F., Saccucci, F., Bertoli, E. & Principato, G. Specific interaction of cytosolic and mitochondrial glyoxalase II with acidic phospholipids in form of liposomes results in the inhibition of the cytosolic enzyme only. Proteins 41, 33–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensors Actuators B 54, 3–15 (1999).

    Article  CAS  Google Scholar 

  33. Leatherbarrow, R. J. & Edwards, P. R. Analysis of molecular recognition using optical biosensors. Curr. Opin. Chem. Biol. 3, 544–547 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Mullett, W. M., Lai, E. P. & Yeung, J. M. Surface plasmon resonance-based immunoassays. Methods 22, 77–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. McDonnell, J. M. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5, 572–577 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Myszka, D. G. Survey of the 1998 optical biosensor literature. J. Mol. Recogn. 12, 390–408 (1999).This comprehensive review that is updated each year by the author is an excellent source of more detailed information on existing and novel applications of optical biosensors.

    Article  CAS  Google Scholar 

  37. Rich, R. L. & Myszka, D. G. Survey of the 1999 surface plasmon resonance biosensor literature. J. Mol. Recogn. 13, 388–407 (2000).

    Article  CAS  Google Scholar 

  38. Myszka, D. G. & Rich, R. L. Implementing surface plasmon resonance biosensors in drug discovery. Pharm. Sci. Technol. Today 3, 310–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Weimar, T. Recent trends in the application of evanescent wave biosensors. Angew. Chem. Int. Edn Engl. 39, 1219–1221 (2000).

    Article  CAS  Google Scholar 

  40. Ziegler, C. & Gopel, W. Biosensor development. Curr. Opin. Chem. Biol. 2, 585–591 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Silberzan, P., Leger, L., Ausserre, D. & Benattar, J. J. Silanation of silica surfaces — a new method of constructing pure or mixed monolayers. Langmuir 7, 1647–1651 (1991).

    Article  CAS  Google Scholar 

  43. Lahiri, J., Isaacs, L., Tien, J. & Whitesides, G. M. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a SPR study. Anal. Chem. 71, 777–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Sigal, G. B., Bamdad, C., Barberis, A., Strominger, J. & Whitesides, G. M. A self-assembled monolayer for the binding and study of histidine tagged proteins by surface plasmon resonance. Anal. Chem. 68, 490–497 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Ernst, O. P., Bieri, C., Vogel, H. & Hofmann, K. P. Intrisic biophysical monitors of transducin activation: UV-visible spectroscopy, light scattering and evanescent field techniques. Methods Enzymol. 315, 471–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Cooper, M. A. Binding of vancomycin group antibiotics to d-alanine and d-lactate presenting self-assembled monolayers. Bioorg. Med. Chem. 8, 2609–2616 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Mrksich, M., Grunwell, J. R. & Whitesides, G. M. Specific adsorption of carbonic anhydrase to self-assembled monolayers of alkanethiolates that present benzenesulfonamide groups on gold. J. Am. Chem. Soc. 117, 12009–12010 (1995).

    Article  CAS  Google Scholar 

  48. Löfås, S. & Johnsson, B. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Chem. Commun. 1526–1528 (1990).

  49. Robinson, J. C., Kerjan, P. & Mirande, M. Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein–protein interactions and mechanism of complex assembly. J. Mol. Biol. 304, 983–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Fitz, L., Cook, S., Nickbarg, E., Wang, J. H. & Wood, C. R. Accelerating ligand indentification. BIAjournal 2, 23–25 (1998).

    Google Scholar 

  51. Natsume, T. et al. Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing. Anal. Chem. 72, 4193–4198 (2000).A methodological paper that describes the integration of an SPR biosensor with electrospray tandem mass spectrometry in which material from a complex source (a bacterial lysate) is isolated on the chip, digested and identified by mass spectrometry.

    Article  CAS  PubMed  Google Scholar 

  52. Williams, C. & Addona, T. A. The integration of SPR biosensors with mass spectrometry: possible applications for proteome analysis. Trends Biotechnol. 18, 45–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Karlsson, R. & Falt, A. Experimental design for the kinetic analysis of protein–protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods 200, 121–133 (1997).An essential paper for anyone wishing to learn more about the issues that are crucial to good experimental design and data analysis when using optical biosensors.

    Article  CAS  PubMed  Google Scholar 

  54. Roden, L. D. & Myszka, D. G. Global analysis of a macromolecular interaction — myoglobin and anti-myoglobin antibody. Biochem. Biophys. Res. Commun. 225, 1073–1077 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Myszka, D. G. Improving biosensor analysis. J. Mol. Recogn. 12, 279–284 (1999).A highly valuable source of practical information for experimentalists and analysts.

    Article  CAS  Google Scholar 

  56. Zhu, G., Yang, B. & Jennings, R. N. Quantitation of basic fibroblast growth factor by immunoassay using BIAcore 2000. J. Pharm. Biomed. Anal. 24, 281–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Polzius, R., Bier, F. F., Bilitewski, U., Jäger, V. & Schmid, R. D. On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler. Biotechnol. Bioeng. 42, 1287–1292 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Karlsson, R. Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors. Anal. Biochem. 221, 142–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Karlsson, R. et al. Biosensor analysis of drug target interactions: direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors. Anal. Biochem. 278, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Markgren, P. O., Hamalainen, M. & Danielson, U. H. Kinetic analysis of the interaction between HIV-1 protease and inhibitors using optical biosensor technology. Anal. Biochem. 279, 71–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Hamalainen, M. D. et al. Characterization of a set of HIV-1 protease inhibitors using binding kinetics data from a biosensor-based screen. J. Biomol. Screen. 5, 353–360 (2000).An important paper that introduces the concept of screening small-molecule–receptor complexes for affinity and stability using the kinetic data generated by optical biosensors.

    Article  CAS  PubMed  Google Scholar 

  62. Boehm, H. J. et al. Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J. Med. Chem. 43, 2664–2674 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Berezov, A., Zhang, H. T., Greene, M. I. & Murali, R. Disabling erbB receptors with rationally designed exocyclic mimetics of antibodies: structure–function analysis. J. Med. Chem. 44, 2565–2574 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Nelson, R. W., Nedelkov, D. & Tubbs, K. A. Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis 21, 1155–1163 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Nelson, R. W. & Krone, J. R. Advances in surface plasmon resonance biomolecular interaction analysis mass spectrometry (BIA/MS). J. Mol. Recogn. 12, 77–93 (1999).

    Article  CAS  Google Scholar 

  66. Nelson, R. W., Jarvik, J. W., Taillon, B. E. & Tubbs, K. A. BIA/MS of epitope-tagged peptides directly from E. coli lysate: multiplex detection and protein identification at low-femtomole to subfemtomole levels. Anal. Chem. 71, 2858–2865 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Takayama, S. et al. Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen–stigma adhesion. Proc. Natl Acad. Sci. USA 97, 3765–3770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sönksen, C. P., Nordhoff, E., Jansson, Ö., Malmqvist, M. & Roepstorff, P. Combining MALDI mass spectrometry and biomolecular interaction analysis using a biomolecular interaction analysis instrument. Anal. Chem. 70, 2731–2736 (1998).

    Article  PubMed  Google Scholar 

  69. Nedelkov, D. & Nelson, R. W. Practical considerations in BIA/MS: optimizing the biosensor–mass spectrometry interface. J. Mol. Recogn. 13, 140–145 (2000).

    Article  CAS  Google Scholar 

  70. Williams, C. Biotechnology match making: screening orphan ligands and receptors. Curr. Opin. Biotechnol. 11, 42–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Nedelkov, D., Rasooly, A. & Nelson, R. W. Multitoxin biosensor–mass spectrometry analysis: a new approach for rapid, real-time, sensitive analysis of Staphylococcal toxins in food. Int. J. Food Microbiol. 60, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Frostell-Karlsson, A. et al. Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J. Med. Chem. 43, 1986–1992 (2000).An SPR biosensor is used to determine the serum-binding properties of a wide range of drugs and then the calculated percent bound is correlated to those data obtained by other techniques.

    Article  CAS  PubMed  Google Scholar 

  73. Danelian, E. et al. SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction adsorbed in humans. J. Med. Chem. 43, 2083–2086 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Ramsden, J. J. Partition coefficients of drugs in bilayer lipid membranes. Experientia 49, 688–692 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. FDA Docket No. 98D 0374 (FDA, 1999).

  76. Reynhardt, K. O. & Subramanayam, M. Biacore's SPR technology in a GMP-regulated environment. Biacore J. 1, 12–14 (2001).

    Google Scholar 

  77. Ritter, G. et al. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res. 61, 6851–6859 (2001).

    CAS  PubMed  Google Scholar 

  78. Takacs, M. A., Jacobs, S. J., Bordens, R. M. & Swanson, S. J. Detection and characterization of antibodies to PEG-IFN-α2b using surface plasmon resonance. J. Interferon Cytokine Res. 19, 781–789 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Swanson, S. J. et al. Applications for the new electrochemiluminescent (ECL) and biosensor technologies. Dev. Biol. Stand. 97, 135–147 (1999).A review of the uses of optical biosensor- and electrochemiluminescent-based immunoassays in the analysis of clinical samples.

    CAS  PubMed  Google Scholar 

  80. Heyse, S., Stora, T., Schmid, E., Lakey, J. H. & Vogel, H. Emerging techniques for investigating molecular interactions at lipid membranes. Biochim. Biophys. Acta 1376, 319–338 (1998).An excellent review of model membrane systems and their use with a wide variety of optical-biosensing techniques.

    Article  CAS  PubMed  Google Scholar 

  81. Sackmann, E. & Tanaka, M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 18, 58–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Graham, J. M. & Higgins, J. A. Membrane Analysis (Springer–Verlag, New York, 1997).

    Google Scholar 

  83. Terrettaz, S., Stora, T., Duschl, C. & Vogel, H. Protein-binding to supported lipid membranes: investigation of the cholera toxin–ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9, 1361–1369 (1993).

    Article  CAS  Google Scholar 

  84. Athanassopoulou, N., Davies, R. J., Edwards, P. R., Yeung, D. & Maule, C. H. Cholera toxin and G(M1): a model membrane study with IAsys. Biochem. Soc. Trans. 27, 340–343 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Puu, G. & Gustafson, I. Planar lipid bilayers on solid supports from liposomes — factors of importance for kinetics and stability. Biochim. Biophys. Acta 1327, 149–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Michielin, O., Ramsden, J. J. & Vergeres, G. Unmyristoylated MARCKS-related protein (MRP) binds to supported planar phosphatidylcholine membranes. Biochim. Biophys. Acta 1375, 110–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Lang, H., Dushcl, C. & Vogel, H. A new class of thiolopids for the attachment of lipid bilayers on gold surfaces. Langmuir 10, 197–210 (1994).

    Article  CAS  Google Scholar 

  88. Stora, T., Dienes, Z., Vogel, H. & Duschl, C. Histidine-tagged amphiphiles for the reversible formation of lipid bilayer aggregates on chelator-functionalized gold surfaces. Langmuir 16, 5471–5478 (2000).

    Article  CAS  Google Scholar 

  89. Schmidt, E. K. et al. Incorporation of the acetylcholine receptor dimer from Torpedo californica in a peptide supported lipid membrane investigated by surface plasmon and fluorescence spectroscopy. Biosens. Bioelectron. 13, 585–591 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Cornell, B. A. et al. A biosensor that uses ion-channel switches. Nature 387, 580–583 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Salamon, Z., Wang, Y., Souagales, J. L. & Tollin, G. SPR spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films. Biophys. J. 71, 283–294 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Salamon, Z. & Tollin, G. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes. Biophys. J. 71, 858–867 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cooper, M. A., Hansson, A., Löfås, S. & Williams, D. H. A vesicle capture sensor chip for kinetic analysis of binding to membrane-bound receptors. Anal. Biochem. 277, 196–205 (2000).A practical guide to the use of polymer-cushioned membranes with SPR in the detection of analytes that bind to membrane-associated receptors.

    Article  CAS  PubMed  Google Scholar 

  94. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Spinke, J. et al. Polymer-supported bilayer on a solid substrate. Biophys. J. 63, 1667–1671 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Erdelen, C. et al. Self-assembled disulfide-functionalized amphiphilic copolymers on gold. Langmuir 10, 1246–1250 (1994).

    Article  CAS  Google Scholar 

  97. Karlsson, O. P. & Lofas, S. Flow-mediated on-surface reconstitution of G-protein-coupled receptors for applications in surface plasmon resonance biosensors. Anal. Biochem. 300, 132–138 (2002).An example of an in situ reconstitution of a GCPR (rhodopsin) on a polymer-supported-bilayer sensor chip with demonstrated GTP-dependent binding of transducin.

    Article  CAS  PubMed  Google Scholar 

  98. Hovis, J. S. & Boxer, S. G. Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir 17, 3400–3405 (2001).

    Article  CAS  Google Scholar 

  99. Yang, T., Simanek, E. E. & Cremer, P. Creating addressable aqueous microcompartments above solid supported phospholipid bilayers using lithographically patterned poly(dimethylsolixane) molds. Anal. Chem. 121, 8130–8131 (2000).

    Google Scholar 

  100. Boden, N. et al. The design and synthesis of simple molecular tethers for binding biomembranes to a gold surface. Tetrahedron 53, 10939–10952 (1997).

    Article  CAS  Google Scholar 

  101. Rothenhausler, B. & Knoll, W. Surface-plasmon microscopy. Nature 332, 615–617 (1988).

    Article  Google Scholar 

  102. Catimel, B. et al. Kinetic analysis of the interaction between the monoclonal antibody A33 and its colonic epithelial antigen by the use of an optical biosensor; a comparison of immobilization strategies. J. Chromatogr. 776, 15–30 (1997).

    Article  CAS  Google Scholar 

  103. Johnsson, B. et al. Comparison of methods for immobilization to carboxymethyldextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J. Mol. Recogn. 8, 125–136 (1995).

    Article  CAS  Google Scholar 

  104. Löfås, S. et al. Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens. Bioelectron. 10, 813–822 (1995).

    Article  Google Scholar 

  105. Nunomura, W., Takakuwa, Y., Parra, M., Conboy, J. & Mohandas, N. Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane. J. Biol. Chem. 275, 24540–24546 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Stolowitz, M. et al. Phenylboronic acid–salicylhydroxamic acid bioconjugates I: a novel boronic acid complex for protein immobilization. Bioconj. Chem. 12, 229–239 (2001).

    Article  CAS  Google Scholar 

  107. Nilsson, P., Persson, B., Uhlén, M. & Nygren, P.-Å. Real-time monitoring of DNA manipulations using biosensor technology. Anal. Biochem. 224, 400–408 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Grunden, A. M., Self, W. T., Villain, M., Blalock, J. E. & Shanmugam, K. T. An analysis of the binding of repressor protein ModE to ModABCD (molybdate transport) operator/promoter DNA of Escherichia coli. J. Biol. Chem. 274, 24308–24315 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Kazemier, B., de Haard, H., Boender, P., van Gemen, B. & Hoogenboom, H. Determination of active single chain antibody concentrations in crude periplasmic fractions. J. Immunol. Meth. 194, 201–209 (1996).

    Article  CAS  Google Scholar 

  110. Nice, E. et al. Mapping of the antibody- and receptor-binding domains of granulocyte colony-stimulating factor using an optical biosensor: comparison with enzyme-linked immunosorbent assay competition studies. J. Chromatogr. 646, 159–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. O'Shannessy, D. J., O'Donnell, K. C., Martin, J. & Brigham-Burke, M. Detection and quantitation of hexa-histidine-tagged recombinant proteins on western blots and by a surface plasmon resonance biosensor technique. Anal. Biochem. 229, 119–124 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Nieba, L. et al. Biacore analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal. Biochem. 252, 217–228 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Radler, U., Mack, J., Persike, N., Jung, G. & Tampe, R. Design of supported membranes tethered via metal-affinity ligand-receptor pairs. Biophys. J. 79, 3144–3152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Müller, K. M., Arndt, K. M., Bauer, K. & Plückthun, A. Tandem immobilized metal-ion affinity chromatography/immunoaffinity purification of His-tagged proteins — evaluation of two anti-His-tag monoclonal antibodies. Anal. Biochem. 259, 54–61 (1998).

    Article  PubMed  Google Scholar 

  115. Schuck, P. Kinetics of ligand binding to receptors immobilized in a polymer matrix, as detected with an evanescent wave biosensor. A computer simulation of the influence of mass transport. Biophys. J. 70, 1230–1249 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Roos, H., Karlsson, R., Nilshans, H. & Persson, A. Thermodynamic analysis of protein interactions with biosensor technology. J. Mol. Recogn. 11, 204–210 (1998).

    Article  CAS  Google Scholar 

  117. Zeder-Lutz, G., Zuber, E., Witz, J. & Van Regenmortel, M. H. Thermodynamic analysis of antigen-antibody binding using biosensor measurements at different temperatures. Anal. Biochem. 246, 123–132 (1997).This paper shows that interaction affinities, kinetics and thermodynamics can all be obtained using an optical biosensor.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. A. C. wishes to acknowledge Affinity Sensors, Artificial Sensing Instruments, Aviv Instruments, Biacore, Farfield Sensors, Graffinity Pharmaceuticals, HTS Biosystems, IBIS, Luna Analytics, Nippon Lasers, Prolinx and SRU Biosystems for critical revision of the manuscript, for providing access to images and for the information contained in online table 1.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

Cancer.gov

breast cancer

ovarian cancer

LocusLink

AGP

cytochrome c

HER2

rhodopsin

thrombin

transducin

FURTHER INFORMATION

FDA

Glossary

BIOSENSOR

A device that uses biological receptors to detect analytes in a sample.

EVANESCENT-WAVE PHENOMENON

Total internal reflection of light at a surface–solution interface produces an electromagnetic field, or evanescent wave, that extends a short distance (100–200 nm) into the solution. SPR is an evanescent- wave phenomenon that occurs at certain metallic surfaces.

BIOTIN

The streptavidin/biotin system has one of the largest free energies of association observed for noncovalent binding of a protein and small ligand in aqueous solution (KD = 0.1 pM). The complexes are also extremely stable over a wide range of temperature and pH.

NEPHELOMETRY

The measurement of solution turbidity or 'cloudiness'. It can be used to study drug solubility and microbial growth, and for immunological tests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, M. Optical biosensors in drug discovery. Nat Rev Drug Discov 1, 515–528 (2002). https://doi.org/10.1038/nrd838

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing