Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial proteolytic complexes as therapeutic targets

Key Points

  • Bacteria encode a conserved set of proteolytic complexes: Clp, FtsH, Lon, HslUV, high-temperature requirement A serine protease (HtrA) and the prokaryotic proteasome.

  • These enzymes consist of two major components: a recognition element that recognizes particular proteins to facilitate targeted protein turnover, and a compartmentalized degradative chamber that ensures efficient and complete destruction of proteins delivered by the recognition elements.

  • The bacterial proteolytic complexes are crucially required for normal bacterial growth and virulence in numerous pathogenic bacterial species, thus highlighting their potential therapeutic relevance.

  • The enzymes were initially identified to have important roles in regulating protein quality control through the degradation of misfolded, mislocalized or aberrant protein products.

  • We now know that they also coordinate several important cell processes through the targeted degradation of key regulator and effector proteins. Their biological significance has been extensively studied. Some of the key areas of bacterial physiology they are involved in include the regulation of stress responses, cellular replication and division, and virulence.

  • No clinically available antibiotics currently target the protease complexes in bacteria. With the development of bortezomib, the inhibitor of the human proteasome, many tools currently exist to facilitate a targeted development of bacterial protease modulators.

  • The Clp protease represents the most validated therapeutic target among the bacterial complexes, with specific small molecules recently developed that either inhibit or activate the enzyme and result in abrogation of virulence or cell death, respectively.

  • Key differences in the structure of the human proteasome and the proteasome of Mycobacterium tuberculosis (the causative agent of tuberculosis) have been exploited to yield a small molecule that specifically targets the prokaryotic homologue of the enzyme.

  • Inhibition of HtrA protease has been utilized to inhibit the growth of Helicobacter pylori in the context of infection. Inhibition of bacterial HtrA is also specific and does not interfere with host HTRA function.

  • Drug discovery efforts utilizing the bacterial proteolytic complexes remain in their infancy, but the tools that exist for protease-based drug discovery and the critical role that these enzymes have in bacterial physiology mandate a more concerted exploration of their therapeutic potential.

Abstract

Proteases have been successfully targeted for the treatment of several diseases, including hypertension, type 2 diabetes, multiple myeloma, HIV and hepatitis C virus infections. Given the demonstrated pharmacological tractability of this enzyme family and the pressing need for novel drugs to combat antibiotic resistance, proteases have also attracted interest as antibacterial targets — particularly the widely conserved intracellular bacterial degradative proteases, which are often indispensable for normal bacterial growth or virulence. This Review summarizes the roles of the key prokaryotic degradative proteases, with a focus on the initial efforts and associated challenges in developing specific therapeutic modulators of these enzymes as novel classes of antibacterial drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of proteolysis in regulation of RpoS.
Figure 2: Targeted whole-cell screens to identify modulators of proteolysis.
Figure 3: Crystal structure of the M. tuberculosis 20S proteasome after exposure to the oxathiazol-2-one inhibitor, HT1171, shows modification of the active site threonine (Thr1), and conformational changes in a non-conserved, M. tuberculosis-specific portion of the β-subunit.

Similar content being viewed by others

References

  1. Udwadia, Z. F., Amale, R. A., Ajbani, K. K. & Rodrigues, C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis. 54, 579–581 (2012).

    Article  PubMed  Google Scholar 

  2. Poordad, F. et al. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med. 364, 1195–1206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vermehren, J. & Sarrazin, C. New HCV therapies on the horizon. Clin. Microbiol. Infect. 17, 122–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Eriksson, B. I., Smith, H., Yasothan, U. & Kirkpatrick, P. Dabigatran etexilate. Nature Rev. Drug Discov. 7, 557–558 (2008).

    Article  CAS  Google Scholar 

  5. Drag, M. & Salvesen, G. S. Emerging principles in protease-based drug discovery. Nature Rev. Drug Discov. 9, 690–701 (2010).

    Article  CAS  Google Scholar 

  6. Plaut, A. G. The IgA1 proteases of pathogenic bacteria. Annu. Rev. Microbiol. 37, 603–622 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Lupas, A., Flanagan, J. M., Tamura, T. & Baumeister, W. Self-compartmentalizing proteases. Trends Biochem. Sci. 22, 399–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Gottesman, S., Maurizi, M. R. & Wickner, S. Regulatory subunits of energy-dependent proteases. Cell 91, 435–438 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Goldberg, A. L. & St John, A. C. Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu. Rev. Biochem. 45, 747–803 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Lipinska, B., Fayet, O., Baird, L. & Georgopoulos, C. Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J. Bacteriol. 171, 1574–1584 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maurizi, M. R., Clark, W. P., Kim, S. H. & Gottesman, S. Clp P represents a unique family of serine proteases. J. Biol. Chem. 265, 12546–12552 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Maurizi, M. R., Trisler, P. & Gottesman, S. Insertional mutagenesis of the lon gene in Escherichia coli: lon is dispensable. J. Bacteriol. 164, 1124–1135 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frees, D., Savijoki, K., Varmanen, P. & Ingmer, H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol. Microbiol. 63, 1285–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Raju, R. M. et al. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog. 8, e1002511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt, M., Lupas, A. N. & Finley, D. Structure and mechanism of ATP-dependent proteases. Curr. Opin. Chem. Biol. 3, 584–591 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Burton, B. M. & Baker, T. A. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Protein Sci. 14, 1945–1954 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lipinska, B., Zylicz, M. & Georgopoulos, C. The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J. Bacteriol. 172, 1791–1797 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Botos, I. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 279, 8140–8148 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Tomoyasu, T. et al. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J. 14, 2551–2560 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rohrwild, M. et al. HslV-HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl Acad. Sci. USA 93, 5808–5813 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kisselev, A. F., Songyang, Z. & Goldberg, A. L. Why does threonine, and not serine, function as the active site nucleophile in proteasomes? J. Biol. Chem. 275, 14831–14837 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt, R., Bukau, B. & Mogk, A. Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Res. Microbiol. 160, 629–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Bieniossek, C. et al. The molecular architecture of the metalloprotease FtsH. Proc. Natl Acad. Sci. USA 103, 3066–3071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. & Clausen, T. Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell 117, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, D. Y. & Kim, K. K. Structure and function of HtrA family proteins, the key players in protein quality control. J. Biochem. Mol. Biol. 38, 266–274 (2005).

    CAS  PubMed  Google Scholar 

  27. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800–805 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kress, W., Maglica, Z. & Weber-Ban, E. Clp chaperone-proteases: structure and function. Res. Microbiol. 160, 618–628 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008). This study provides the first evidence of a ubiquitin-like pathway in a prokaryotic organism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iniesta, A. A., McGrath, P. T., Reisenauer, A., McAdams, H. H. & Shapiro, L. A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc. Natl Acad. Sci. USA 103, 10935–10940 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tobias, J. W., Shrader, T. E., Rocap, G. & Varshavsky, A. The N-end rule in bacteria. Science 254, 1374–1377 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Erbse, A. et al. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439, 753–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Nomura, K., Kato, J., Takiguchi, N., Ohtake, H. & Kuroda, A. Effects of inorganic polyphosphate on the proteolytic and DNA-binding activities of Lon in Escherichia coli. J. Biol. Chem. 279, 34406–34410 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Gaillot, O., Pellegrini, E., Bregenholt, S., Nair, S. & Berche, P. The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol. Microbiol. 35, 1286–1294 (2000). This is one of the first studies to explore why proteolytic complexes are essential for virulence in a pathogenic organism.

    Article  CAS  PubMed  Google Scholar 

  35. Tomoyasu, T. et al. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J. Bacteriol. 175, 1344–1351 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akiyama, Y., Kihara, A., Tokuda, H. & Ito, K. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J. Biol. Chem. 271, 31196–31201 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Gur, E. & Sauer, R. T. Recognition of misfolded proteins by Lon, a AAA+ protease. Genes Dev. 22, 2267–2277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Withey, J. H. & Friedman, D. I. A salvage pathway for protein structures: tmRNA and trans-translation. Annu. Rev. Microbiol. 57, 101–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, W. et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333, 1630–1632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goff, S. A., Casson, L. P. & Goldberg, A. L. Heat shock regulatory gene htpR influences rates of protein degradation and expression of the lon gene in Escherichia coli. Proc. Natl Acad. Sci. USA 81, 6647–6651 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kroh, H. E. & Simon, L. D. The ClpP component of Clp protease is the sigma 32-dependent heat shock protein F21.5. J. Bacteriol. 172, 6026–6034 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lipinska, B., Sharma, S. & Georgopoulos, C. Sequence analysis and regulation of the htrA gene of Escherichia coli: a σ32-independent mechanism of heat-inducible transcription. Nucleic Acids Res. 16, 10053–10067 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lindquist, S. & Craig, E. A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Isaac, D. D., Pinkner, J. S., Hultgren, S. J. & Silhavy, T. J. The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proc. Natl Acad. Sci. USA 102, 17775–17779 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raivio, T. L. & Silhavy, T. J. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J. Bacteriol. 179, 7724–7733 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bury-Moné, S. et al. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet. 5, e1000651 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Humphreys, S. et al. Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect. Immun. 72, 4654–4661 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vijayakumar, S. R. V., Kirchhof, M. G., Patten, C. L. & Schellhorn, H. E. RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J. Bacteriol. 186, 8499–8507 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, Y. & Gottesman, S. Regulation of proteolysis of the stationary-phase sigma factor RpoS. J. Bacteriol. 180, 1154–1158 (1998). This is one of the first studies to elucidate a biological pathway that is regulated through proteolysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Becker, G., Klauck, E. & Hengge-Aronis, R. Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc. Natl Acad. Sci. USA 96, 6439–6444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bougdour, A., Cunning, C., Baptiste, P. J., Elliott, T. & Gottesman, S. Multiple pathways for regulation of σS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68, 298–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, X. et al. Antitoxin MqsA helps mediate the bacterial general stress response. Nature Chem. Biol. 7, 359–366 (2011).

    Article  CAS  Google Scholar 

  53. Kim, Y. et al. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ. Microbiol. 12, 1105–1121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Langklotz, S. & Narberhaus, F. The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease. Mol. Microbiol. 80, 1313–1325 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Quon, K. C., Yang, B., Domian, I. J., Shapiro, L. & Marczynski, G. T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl Acad. Sci. USA 95, 120–125 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iniesta, A. A. & Shapiro, L. A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade. Proc. Natl Acad. Sci. USA 105, 16602–16607 (2008). This is a key study that elucidates the mechanism of cell cycle regulation by the ClpXP protease, which is essential for normal growth in C. crescentus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Camberg, J. L., Hoskins, J. R. & Wickner, S. ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics. Proc. Natl Acad. Sci. USA 106, 10614–10619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dziedzic, R. et al. Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PLoS ONE 5, e11058 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Grigorova, I. L. et al. Fine-tuning of the Escherichia coli σE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev. 18, 2686–2697 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brondsted, L., Andersen, M. T., Parker, M., Jorgensen, K. & Ingmer, H. The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl. Environ. Microbiol. 71, 3205–3212 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lewis, C. et al. Salmonella enterica serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection. Microbiology 155, 873–881 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Alix, E. & Blanc-Potard, A.-B. MgtC: a key player in intramacrophage survival. Trends Microbiol. 15, 252–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Alix, E. & Blanc-Potard, A.-B. Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J. 27, 546–557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jackson, M. W., Silva-Herzog, E. & Plano, G. V. The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol. Microbiol. 54, 1364–1378 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Takaya, A., Kubota, Y., Isogai, E. & Yamamoto, T. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. Mol. Microbiol. 55, 839–852 (2004).

    Article  CAS  Google Scholar 

  66. Butler, S. M., Festa, R. A., Pearce, M. J. & Darwin, K. H. Self-compartmentalized bacterial proteases and pathogenesis. Mol. Microbiol. 60, 553–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Frees, D., Qazi, S. N. A., Hill, P. J. & Ingmer, H. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol. Microbiol. 48, 1565–1578 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Gaillot, O., Bregenholt, S., Jaubert, F., Di Santo, J. P. & Berche, P. Stress-induced ClpP serine protease of Listeria monocytogenes is essential for induction of listeriolysin O-dependent protective immunity. Infect. Immun. 69, 4938–4943 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoy, B. et al. Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep. 11, 798–804 (2010). This study identifies the first HtrA-specific inhibitor that is able to prevent the spread of H. pylori in an ex vivo culture of gastric epithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rasko, D. A. & Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nature Rev. Drug Discov. 9, 117–128 (2010).

    Article  CAS  Google Scholar 

  71. Wang, C. et al. Role of spx in biofilm formation of Staphylococcus epidermidis. FEMS Immunol. Med. Microbiol. 59, 152–160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Bettignies, G. & Coux, O. Proteasome inhibitors: dozens of molecules and still counting. Biochimie 92, 1530–1545 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Rano, T. A. et al. A combinatorial approach for determining protease specificities: application to interleukin-1β converting enzyme (ICE). Chem. Biol. 4, 149–155 (1997). This is one of the first studies to use substrate scanning as a way of identifying protease preferences for certain amino acids.

    Article  CAS  PubMed  Google Scholar 

  74. Harris, J. L. et al. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl Acad. Sci. USA 97, 7754–7759 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goldberg, A. in Bortezomib in the Treatment of Multiple Myeloma (eds: Ghobrial, I. M., Richardson, P. G. & Anderson, K. C.) 1–27 (Springer, 2011).

    Book  Google Scholar 

  76. Frase, H., Hudak, J. & Lee, I. Identification of the proteasome inhibitor MG262 as a potent ATP-dependent inhibitor of the Salmonella enterica serovar Typhimurium Lon protease. Biochemistry 45, 8264–8274 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Fu, G. K., Smith, M. J. & Markovitz, D. M. Bacterial protease Lon is a site-specific DNA-binding protein. J. Biol. Chem. 272, 534–538 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Supuran, C. T., Scozzafava, A. & Clare, B. W. Bacterial protease inhibitors. Med. Res. Rev. 22, 329–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Koppen, M. & Langer, T. Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit. Rev. Biochem. Mol. Biol. 42, 221–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Maupin-Furlow, J. A. et al. Proteasomes from structure to function: perspectives from Archaea. Curr. Top. Dev. Biol. 75, 125–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Coates, A. R. M. & Hu, Y. Novel approaches to developing new antibiotics for bacterial infections. Br. J. Pharmacol. 152, 1147–1154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  Google Scholar 

  83. Rose, J. & Eisenmenger, F. A fast unbiased comparison of protein structures by means of the Needleman–Wunsch algorithm. J. Mol. Evol. 32, 340–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Böttcher, T. & Sieber, S. A. β-lactones as privileged structures for the active-site labeling of versatile bacterial enzyme classes. Angew. Chem. Int. Ed. Engl. 47, 4600–4603 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Böttcher, T. & Sieber, S. A. β-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J. Am. Chem. Soc. 130, 14400–14401 (2008). This work is the first demonstration of a ClpP-specific inhibitor that could serve as an antivirulence antibiotic in Gram-positive organisms.

    Article  CAS  PubMed  Google Scholar 

  86. Böttcher, T. & Sieber, S. A. β-lactones decrease the intracellular virulence of Listeria monocytogenes in macrophages. ChemMedChem 4, 1260–1263 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Cossart, P. The listeriolysin O gene: a chromosomal locus crucial for the virulence of Listeria monocytogenes. Infection 16 (Suppl. 2), S157–S159 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Wiseman, G. M. The hemolysins of Staphylococcus aureus. Bacteriol. Rev. 39, 317–344 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brötz-Oesterhelt, H. et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nature Med. 11, 1082–1087 (2005). This study describes the discovery of ADEPs, which exhibit their bactericidal effect through the nonspecific activation of a non-essential enzyme — ClpP — in Gram-positive organisms.

    Article  CAS  PubMed  Google Scholar 

  90. Gominet, M., Seghezzi, N. & Mazodier, P. Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology 157, 2226–2234 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Kirstein, J. et al. The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol. Med. 1, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, B.-G. et al. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nature Struct. Mol. Biol. 17, 471–478 (2010).

    Article  CAS  Google Scholar 

  93. Li, D. H. S. et al. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem. Biol. 17, 959–969 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmitt, E. K. et al. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew. Chem. Int. Ed. Engl. 50, 5889–5891 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Lin, G., Tsu, C., Dick, L., Zhou, X. K. & Nathan, C. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates. J. Biol. Chem. 283, 34423–34431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lin, G. et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461, 621–626 (2009). This study highlights the development of a proteasome inhibitor that is specific to the proteasome of M. tuberculosis and has no cross-reactivity with the eukaryotic proteasome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Boström, J., Hogner, A., Llinàs, A., Wellner, E. & Plowright, A. T. Oxadiazoles in medicinal chemistry. J. Med. Chem. 55, 1817–1830 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Löwer, M. et al. Inhibitors of Helicobacter pylori protease HtrA found by “virtual ligand” screening combat bacterial invasion of epithelia. PLoS ONE 6, e17986 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hauske, P. et al. Peptidic small molecule activators of the stress sensor DegS. Mol. Biosyst. 5, 980–985 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Sieber and V. Dartois for personal communications that aided the impact of this work. Additionally, we thank M. Chao, K. Guinn, A. Trauner and J. Zhang for valuable editorial input during the revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Rubin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Protein Data Bank

Glossary

Bacterial proteolytic complexes

A conserved set of bacterial enzymes that are responsible for the degradation of whole proteins into smaller, inactive polypeptides and amino acids.

AAA+ enzymes

ATPases associated with diverse cellular activities; a broad class of enzymes that share the ability to hydrolyse ATP.

Chaperones

Single-subunit proteins or complexes that interact with other proteins to promote proper folding or re-folding and inhibit aggregation of aberrant protein-folding variants.

Trans-translation

A conserved mechanism that allows for the recycling of ribosomes that have stalled in the process of reading an mRNA template, and enables the subsequent degradation of the aborted protein product produced by the incomplete translation.

Unfolded protein stress response

An inducible response that enables the cell to eliminate misfolded and denatured proteins via chaperone-dependent re-folding and protease-dependent degradation.

Type III secretion system

A specialized secretory apparatus used by Gram-negative bacteria that directly injects bacterial virulence factors into the host cytoplasm.

Anti-virulence antibiotics

Antibiotics that interfere with the ability of a pathogenic bacteria to establish infection, but are not bacteriostatic or bactericidal.

Suicide inhibitors

Small molecules that react irreversibly with an enzyme to produce a stable enzyme–molecule compound that is incapable of catalysing further reactions.

Substrate scanning

The use of large peptide libraries to determine the amino acid residues that are preferentially hydrolysed by a protease.

Walker box ATP-binding domains

Protein sequence motifs that have been shown to interact with ATP.

Partition coefficients

Ratios that define the concentration of a compound in two phases of a mixture of octanol and water.

Structure-based virtual screening

A method of in silico drug discovery that uses structural information about a target protein to find small molecules that are complementary to the modelled protein active site.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raju, R., Goldberg, A. & Rubin, E. Bacterial proteolytic complexes as therapeutic targets. Nat Rev Drug Discov 11, 777–789 (2012). https://doi.org/10.1038/nrd3846

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing