Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the Hedgehog pathway in cancer

Key Points

  • The hedgehog (Hh) signalling pathway is a key regulator of embryonic development, and its deregulation is associated with various birth defects.

  • Although mostly quiescent in adult tissues, Hh signalling has recently been recognized to participate in tissue repair and tumour growth.

  • Basal cell carcinoma and medulloblastoma, two cancers that involve mutation-driven upregulation of Hh signalling, were the first cancers shown to involve the Hh pathway.

  • Numerous other solid tumours, including pancreatic and prostate cancers, are now thought to have hyper-activated Hh signalling. In these cases, the signalling is stimulated by excessive production of Hh ligands by tumour cells.

  • Several families of small-molecule Hh inhibitors have been identified and are in varying stages of clinical development.

  • The pleiotropic nature of the Hh pathway, seen to be involved in tumour-cell and tumour stem-cell proliferation, as well as in angiogenesis, suggests that Hh antagonists might constitute, under some circumstances, an exciting new type of cancer treatment.

Abstract

Several key signalling pathways, such as Hedgehog, Notch, Wnt and BMP–TGFβ–Activin (bone morphogenetic protein–transforming growth factor-β–Activin), are involved in most processes essential to the proper development of an embryo. It is also becoming increasingly clear that these pathways can have a crucial role in tumorigenesis when reactivated in adult tissues through sporadic mutations or other mechanisms. We will focus here on the Hedgehog pathway, which is abnormally activated in most basal cell carcinomas, and discuss potential therapeutic opportunities offered by the progress made in understanding this signalling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of the vertebrate Hh signalling pathway in the absence or presence of Hh ligands.
Figure 2: Models of Hh pathway activation in cancer.
Figure 3: Types of cancer with possible Hedgehog deregulation.

Similar content being viewed by others

References

  1. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Radtke, F. & Clevers, H. Self-renewal and cancer of the gut: two sides of a coin. Science 307, 1904–1909 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Kalderon, D. Transducing the hedgehog signal. Cell 103, 371–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Denef, N., Neubuser, D., Perez, L. & Cohen, S. M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Huangfu, D. & Anderson, K. V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl Acad. Sci. USA 102, 11325–11330 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. May, S. R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz i Altaba, A. Catching a Gli-mpse of Hedgehog. Cell 90, 193–196 (1997).

    Article  PubMed  Google Scholar 

  14. Duman-Scheel, M., Weng, L., Xin, S. & Du, W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 417, 299–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Pola, R. et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nature Med. 7, 706–711 (2001). An early demonstration that some of the effects of activated Hh signalling in regenerating adult tissue are mediated indirectly via stromal cells.

    Article  CAS  PubMed  Google Scholar 

  16. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci. 6, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Palma, V. & Ruiz i Altaba, A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131, 337–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Palma, V. et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132, 335–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. van den Brink, G. R. et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nature Genet. 36, 277–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Mirsky, R., Parmantier, E., McMahon, A. P. & Jessen, K. R. Schwann cell-derived desert hedgehog signals nerve sheath formation. Ann. N. Y. Acad. Sci. 883, 196–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Parmantier, E. et al. Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23, 713–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Calcutt, N. A. et al. Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy. J Clin Invest. 111, 507–14 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996). This reference (along with references 25–34) established the role of the Hh pathway, previously appreciated as being important in embryonic development, in cancer.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389, 876–881 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Unden, A. B., Zaphiropoulos, P. G., Bruce, K., Toftgard, R. & Stahle-Backdahl, M. Human patched (PTCH) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma. Cancer Res. 57, 2336–2340 (1997). This work and that described in references 38–39 demonstrate the drugability of the Hh pathway and point out the potential therapeutic utility of small-molecule modulators of Hh signalling.

    CAS  PubMed  Google Scholar 

  28. Reifenberger, J. et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58, 1798–1803 (1998).

    CAS  PubMed  Google Scholar 

  29. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 31, 306–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817–821 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Nilsson, M. et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl Acad. Sci. USA 97, 3438–3443 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genet. 24, 216–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Aszterbaum, M. et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nature Med. 5, 1285–1291 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Svard, J. et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell 10, 187–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Dellovade, T., Romer, J. T., Curran, T. & Rubin, L. L. The hedgehog pathway and neurological disorders. Annu. Rev. Neurosci. 29, 539–563 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Williams, J. A. et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc. Natl Acad. Sci. USA 100, 4616–4621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Athar, M. et al. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res. 64, 7545–7552 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Flagella, K. et al. Effects of a topical Hedgehog antagonist on normal skin. Toxicologist 90, S1 (2006).

    Google Scholar 

  42. Fretzin, S., Dawes, K., Rundle, A. & Caro, I. Safety of a topically applied novel small molecule inhibitor of the Hedgehog signaling pathway in subjects with basal cell carcinoma. Australas. J. Dermatol. 47 (Suppl. 1), A59 (2006).

    Google Scholar 

  43. Tas, S. & Avci, O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur. J. Dermatol. 14, 96–102 (2004).

    Google Scholar 

  44. Wallace, V. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol. 9, 445–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Dahmane, N. & Ruiz-i-Altaba, A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126, 3089–3100 (1999).

    PubMed  Google Scholar 

  47. Dahmane, N. et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128, 5201–5212 (2001).

    CAS  PubMed  Google Scholar 

  48. Berman, C. M. et al. Medulloblastoma growth inhibition by hegehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Romer, J. T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc 1+/−p53−/− mice. Cancer Cell 6, 229–240 (2004). A clear illustration that an oral Hh antagonist can significantly inhibit the growth of medulloblastoma in mice.

    Article  CAS  PubMed  Google Scholar 

  50. Sanchez, P. & Ruiz i Altaba, A. In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech. Dev. 122, 223–230 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Sasai, K. et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res. 66, 4215–4222 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bellusci, S. et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124, 53–63 (1997).

    CAS  PubMed  Google Scholar 

  53. Pepicelli, C. V., Lewis, P. M. & McMahon, A. P. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8, 1083–1086 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Chung, U., Schipani, E., McMahon, A. P. & Kronenberg, H. Indian hedgehog couples chondrogenesis to osteogenesis in endochondrial bone development. J. Clin. Invest. 107, 295–304 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. St-Jacques, B., Hammerschmidt, M. & McMahon, A. P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hebrok, M., Kim, S. K., St-Jacques, B., McMahon, A. P. & Melton, D. A. Regulation of pancreas development by hedgehog signaling. Development 127, 4905–4913 (2000).

    CAS  PubMed  Google Scholar 

  57. Tiet, T. D. & Alman, B. A. Development pathways in musculoskeletal neoplasia: involvement of the Indian Hedgehog-parathyroid hormone-related protein pathway. Pediatr. Res. 53, 539–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Tiet, T. D. et al. Constitutive hedgehog signaling in chondrosarcoma up-regulates turmor cell proliferation. Am. J. Pathol. 168, 321–330 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Watkins, D. N. et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317 (2003). An important description of Hh ligand over-production by tumours cells accelerating tumour-cell growth.

    Article  CAS  PubMed  Google Scholar 

  60. Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growtht of digestive tract tumours. Nature 425, 846–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Karhadkar, S. S. et al. Hedgheog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez, P. et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl Acad. Sci. USA 101, 12561–12566 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sheng, T. et al. Activation of the Hedgehog pathway in advanced prostate cancer. Mol. Cancer 3, 29 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fan, L. et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145, 3961–3970 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Al-Hajj, M. & Clarke, M. F. Self-renewal and solid tumor stem cells. Onocogene 23, 7274–7282 (2004).

    Article  CAS  Google Scholar 

  67. Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl. Acad. Sci. USA 101, 4158–4163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, S. et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063–6071 (2006). This paper implicated the Hh pathway in the proliferation of stem cells in solid tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, S. Dontu, G. & Wicha, M. S. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 7, 86–95 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dontu, G. et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605–R615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beachy, P. A., Karhadkar, S. S. & Berman, D. M. Tissue repair and stem cell renewal in carcinogenesis. Nature 432, 324–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Tenzen, T., Allen, B. L., Cole, F., Kang, J. S., Krauss, R. S. & McMahon, A. P. The cell surface membrane proteins cdo and boc are components and targets of the hedgehog signaling pathway and feedback network in mice. Dev Cell 10, 647–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Yao, S., Lum, L. & Beachy, P. The ihog cell-surface proteins bind hedgehog and mediate pathway activation. Cell 125, 343–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, W., Kang, J. S., Cole, F., Yi, M. J. & Krauss, R. S. Cdo functions at multiple points in the sonic hedgehog pathway, and cdo-deficient mice accurately model human holoprosencephaly. Dev. Cell 10, 657–665 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Huangfu, D. & Anderson, K. V. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Xie, J. et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res. 57, 2369–2372 (1997).

    CAS  PubMed  Google Scholar 

  77. Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842–5 (1997).

    CAS  PubMed  Google Scholar 

  78. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nature Genet. 31, 306–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Tostar, U. et al. Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J. Pathol. 208, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Kubo, M. et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 64, 6071–6074 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Qualtrough, D., Buda, A., Gaffield, W., Williams, A. C. & Paraskeva, C. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int. J. Cancer 110, 831–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Oniscu, A. et al. Expression of Sonic hedgehog pathway genes is altered in colonic neoplasia. J. Pathol. 203, 909–917 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Monzo, M. et al. Sonic hedgehog mRNA expression by real-time quantitative PCR in normal and tumor tissues from colorectal cancer patients. Cancer Lett. 233, 117–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Huang, S. et al. Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis 27, 1334–1340 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Borzillo, G. V. & Lippa, B. The Hedgehog signaling pathway as a target for anticancer drug discovery. Curr. Top. Med. Chem. 5, 147–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. The Genomics Institute of the Novartis Research Foundation. Compounds and compositions as Hedgehog pathway modulators. World Patent WO 2006050351 (2006).

Download references

Acknowledgements

The authors would like to thank their many colleagues at Curis and Genentech who have participated so actively in the Hedgehog antagonist program. We would like to thank K. Kotkow for helpful suggestions, J. LaLonde for editorial assistance, D. Wood and M. Dina for help with artwork and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee L. Rubin.

Ethics declarations

Competing interests

L.L.R. is a consultant for and shareholder in Curis, Inc. F.S. is an employee of and shareholder in Genetech.

Related links

Related links

DATABASES

OMIM

Gorlin syndrome

Glossary

Holoprosencephaly

A birth defect that can result as a consequence of insufficient Hh signalling. It relates to a failure of the brain to properly separate into two halves and in its extreme form can be associated with cyclopia, the presence of a single centrally located eye.

Mitogen

Any molecule that stimulates the division of a cell.

Allograft

As used here, a mouse cancer model in which a tumour is removed from one mouse — in which it has occurred spontaneously, for example — and implanted into another mouse or into several mice in order to test the efficacy of an antitumour drug.

Xenograft

A graft of tissue or cells transplanted between animals of different species.

Autocrine, juxtacrine and paracrine signalling

Three modes of signalling in which a molecule produced by one cell can activate signalling in the same cell (autocrine), a neighbouring cell (juxtacrine) or a cell at a distance (paracrine).

Gleason grade

A scoring system for prostate cancers that reflects the degree of disease progression. A score of 1 indicates mild cancer and a score of 5 indicates advanced cancer.

Epithelial—mesenchymal transition

A morphological change in cells such that they lose their epithelial or adhesive organized phenotype and become more motile, sometimes as the beginning of the metastatic process.

Cancer stem cell

A slowly proliferating stem-like cell thought to be present in small numbers in solid tumours, to be resistant to standard chemotherapy and to have an enhanced capacity to give rise to new tumours.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, L., de Sauvage, F. Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 5, 1026–1033 (2006). https://doi.org/10.1038/nrd2086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing