Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics

Key Points

  • Endogenous regeneration seen in animal models provides a template for optimal repair of the human heart following myocardial infarction.

  • In the regenerating heart, new cardiomyocytes are produced by proliferation of the existing cardiomyocyte pool. Understanding and targeting the intrinsic mechanisms that regulate cardiomyocyte cell cycle re-entry could enable therapeutic regeneration in the human heart.

  • Repair is modulated by epicardial activation, neoangiogenesis, the immune response and the extracellular matrix. Biological insights from regenerative models, combined with use of high-throughput phenotypic screens and in vivo discovery approaches, are uncovering novel therapeutic targets and compounds to improve repair.

  • Regenerative strategies that emerge from increased understanding of cardiomyocyte lineage specification include transplantation of in vitro-produced cardiomyocytes and in vivo reprogramming of fibroblasts. Current efforts to improve engraftment, maturation and targeting will enable a next generation of clinical trials.

  • Distinct approaches are required for patients in the immediate post-myocardial infarction period and for those with chronic heart failure, and high-risk strategies should initially be targeted at patients with end-stage heart failure. Clinical trial design should be tailored to incorporate informed biological end points alongside functional end points.

Abstract

Current therapies for heart failure after myocardial infarction are limited and non-curative. Although regenerative approaches are receiving significant attention, clinical efforts that involve transplantation of presumed stem and progenitor cells have largely failed to deliver. Recent studies of endogenous heart regeneration in model organisms, such as zebrafish and neonatal mice, are yielding mechanistic insights into the roles of cardiomyocyte proliferation, resident stem cell niches, neovascularization, the immune system and the extracellular matrix. These findings have revealed novel pathways that could be therapeutically targeted to stimulate repair following myocardial infarction and have provided lessons to guide future efforts towards heart regeneration through cellular reprogramming or cardiomyocyte transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heart failure therapy timeline.
Figure 2: Endogenous mechanisms controlling cardiomyocyte proliferation.
Figure 3: Therapeutic strategies for heart regeneration.

Similar content being viewed by others

References

  1. Roger, V. L. Epidemiology of heart failure. Circ. Res. 113, 646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cahill, T. J., Ashrafian, H. & Watkins, H. Genetic cardiomyopathies causing heart failure. Circ. Res. 113, 660–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Braunwald, E. The war against heart failure: the Lancet lecture. Lancet 385, 812–824 (2015).

    Article  PubMed  Google Scholar 

  4. Velagaleti, R. S. et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118, 2057 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ezekowitz, J. A. et al. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J. Am. Coll. Cardiol. 53, 13–20 (2009).

    Article  PubMed  Google Scholar 

  6. Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States. Circ. Heart Fail. 6, 606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Katz, A. M. The “modern” view of heart failure. Circ. Heart Fail. 1, 63 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Jhund, P. S. & McMurray, J. J. V. The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan. Heart 102, 1342 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Kloner, R. A. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ. Res. 113, 451 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen, P. K., Rhee, J. & Wu, J. C. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 1, 831–841 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yester, J. W. & Kühn, B. Mechanisms of cardiomyocyte proliferation and differentiation in development and regeneration. Curr. Cardiol. Rep. 19, 13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karra, R. & Poss, K. D. Redirecting cardiac growth mechanisms for therapeutic regeneration. J. Clin. Invest. 127, 427–436 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vivien, C. J., Hudson, J. E. & Porrello, E. R. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. Regen. Med. 1, 16012 (2016).

    Google Scholar 

  14. Gonzalez-Rosa, J. M. & Mercader, N. Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat. Protoc. 7, 782–788 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138, 3421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parente, V. et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart. PLoS ONE 8, e53748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188 (2002). This study is the first definitive report of heart regeneration.

    Article  CAS  PubMed  Google Scholar 

  18. Witman, N., Murtuza, B., Davis, B., Arner, A. & Morrison, J. I. Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev. Biol. 354, 67–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. González-Rosa, J. M., Martín, V., Peralta, M., Torres, M. & Mercader, N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138, 1663 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011). This study is the first report of mammalian heart regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Haubner, B. J. et al. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res. 118, 216–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Fratz, S. et al. Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann. Thorac. Surg. 92, 1761–1765 (2011).

    Article  PubMed  Google Scholar 

  24. Tsang, V. et al. Late donor cardiectomy after paediatric heterotopic cardiac transplantation. Lancet 374, 387–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Carlson, B. M. Some principles of regeneration in mammalian systems. Anat. Rec. B New Anat. 287, 4–13 (2005).

    Article  PubMed  Google Scholar 

  26. Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010). References 28 and 29 show that new cardiomyocytes in the regenerating heart are derived from the existing cardiomyocyte pool.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Ellison, G. M. et al. Adult c-kit+ cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154, 827–842 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. van Berlo, J. H. & Molkentin, J. D. An emerging consensus on cardiac regeneration. Nat. Med. 20, 1386–1393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004). This is a landmark study that refutes the concept of bone marrow-derived progenitor cells as a source of new cardiomyocytes in the mouse.

    Article  CAS  PubMed  Google Scholar 

  35. Balsam, L. B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ahuja, P., Sdek, P. & MacLellan, W. R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98 (2009). This study describes the identification and quantification of cardiomyocyte replication in the human heart using carbon-14 dating.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 1446–1451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Puente, B. N. et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157, 565–579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kimura, W. et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523, 226–230 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Engel, F. B. et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19, 1175–1187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahmoud, A. I. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249–253 (2013). This study describes the identification of MEIS1 as an inhibitor of the cardiomyocyte cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, K.-F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394–398 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Gemberling, M., Karra, R., Dickson, A. L. & Poss, K. D. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 4, e05871 (2015).

    Article  PubMed Central  Google Scholar 

  46. Yelon, D. et al. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127, 2573 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat. Genet. 16, 154–160 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Schindler, Y. L. et al. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 141, 3112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, W. et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development 143, 936 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, Q., Li, L., Zhao, B. & Guan, K.-L. The hippo pathway in heart development, regeneration, and diseases. Circ. Res. 116, 1431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458 (2011). This study describes the identification of the Hippo pathway as a key mediator of cardiomyocyte proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xin, M. et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839–13844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao, C. et al. Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nat. Commun. 7, 13787 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Gupta, V. & Poss, K. D. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 484, 479–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kubin, T. et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9, 420–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Di Talia, S. & Poss, K. D. Monitoring tissue regeneration at single-cell resolution. Cell Stem Cell 19, 428–431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Walsh, S., Pontén, A., Fleischmann, B. K. & Jovinge, S. Cardiomyocyte cell cycle control and growth estimation in vivo — an analysis based on cardiomyocyte nuclei. Cardiovasc. Res. 86, 365–373 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. White, I. A., Gordon, J., Balkan, W. & Hare, J. M. Sympathetic reinnervation is required for mammalian cardiac regeneration. Circ. Res. 117, 990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Regenfus, M. et al. Six-year prognostic value of microvascular obstruction after reperfused ST-elevation myocardial infarction as assessed by contrast-enhanced cardiovascular magnetic resonance. Am. J. Cardiol. 116, 1022–1027 (2015).

    Article  PubMed  Google Scholar 

  63. Red-Horse, K., Ueno, H., Weissman, I. L. & Krasnow, M. A. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553 (2010). This study showed that coronary vessels originate from the sinus venosus during development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tian, X. et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23, 1075–1090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, H. et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880–1893 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Masters, M. & Riley, P. R. The epicardium signals the way towards heart regeneration. Stem Cell Res. 13, 683–692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Risebro, C. A., Vieira, J. M., Klotz, L. & Riley, P. R. Characterisation of the human embryonic and foetal epicardium during heart development. Development 142, 3630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Katz, T. C. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22, 639–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tian, X., Pu, W. T. & Zhou, B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. von Gise, A. et al. WT1 regulates epicardial epithelial to mesenchymal transition through β-catenin and retinoic acid signaling pathways. Dev. Biol. 356, 421–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kwee, L. et al. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121, 489–503 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, J., Cao, J., Dickson, A. L. & Poss, K. D. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 522, 226–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smart, N. et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474, 640–644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smart, N. et al. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Zhou, B. et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121, 1894–1904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rui, L. et al. Extending the time window of mammalian heart regeneration by thymosin beta 4. J. Cell. Mol. Med. 18, 2417–2424 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hagensen, M. K., Vanhoutte, P. M. & Bentzon, J. F. Arterial endothelial cells: still the craftsmen of regenerated endothelium. Cardiovasc. Res. 95, 281 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. He, L. et al. Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovasc. Res. 109, 419 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bayliss, P. E. et al. Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat. Chem. Biol. 2, 265–273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eyries, M. et al. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ. Res. 103, 432 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Xu, C. et al. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 5, 5758 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Kikuchi, K. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20, 397–404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zangi, L. et al. An IGF1R-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation 135, 59–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, B. et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J. Mol. Cell. Cardiol. 52, 43–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Kikuchi, K. et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. González-Rosa, J. M., Peralta, M. & Mercader, N. Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev. Biol. 370, 173–186 (2012).

    Article  PubMed  CAS  Google Scholar 

  89. Stevens, S. M., Gise, A.v., VanDusen, N., Zhou, B. & Pu, W. T. Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Dev. Biol. 413, 153–159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ramjee, V. et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J. Clin. Invest. 127, 899–911 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Balmer, G. M. et al. Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nat. Commun. 5, 4054 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Cao, J. et al. Single epicardial cell transcriptome sequencing identifies caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143, 232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ruparelia, N. et al. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur. Heart J. 36, 1923–1934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frangogiannis, N. G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 110, 159–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nahrendorf, M. & Swirski, F. K. Abandoning M1/M2 for a network model of macrophage function. Circ. Res. 119, 414–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shiraishi, M. et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J. Clin. Invest. 126, 2151–2166 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Ma, Y. et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res. 110, 51 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kyritsis, N. et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338, 1353 (2012). This study showed that inflammation is sufficient to initiate regeneration in the zebrafish brain.

    Article  CAS  PubMed  Google Scholar 

  102. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Aurora, A. B. & Olson, E. N. Immune modulation of stem cells and regeneration. Cell Stem Cell 15, 14–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zordan, P. et al. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration. Cell Death Dis. 5, e1031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin, S.-L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Han, C. et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. 25, 1137–1151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014). This study showed that macrophages are essential for regeneration in the neonatal mouse heart by modulation of neoangiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Godwin, J. W. & Brockes, J. P. Regeneration, tissue injury and the immune response. J. Anat. 209, 423–432 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rienks, M., Papageorgiou, A.-P., Frangogiannis, N. G. & Heymans, S. Myocardial extracellular matrix. Circ. Res. 114, 872 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vinarsky, V., Atkinson, D. L., Stevenson, T. J., Keating, M. T. & Odelberg, S. J. Normal newt limb regeneration requires matrix metalloproteinase function. Dev. Biol. 279, 86–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Calve, S., Odelberg, S. J. & Simon, H.-G. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev. Biol. 344, 259–271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Godwin, J. W. & Rosenthal, N. Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation 87, 66–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Hu, N., Yost, H. J. & Clark, E. B. Cardiac morphology and blood pressure in the adult zebrafish. Anat. Rec. 264, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Yahalom-Ronen, Y., Rajchman, D., Sarig, R., Geiger, B. & Tzahor, E. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. eLife 4, e07455 (2015).

    Article  PubMed Central  Google Scholar 

  120. Canseco, D. C. et al. Human ventricular unloading induces cardiomyocyte proliferation. J. Am. Coll. Cardiol. 65, 892–900 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chen, W. C. W. et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci. Adv. 2, e1600844 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Mercer, S. E., Odelberg, S. J. & Simon, H.-G. A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev. Biol. 382, 457–469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, J., Karra, R., Dickson, A. L. & Poss, K. D. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev. Biol. 382, 427–435 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Shimazaki, M. et al. Periostin is essential for cardiac healingafter acute myocardial infarction. J. Exp. Med. 205, 295 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kuhn, B. et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med. 13, 962–969 (2007).

    Article  PubMed  CAS  Google Scholar 

  126. Ladage, D. et al. Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. PLoS ONE 8, e59656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Missinato, M. A., Tobita, K., Romano, N., Caroll, J. A. & Tsang, M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovasc. Res. 107, 487–498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hastings, C. L. et al. Drug and cell delivery for cardiac regeneration. Adv. Drug Deliv. Rev. 84, 85–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).

    Article  PubMed  Google Scholar 

  130. Goss, R. J. The evolution of regeneration: adaptive or inherent? J. Theor. Biol. 159, 241–260 (1992).

    Article  CAS  PubMed  Google Scholar 

  131. Furtado, M. B., Nim, H. T., Boyd, S. E. & Rosenthal, N. A. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 143, 387 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lévesque, M. et al. Transforming growth factor: β signaling is essential for limb regeneration in axolotls. PLoS ONE 2, e1227 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Satoh, A., Hirata, A. & Makanae, A. Collagen reconstitution is inversely correlated with induction of limb regeneration in ambystoma mexicanum. Zool. Sci. 29, 191–197 (2012).

    Article  CAS  Google Scholar 

  135. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bicknell, K. A., Coxon, C. H. & Brooks, G. Forced expression of the cyclin B1–CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem. J. 382, 411 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Di Stefano, V., Giacca, M., Capogrossi, M. C., Crescenzi, M. & Martelli, F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J. Biol. Chem. 286, 8644–8654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chaudhry, H. W. et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J. Biol. Chem. 279, 35858–35866 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Pasumarthi, K. B. S., Nakajima, H., Nakajima, H. O., Soonpaa, M. H. & Field, L. J. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ. Res. 96, 110 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Ebelt, H. et al. E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc. Res. 80, 219 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Cheng, Y. Y. et al. Reprogramming-derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Mol. Med. 9, 251–264 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  142. Engel, F. B., Hsieh, P. C. H., Lee, R. T. & Keating, M. T. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl Acad. Sci. USA 103, 15546–15551 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Garbayo, E. et al. Catheter-based intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion. Sci. Rep. 6, 25932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhao, L. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 111, 1403–1408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lenihan, D. J. et al. A phase I, single ascending dose study of cimaglermin alfa (neuregulin 1β3) in patients with systolic dysfunction and heart failure. JACC Basic Transl Sci. 1, 576–586 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012). This study reports that miRNAs are involved in cardiac regeneration and have therapeutic effects to modulate repair in the mouse heart.

    Article  CAS  PubMed  Google Scholar 

  147. Tian, Y. et al. A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl Med. 7, 279ra38 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hesse, M. et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 3, 1076 (2012).

    Article  PubMed  CAS  Google Scholar 

  149. Srivastava, D. & DeWitt, N. In vivo cellular reprogramming: the next generation. Cell 166, 1386–1396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jopling, C., Boue, S. & Belmonte, J. C. I. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme beta-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, R. et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chong, J. J. H. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014). This study showed that human ESC-derived cardiomyocytes can engraft the macaque heart following myocardial infarction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Efe, J. A. et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13, 215–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010). This study demonstrated that fibroblasts can be directly reprogrammed into cardiomyocytes in vitro by GATA4, MEF2C and TBX5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Srivastava, D. & Yu, P. Recent advances in direct cardiac reprogramming. Curr. Opin. Genet. Dev. 34, 77–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012). References 160 and 161 are key studies that demonstrate in vivo reprogramming to form new cardiomyocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jayawardena, T. M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, Y. et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci. Rep. 6, 38815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Taimeh, Z., Loughran, J., Birks, E. J. & Bolli, R. Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 10, 519–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Giacca, M. & Zacchigna, S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 19, 622–629 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528–1541 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mandic, L. et al. Molecular imaging of angiogenesis in cardiac regeneration. Curr. Cardiovasc. Imaging Rep. 9, 27 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Tian, X. et al. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345, 90–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Miquerol, L. et al. Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction. Circ. Res. 116, 1765 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Norman, S. & Riley, P. R. Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease. Clin. Anat. 29, 305–315 (2016).

    Article  PubMed  Google Scholar 

  173. Ishikawa, Y. et al. Lymphangiogenesis in myocardial remodelling after infarction. Histopathology 51, 345–353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Klotz, L. et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Henri, O. et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133, 1484–1497 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol. 14, 133–144 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Majmudar, M. D. et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127, 2038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. ISRCTN registry. Macrophages therapy for liver cirrhosis. BioMed Central, http://www.isrctn.com/ISRCTN10368050 (2016).

  179. Gourdie, R. G., Dimmeler, S. & Kohl, P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat. Rev. Drug Discov. 15, 620–638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Talman, V. & Ruskoaho, H. Cardiac fibrosis in myocardial infarction — from repair and remodeling to regeneration. Cell Tissue Res. 365, 563–581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Galindo, C. L. et al. Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure. J. Am. Heart Assoc. 3, e000773 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Kanemitsu, H. et al. Chymase inhibition prevents cardiac fibrosis and dysfunction after myocardial infarction in rats. Hypertens. Res. 29, 57–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Hoshino, F. et al. Chymase inhibitor improves survival in hamsters with myocardial infarction. J. Cardiovasc. Pharmacol. 41, S11–S18 (2003).

    CAS  PubMed  Google Scholar 

  184. Liu, C. et al. Platelet-derived growth factor blockade on cardiac remodeling following infarction. Mol. Cell. Biochem. 397, 295–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Menasche, P. Cardiac cell therapy: lessons from clinical trials. J. Mol. Cell. Cardiol. 50, 258–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Behfar, A., Crespo-Diaz, R., Terzic, A. & Gersh, B. J. Cell therapy for cardiac repair — lessons from clinical trials. Nat. Rev. Cardiol. 11, 232–246 (2014).

    Article  PubMed  Google Scholar 

  187. Alvarado, A. S. & Tsonis, P. A. Bridging the regeneration gap: genetic insights from diverse animal models. Nat. Rev. Genet. 7, 873–884 (2006).

    Article  CAS  Google Scholar 

  188. Bujak, M. et al. Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J. Am. Coll. Cardiol. 51, 1384–1392 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Choi, W.-Y. et al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140, 660 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ruozi, G. et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat. Commun. 6, 7388 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Plowright, A. T., Engkvist, O., Gill, A., Knerr, L. & Wang, Q.-D. Heart regeneration: opportunities and challenges for drug discovery with novel chemical and therapeutic methods or agents. Angew. Chem. Int. Ed. 53, 4056–4075 (2014).

    Article  CAS  Google Scholar 

  192. Willems, E. et al. A chemical biology approach to myocardial regeneration. J. Cardiovasc. Transl Res. 4, 340–350 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Campbell, N. G. & Suzuki, K. Cell delivery routes for stem cell therapy to the heart: current and future approaches. J. Cardiovasc. Transl Res. 5, 713–726 (2012).

    Article  PubMed  Google Scholar 

  194. Qian, L. et al. Hemodynamic contribution of stem cell scaffolding in acute injured myocardium. Tissue Eng. Part A 18, 1652–1663 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Saludas, L., Pascual-Gil, S., Prósper, F., Garbayo, E. & Blanco-Prieto, M. Hydrogel based approaches for cardiac tissue engineering. Int. J. Pharm. 523, 454–475 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Sarig, R. & Tzahor, E. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians? Carcinogenesis 38, 359–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Rosen, M. R., Myerburg, R. J., Francis, D. P., Cole, G. D. & Marbán, E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J. Am. Coll. Cardiol. 64, 922–937 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Hare, J. M. et al. Phase II clinical research design in cardiology. Circulation 127, 1630 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Naumova, A. V., Modo, M., Moore, A., Murry, C. E. & Frank, J. A. Clinical imaging in regenerative medicine. Nat. Biotechnol. 32, 804–818 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Perin, E. C. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307, 1717–1726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Nowbar, A. N. et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ 348, g2688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  202. International Society for Stem Cell Research. Guidelines for Stem Cell Science and Clinical Translation (ISSCR, 2016).

  203. Caulfield, T., Sipp, D., Murry, C. E., Daley, G. Q. & Kimmelman, J. Confronting stem cell hype. Science 352, 776 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Niccoli, G., Burzotta, F., Galiuto, L. & Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 54, 281–292 (2009).

    Article  PubMed  Google Scholar 

  206. Van Linthout, S., Miteva, K. & Tschope, C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 102, 258–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Pfeffer, M. A. & Braunwald, E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 1161 (1990).

    Article  CAS  PubMed  Google Scholar 

  208. Sutton, M. G. S. J. & Sharpe, N. Left ventricular remodeling after myocardial infarction. Circulation 101, 2981 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Packer, M. Pathophysiology of chronic heart failure. Lancet 340, 88–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  210. Lymperopoulos, A., Rengo, G. & Koch, W. J. Adrenergic nervous system in heart failure. Circ. Res. 113, 739 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Narula, J., Haider, N., Arbustini, E. & Chandrashekhar, Y. Mechanisms of disease: apoptosis in heart failure — seeing hope in death. Nat. Clin. Pract. Cardiovasc. Med. 3, 681–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Packer, M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20, 248–254 (1992).

    Article  CAS  PubMed  Google Scholar 

  213. Menasché, P. et al. Myoblast transplantation for heart failure. Lancet 357, 279–280 (2001).

    Article  PubMed  Google Scholar 

  214. Strauer, B. E. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913 (2002).

    Article  PubMed  Google Scholar 

  215. Perin, E. C. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294 (2003).

    Article  PubMed  Google Scholar 

  216. Wollert, K. C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364, 141–148 (2004).

    Article  PubMed  Google Scholar 

  217. Lunde, K. et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355, 1199–1209 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Schächinger, V. et al. Intracoronary bone marrow–derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. 355, 1210–1221 (2006).

    Article  PubMed  Google Scholar 

  219. Janssens, S. et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367, 113–121 (2006).

    Article  PubMed  Google Scholar 

  220. Menasché, P. et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. Circulation 117, 1189 (2008).

    Article  PubMed  Google Scholar 

  221. Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Sürder, D. et al. Intracoronary injection of bone marrow derived mononuclear cells, early or late after acute myocardial infarction: effects on global left ventricular function four months results of the SWISS-AMI trial. Circulation 127, 1968–1979 (2013).

    Article  PubMed  Google Scholar 

  224. Karantalis, V. et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial. Circ. Res. 114, 1302–1310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Menasché, P. et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur. Heart J. 36, 2011–2017 (2015).

    Article  PubMed  Google Scholar 

  226. Choudry, F. et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial. Eur. Heart J. 37, 256–263 (2016).

    Article  PubMed  Google Scholar 

  227. Koudstaal, S. et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J. Cardiovasc. Transl Res. 7, 232–241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Bagno, L. L. et al. Growth hormone–releasing hormone agonists reduce myocardial infarct scar in swine with subacute ischemic cardiomyopathy. J. Am. Heart Assoc. 4, e001464 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  229. O'Donoghue, M. L. et al. Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA 315, 1591–1599 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Cerisano, G. et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur. Heart J. 35, 184–191 (2013).

    Article  PubMed  CAS  Google Scholar 

  231. Abbate, A. et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol. 111, 1394–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Gullestad, L. et al. Intravenous immunoglobulin does not reduce left ventricular remodeling in patients with myocardial dysfunction during hospitalization after acute myocardial infarction. Int. J. Cardiol. 168, 212–218 (2013).

    Article  PubMed  Google Scholar 

  233. Najjar, S. S. et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA 305, 1863–1872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] pilot study). Am. J. Cardiol. 105, 1371–1377.e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  235. Gao, R. et al. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J. Am. Coll. Cardiol. 55, 1907–1914 (2010).

    Article  CAS  PubMed  Google Scholar 

  236. Armstrong, P. W. et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297, 43–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  237. Hudson, M. P. et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J. Am. Coll. Cardiol. 48, 15–20 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.J.C. is supported by the Wellcome Trust (grant 106334/Z/14/Z). R.P.C. is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford and the British Heart Foundation Centre for Research Excellence, Oxford. P.R.R. is supported by the British Heart Foundation (grants CH/11/1/28798 and RG/13/9/303269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Riley.

Ethics declarations

Competing interests

P.R.R.is co-founder of OxStem Cardio, which is an Oxford University spin-out that seeks to exploit therapeutic strategies stimulating endogenous repair in cardiovascular regenerative medicine. All other authors declare no competing interests.

Related links

PowerPoint slides

Glossary

Heart failure

A pathological state that is defined by the inability of the heart to pump blood to support the requirements of the body. Typical symptoms include shortness of breath, fluid retention and fatigue.

Myocardial infarction

An acute injury to the heart that is caused by occlusion of the coronary blood supply, usually due to atherosclerotic plaque rupture. This process is also commonly known as a heart attack.

Epicardium

The outer layer of the heart; also known as the visceral pericardium.

Fibrosis

A pathological process that is characterized by deposition of interstitial fibrous or scar tissue.

Cytokinesis

Division of the cell cytoplasm to complete the cell cycle and create a membrane barrier between two daughter cells.

Binucleation

Division of the nucleus that leads to the formation of two nuclei within a cell but without division of the cytoplasm.

Ploidy

The number of sets of chromosomes in a cell.

Ventricular remodelling

A process that is characterized by a change in size, shape and structure of the ventricle. After myocardial infarction, pathological remodelling causes the ventricle to enlarge, become spherical in shape and functionally deteriorate.

Embryonic stem cells

(ESCs). Pluripotent stem cells that are derived from the inner cell mass of embryos.

Allogeneic

Derived from genetically different individuals from the same species.

Induced pluripotent stem cell

(iPSC). Pluripotent stem cells that are reprogrammed from somatic cells by introducing pluripotency factors.

Autologous

Derived from cells or tissues of the same individual.

Lymphangiogenesis

The growth of new lymphatic vessels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahill, T., Choudhury, R. & Riley, P. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 16, 699–717 (2017). https://doi.org/10.1038/nrd.2017.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.106

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research