Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets

Key Points

  • Mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells, actively contribute to the formation of the tumour microenvironment, wherein they are converted into tumour-associated MSCs (TA-MSCs).

  • TA-MSCs regulate tumour growth, metastasis and responses to chemotherapy and radiotherapy by producing growth factors, chemokines and cytokines.

  • TA-MSCs have an important role in regulating tumour immunity. Blocking TA-MSC-associated immunosuppressive factors could unleash antitumour immune responses.

  • Novel antitumour therapeutic strategies can be developed by targeting TA-MSC-produced factors that promote tumour growth, metastasis and drug resistance.

  • Owing to their tumour-tropic nature, in vitro-expanded MSCs can be genetically engineered to express antitumour agents at the tumour site to specifically kill tumour cells or to enhance antitumour immune responses.

Abstract

Mesenchymal stem cells, also known as mesenchymal stromal cells (MSCs), exist in many tissues and are known to actively migrate to sites of tissue injury, where they participate in wound repair. Tumours can be considered “wounds that never heal” and, in response to cues from a tumour, MSCs are continuously recruited to and become integral components of the tumour microenvironment. Recently, it has become apparent that such tumour-associated MSCs (TA-MSCs) have an active role in tumour initiation, promotion, progression and metastasis. In this Review, we discuss recent advances in our understanding of the pathogenic role of TA-MSCs in regulating the survival, proliferation, migration and drug resistance of tumour cells, as well as the influence of MSCs on the immune status of the tumour microenvironment. Moreover, we discuss therapeutic approaches that target TA-MSC upstream or downstream modulators or use MSCs as vehicles for the delivery of tumoricidal agents. It is anticipated that new insights into the functions of TA-MSCs will lead to the development of novel therapeutic strategies against tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MSCs can support tumour growth through suppression of immune responses.
Figure 2: MSCs and tumour immune responses.
Figure 3: MSCs and tumour metastasis.
Figure 4: MSCs and tumour chemotherapy.
Figure 5: Potential anticancer strategies that target or utilize TA-MSCs.

Similar content being viewed by others

References

  1. Friedenstein, A. J., Chailakhjan, R. K. & Lalykina, K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3, 393–403 (1970).

    CAS  PubMed  Google Scholar 

  2. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

    CAS  PubMed  Google Scholar 

  3. Shi, Y. et al. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 33, 136–143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011). This publication demonstrates that CAFs originate from BM-MSCs in a TGF-β and SDF1-dependent manner, and that CAFs have a critical role in creating a niche that promotes tumour progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Le Blanc, K. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439–1441 (2004).

    PubMed  Google Scholar 

  7. Zhang, Z. et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J. Gastroenterol. Hepatol. 27 (Suppl. 2), 112–120 (2012).

    CAS  PubMed  Google Scholar 

  8. Le Blanc, K. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579–1586 (2008).

    CAS  PubMed  Google Scholar 

  9. Sun, L. et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 62, 2467–2475 (2010).

    CAS  PubMed  Google Scholar 

  10. Vojtassak, J. et al. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol. Lett. 27 (Suppl. 2), 134–137 (2006).

    PubMed  Google Scholar 

  11. Caplan, A. I. & Correa, D. The MSC: an injury drugstore. Cell Stem Cell 9, 11–15 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Y., Chen, X., Cao, W. & Shi, Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat. Immunol. 15, 1009–1016 (2014). This paper raises the concept of the plasticity of MSCs in immunomodulation. Depending on the inflammatory environment, MSCs can either inhibit or enhance immune responses in pathological conditions.

    CAS  PubMed  Google Scholar 

  13. Ren, G. et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 11, 812–824 (2012). This investigation delineates the characteristics of tumour-associated MSCs and their tumour-promoting effects through the recruitment of macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shah, K. Mesenchymal stem cells engineered for cancer therapy. Adv. Drug Deliv. Rev. 64, 739–748 (2012).

    CAS  PubMed  Google Scholar 

  15. Hu, Y. L., Fu, Y. H., Tabata, Y. & Gao, J. Q. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J. Control. Release 147, 154–162 (2010).

    CAS  PubMed  Google Scholar 

  16. Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  17. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    CAS  PubMed  Google Scholar 

  18. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  19. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  20. Roodhart, J. M. et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 20, 370–383 (2011). This investigation reveals that MSCs can provide chemoresistance in tumour-bearing mice receiving platinum-analog-based cancer treatment through the production of PUFAs.

    CAS  PubMed  Google Scholar 

  21. Kidd, S. et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27, 2614–2623 (2009). By using firefly luciferase-labelled MSCs and different models of wounds and tumours, this study elegantly demonstrates a specific tropism of MSCs for tumour and wound sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamizo, A. et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65, 3307–3318 (2005).

    CAS  PubMed  Google Scholar 

  23. Starzynska, T. et al. An intensified systemic trafficking of bone marrow-derived stem/progenitor cells in patients with pancreatic cancer. J. Cell. Mol. Med. 17, 792–799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Alm, J. J. et al. Circulating plastic adherent mesenchymal stem cells in aged hip fracture patients. J. Orthop. Res. 28, 1634–1642 (2010).

    CAS  PubMed  Google Scholar 

  25. Hoogduijn, M. J. et al. No evidence for circulating mesenchymal stem cells in patients with organ injury. Stem Cells Dev. 23, 2328–2335 (2014).

    PubMed  Google Scholar 

  26. Zvaifler, N. J. et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2, 477–488 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stagg, J. Mesenchymal stem cells in cancer. Stem Cell Rev. 4, 119–124 (2008).

    PubMed  Google Scholar 

  28. Jung, Y. et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat. Commun. 4, 1795 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Dwyer, R. M. et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin. Cancer Res. 13, 5020–5027 (2007).

    CAS  PubMed  Google Scholar 

  30. Gao, H., Priebe, W., Glod, J. & Banerjee, D. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 27, 857–865 (2009).

    CAS  PubMed  Google Scholar 

  31. Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M. & Marini, F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15, 730–738 (2008).

    CAS  PubMed  Google Scholar 

  32. Wagner, W. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33, 1402–1416 (2005).

    CAS  PubMed  Google Scholar 

  33. Waite, K. A. & Eng, C. From developmental disorder to heritable cancer: it's all in the BMP/TGF-β family. Nat. Rev. Genet. 4, 763–773 (2003).

    CAS  PubMed  Google Scholar 

  34. McLean, K. et al. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J. Clin. Invest. 121, 3206–3219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Roccaro, A. M. et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J. Clin. Invest. 123, 1542–1555 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren, G. et al. Tumor resident mesenchymal stromal cells endow naive stromal cells with tumor-promoting properties. Oncogene 33, 4016–4020 (2014).

    CAS  PubMed  Google Scholar 

  37. Lin, L. Y. et al. Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene http://dx.doi.org/10.1038/onc.2016.131 (2016).

  38. Mishra, P. J. et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68, 4331–4339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    CAS  PubMed  Google Scholar 

  40. Madar, S., Goldstein, I. & Rotter, V. 'Cancer associated fibroblasts'—more than meets the eye. Trends Mol. Med. 19, 447–453 (2013).

    CAS  PubMed  Google Scholar 

  41. Worthley, D. L. et al. Human gastrointestinal neoplasia-associated myofibroblasts can develop from bone marrow-derived cells following allogeneic stem cell transplantation. Stem Cells 27, 1463–1468 (2009).

    CAS  PubMed  Google Scholar 

  42. Ishii, G. et al. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem. Biophys. Res. Commun. 309, 232–240 (2003).

    CAS  PubMed  Google Scholar 

  43. Direkze, N. C. et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492–8495 (2004).

    CAS  PubMed  Google Scholar 

  44. Shinagawa, K. et al. Stroma-directed imatinib therapy impairs the tumor-promoting effect of bone marrow-derived mesenchymal stem cells in an orthotopic transplantation model of colon cancer. Int. J. Cancer 132, 813–823 (2013).

    CAS  PubMed  Google Scholar 

  45. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dulauroy, S., Di Carlo, S. E., Langa, F., Eberl, G. & Peduto, L. Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat. Med. 18, 1262–1270 (2012).

    CAS  PubMed  Google Scholar 

  47. Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Klemm, F. & Joyce, J. A. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 25, 198–213 (2015).

    PubMed  Google Scholar 

  49. Koh, B. I. & Kang, Y. The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells. EMBO Rep. 13, 412–422 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. McIntosh, K. R., Mosca, J. D. & Klyushnenkova, E. N. Mesenchymal stem cells for prevention and treatment of immune responses in transplantation. WO Patent 1999047163 A2 (1998).

  51. Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141–150 (2008). This publication formally proves that MSCs are benign and their immunosuppressive property is licensed by inflammatory cytokine combinations.

    CAS  PubMed  Google Scholar 

  52. Patel, S. A. et al. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J. Immunol. 184, 5885–5894 (2010).

    CAS  PubMed  Google Scholar 

  53. Li, W. et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 19, 1505–1513 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ling, W. et al. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res. 74, 1576–1587 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ren, G. et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27, 1954–1962 (2009).

    CAS  PubMed  Google Scholar 

  56. Zamarron, B. F. & Chen, W. Dual roles of immune cells and their factors in cancer development and progression. Int. J. Biol. Sci. 7, 651–658 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zaidi, M. R. & Merlino, G. The two faces of interferon-γ in cancer. Clin. Cancer Res. 17, 6118–6124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Han, X. et al. Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ. 21, 1758–1768 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu, C. et al. TGF-β promotes immune responses in the presence of mesenchymal stem cells. J. Immunol. 192, 103–109 (2014).

    CAS  PubMed  Google Scholar 

  60. David, C. J. et al. TGF-β tumor suppression through a lethal EMT. Cell 164, 1015–1030 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Djouad, F. et al. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation 82, 1060–1066 (2006).

    PubMed  Google Scholar 

  62. Montesinos, J. J. et al. In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells Dev. 22, 2508–2519 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin, R. et al. Bone marrow-derived mesenchymal stem cells favor the immunosuppressive T cells skewing in a Helicobacter pylori model of gastric cancer. Stem Cells Dev. 22, 2836–2848 (2013).

    CAS  PubMed  Google Scholar 

  64. Hsu, W. T. et al. Prostaglandin E2 potentiates mesenchymal stem cell-induced IL-10+IFN-γ+CD4+ regulatory T cells to control transplant arteriosclerosis. J. Immunol. 190, 2372–2380 (2013).

    CAS  PubMed  Google Scholar 

  65. Bernardo, M. E. & Fibbe, W. E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392–402 (2013).

    CAS  PubMed  Google Scholar 

  66. Roncarolo, M. G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).

    CAS  PubMed  Google Scholar 

  67. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Liao, D., Luo, Y., Markowitz, D., Xiang, R. & Reisfeld, R. A. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE 4, e7965 (2009).

    PubMed  PubMed Central  Google Scholar 

  70. Shen, K. et al. Suicide gene-engineered stromal cells reveal a dynamic regulation of cancer metastasis. Sci. Rep. 6, 21239 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Narra, K. et al. Phase II trial of single agent Val-boroPro (Talabostat) inhibiting fibroblast activation protein in patients with metastatic colorectal cancer. Cancer Biol. Ther. 6, 1691–1699 (2007).

    CAS  PubMed  Google Scholar 

  72. Hofheinz, R. D. et al. Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 26, 44–48 (2003).

    CAS  PubMed  Google Scholar 

  73. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Santos, A. M., Jung, J., Aziz, N., Kissil, J. L. & Pure, E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest. 119, 3613–3625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Francois, M. et al. Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood 114, 2632–2638 (2009).

    CAS  PubMed  Google Scholar 

  76. Chan, J. L. et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ. Blood 107, 4817–4824 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Andreu, P. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17, 121–134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S. & Karin, M. B-Cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, Y., Gallastegui, N. & Rosenblatt, J. D. Regulatory B cells in anti-tumor immunity. Int. Immunol. 27, 521–530 (2015).

    CAS  PubMed  Google Scholar 

  80. Kobayashi, T. et al. B cells promote tumor immunity against B16F10 melanoma. Am. J. Pathol. 184, 3120–3129 (2014).

    CAS  PubMed  Google Scholar 

  81. Corcione, A. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 107, 367–372 (2006).

    CAS  PubMed  Google Scholar 

  82. Asari, S. et al. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp. Hematol. 37, 604–615 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4, e6562 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Yoshikawa, K. et al. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci. 103, 2012–2020 (2012).

    CAS  PubMed  Google Scholar 

  86. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Abumaree, M. H. et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev. 9, 620–641 (2013).

    CAS  Google Scholar 

  89. Nemeth, K. et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42–49 (2009).

    CAS  PubMed  Google Scholar 

  90. Hof-Nahor, I. et al. Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes. J. Cell Sci. 125, 4640–4650 (2012).

    CAS  PubMed  Google Scholar 

  91. Akiyama, K. et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10, 544–555 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bonecchi, R. et al. Chemokines and chemokine receptors: an overview. Front. Biosci. 14, 540–551 (2009).

    CAS  Google Scholar 

  93. Guilloton, F. et al. Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood 119, 2556–2567 (2012).

    CAS  PubMed  Google Scholar 

  94. Yu, P. F. et al. TNFα-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+ neutrophils. Oncogene http://dx.doi.org/10.1038/onc.2016.217 (2016).

  95. Chaturvedi, P., Gilkes, D. M., Takano, N. & Semenza, G. L. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc. Natl Acad. Sci. USA 111, E2120–E2129 (2014).

    CAS  PubMed  Google Scholar 

  96. Zhang, L. et al. Bone marrow mesenchymal stem cells suppress metastatic tumor development in mouse by modulating immune system. Stem Cell Res. Ther. 6, 45 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Beckermann, B. M. et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br. J. Cancer 99, 622–631 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. De Boeck, A. et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 62, 550–560 (2013).

    CAS  PubMed  Google Scholar 

  99. Crovello, C. S., Lai, C., Cantley, L. C. & Carraway, K. L. III. Differential signaling by the epidermal growth factor-like growth factors neuregulin-1 and neuregulin-2. J. Biol. Chem. 273, 26954–26961 (1998).

    CAS  PubMed  Google Scholar 

  100. Mandel, K. et al. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo. Stem Cells Dev. 22, 3114–3127 (2013).

    CAS  PubMed  Google Scholar 

  101. Rosova, I., Dao, M., Capoccia, B., Link, D. & Nolta, J. A. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26, 2173–2182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wei, L., Fraser, J. L., Lu, Z. Y., Hu, X. & Yu, S. P. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol. Dis. 46, 635–645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, J. et al. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 74, 879–889 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang, W. H. et al. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 32, 4343–4354 (2013).

    CAS  PubMed  Google Scholar 

  105. Sun, B. et al. Correlation between melanoma angiogenesis and the mesenchymal stem cells and endothelial progenitor cells derived from bone marrow. Stem Cells Dev. 14, 292–298 (2005).

    CAS  PubMed  Google Scholar 

  106. Al-Khaldi, A. et al. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther. 10, 621–629 (2003).

    CAS  PubMed  Google Scholar 

  107. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed  Google Scholar 

  108. Petit, I., Jin, D. & Rafii, S. The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 28, 299–307 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS  PubMed  Google Scholar 

  110. Bexell, D. et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol. Ther. 17, 183–190 (2009).

    CAS  PubMed  Google Scholar 

  111. Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    CAS  PubMed  Google Scholar 

  113. Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

    CAS  PubMed  Google Scholar 

  114. Zlotnik, A., Burkhardt, A. M. & Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 11, 597–606 (2011).

    CAS  PubMed  Google Scholar 

  115. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    CAS  PubMed  Google Scholar 

  116. Zhang, X. H. et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154, 1060–1073 (2013). This study demonstrates that CXCL12 and IGF1 produced by CAFs have crucial roles in selecting the seeds in the primary tumour for metastasis to CXCL12-riched organs.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007). This investigation demonstrated that MSCs educated by cancer cells secrete the chemokine CCL5, which then acts on cancer cells to promote the motility, invasion and metastasis of cancer cells via CCR5 signalling.

    CAS  PubMed  Google Scholar 

  118. Mi, Z. et al. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 32, 477–487 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sullivan, R. & Graham, C. H. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev. 26, 319–331 (2007).

    CAS  PubMed  Google Scholar 

  120. Chan, D. A. & Giaccia, A. J. Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev. 26, 333–339 (2007).

    CAS  PubMed  Google Scholar 

  121. Dayan, F., Mazure, N. M., Brahimi-Horn, M. C. & Pouyssegur, J. A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron. 1, 53–68 (2008).

    PubMed  PubMed Central  Google Scholar 

  122. Chaturvedi, P. et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J. Clin. Invest. 123, 189–205 (2013).

    CAS  PubMed  Google Scholar 

  123. Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Luo, J. et al. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene 33, 2768–2778 (2014).

    CAS  PubMed  Google Scholar 

  125. Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542–1556 (2012).

    CAS  PubMed  Google Scholar 

  126. Chen, R. et al. Regulation of IKKβ by miR-199a affects NF-κB activity in ovarian cancer cells. Oncogene 27, 4712–4723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cuiffo, B. G. et al. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell 15, 762–774 (2014).

    CAS  PubMed  Google Scholar 

  128. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    CAS  PubMed  Google Scholar 

  129. Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    CAS  PubMed  Google Scholar 

  131. Ries, C. et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109, 4055–4063 (2007).

    CAS  PubMed  Google Scholar 

  132. Deryugina, E. I. & Quigley, J. P. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 25, 9–34 (2006).

    CAS  PubMed  Google Scholar 

  133. El-Haibi, C. P. et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc. Natl Acad. Sci. USA 109, 17460–17465 (2012).

    CAS  PubMed  Google Scholar 

  134. Gilkes, D. M., Bajpai, S., Chaturvedi, P., Wirtz, D. & Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288, 10819–10829 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mao, Y., Keller, E. T., Garfield, D. H., Shen, K. & Wang, J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 32, 303–315 (2013).

    PubMed  PubMed Central  Google Scholar 

  136. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    CAS  PubMed  Google Scholar 

  141. Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst. 100, 672–679 (2008).

    CAS  PubMed  Google Scholar 

  142. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  143. Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    CAS  PubMed  Google Scholar 

  144. Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Huijbers, A. et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: validation in the VICTOR trial. Ann. Oncol. 24, 179–185 (2013).

    CAS  PubMed  Google Scholar 

  146. Cukierman, E. & Bassi, D. E. The mesenchymal tumor microenvironment: a drug-resistant niche. Cell Adh. Migr. 6, 285–296 (2012).

    PubMed  PubMed Central  Google Scholar 

  147. McMillin, D. W., Negri, J. M. & Mitsiades, C. S. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat. Rev. Drug Discov. 12, 217–228 (2013).

    CAS  PubMed  Google Scholar 

  148. Muerkoster, S. et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1β. Cancer Res. 64, 1331–1337 (2004).

    PubMed  Google Scholar 

  149. Lotti, F. et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J. Exp. Med. 210, 2851–2872 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Scherzed, A. et al. BMSC enhance the survival of paclitaxel treated squamous cell carcinoma cells in vitro. Cancer Biol. Ther. 11, 349–357 (2011).

    CAS  PubMed  Google Scholar 

  151. Lis, R. et al. Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int. J. Cancer 128, 715–725 (2011).

    CAS  PubMed  Google Scholar 

  152. Hellevik, T. et al. Changes in the secretory profile of NSCLC-associated fibroblasts after ablative radiotherapy: potential impact on angiogenesis and tumor growth. Transl. Oncol. 6, 66–74 (2013).

    PubMed  PubMed Central  Google Scholar 

  153. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  154. Saigusa, S. et al. Cancer-associated fibroblasts correlate with poor prognosis in rectal cancer after chemoradiotherapy. Int. J. Oncol. 38, 655–663 (2011).

    CAS  PubMed  Google Scholar 

  155. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    CAS  PubMed  Google Scholar 

  156. Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012). References 156 and 157 unravel a key role of HGF produced by CAFs in conferring chemoresistance in BRAF-mutant melanoma cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15, 21–34 (2009).

    CAS  PubMed  Google Scholar 

  159. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  Google Scholar 

  160. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ono, M. et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 7, ra63 (2014).

    PubMed  Google Scholar 

  163. Boelens, M. C. et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499–513 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Munoz, J. L. et al. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids 2, e126 (2013).

    PubMed  PubMed Central  Google Scholar 

  165. US National Library of Medicine. Clinicaltrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT01983709?term=NCT01983709&rank=1 (2016).

  166. US National Library of Medicine. Clinicaltrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT02068794?term=NCT02068794&rank=1 (2016).

  167. US National Library of Medicine. Clinicaltrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT02530047?term=NCT02530047&rank=1 (2016).

  168. US National Library of Medicine. Clinicaltrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT02008539?term=NCT02008539&rank=1 (2015).

  169. Zhang, Y. et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat. Cell Biol. 15, 284–294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ho, I. A. et al. Matrix metalloproteinase-1-mediated mesenchymal stem cell tumor tropism is dependent on crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis. FASEB J. 28, 4359–4368 (2014).

    CAS  PubMed  Google Scholar 

  171. Luz-Crawford, P. et al. Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS ONE 7, e45272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Su, J. et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 21, 388–396 (2014).

    CAS  PubMed  Google Scholar 

  173. Nayak, A. et al. A Phase I study of NLG919 for adult patients with recurrent advanced solid tumors. J. Immunother. Cancer 2, (Suppl. 3), P250 (2014).

    PubMed Central  Google Scholar 

  174. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11, 312–319 (2005).

    CAS  PubMed  Google Scholar 

  175. Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lob, S., Konigsrainer, A., Rammensee, H. G., Opelz, G. & Terness, P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer 9, 445–452 (2009). This comprehensive review summarizes recent advances in the development and use of IDO inhibitors for cancer treatment.

    PubMed  Google Scholar 

  177. Soliman, H. H. et al. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget 5, 8136–8146 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Novitskiy, S. V. & Moses, H. L. Turn off the IDO: will clinical trials be successful? Cancer Discov. 2, 673–675 (2012).

    CAS  PubMed  Google Scholar 

  179. Xu, C. et al. Interferon-α-secreting mesenchymal stem cells exert potent antitumor effect in vivo. Oncogene 33, 5047–5052 (2014).

    CAS  PubMed  Google Scholar 

  180. Niess, H. et al. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer 15, 237 (2015).

    PubMed  PubMed Central  Google Scholar 

  181. Mirzaei, H. et al. Application of mesenchymal stem cells in melanoma: a potential therapeutic strategy for delivery of targeted agents. Curr. Med. Chem. 23, 455–463 (2016).

    CAS  PubMed  Google Scholar 

  182. Dwyer, R. M., Khan, S., Barry, F. P., O'Brien, T. & Kerin, M. J. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res. Ther. 1, 25 (2010).

    PubMed  PubMed Central  Google Scholar 

  183. Kucerova, L., Altanerova, V., Matuskova, M., Tyciakova, S. & Altaner, C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 67, 6304–6313 (2007).

    CAS  PubMed  Google Scholar 

  184. Kucerova, L. et al. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J. Gene Med. 10, 1071–1082 (2008).

    CAS  PubMed  Google Scholar 

  185. Fischer, U. M. et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 18, 683–692 (2009).

    CAS  PubMed  Google Scholar 

  186. Cavarretta, I. T. et al. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol. Ther. 18, 223–231 (2010).

    CAS  PubMed  Google Scholar 

  187. Yong, R. L. et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Δ24-RGD to human gliomas. Cancer Res. 69, 8932–8940 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Kanehira, M. et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther. 14, 894–903 (2007).

    CAS  PubMed  Google Scholar 

  189. Pan, G. et al. The receptor for the cytotoxic ligand TRAIL. Science 276, 111–113 (1997).

    CAS  PubMed  Google Scholar 

  190. Loebinger, M. R., Eddaoudi, A., Davies, D. & Janes, S. M. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 69, 4134–4142 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Grisendi, G. et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 70, 3718–3729 (2010).

    CAS  PubMed  Google Scholar 

  192. Lee, R. H., Yoon, N., Reneau, J. C. & Prockop, D. J. Preactivation of human MSCs with TNF-α enhances tumor-suppressive activity. Cell Stem Cell 11, 825–835 (2012). This study shows that TNF-treated MSCs express TRAIL and DKK3, and exhibit enhanced tumour-suppressive effects.

    CAS  PubMed  Google Scholar 

  193. Xiang, H., Nguyen, C. B., Kelley, S. K., Dybdal, N. & Escandon, E. Tissue distribution, stability, and pharmacokinetics of Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in human colon carcinoma COLO205 tumor-bearing nude mice. Drug Metab. Dispos. 32, 1230–1238 (2004).

    CAS  PubMed  Google Scholar 

  194. Kelley, S. K. et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther. 299, 31–38 (2001).

    CAS  PubMed  Google Scholar 

  195. Dunn, G. P., Koebel, C. M. & Schreiber, R. D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    CAS  PubMed  Google Scholar 

  196. Studeny, M. et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res. 62, 3603–3608 (2002).

    CAS  PubMed  Google Scholar 

  197. Yang, X., Du, J., Xu, X., Xu, C. & Song, W. IFN-γ-secreting-mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway. J. Immunol. Res. 2014, 318098 (2014).

    PubMed  PubMed Central  Google Scholar 

  198. Elzaouk, L., Moelling, K. & Pavlovic, J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp. Dermatol. 15, 865–874 (2006).

    CAS  PubMed  Google Scholar 

  199. Xin, H. et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells 25, 1618–1626 (2007).

    CAS  PubMed  Google Scholar 

  200. Xin, H. et al. Intratracheal delivery of CX3CL1-expressing mesenchymal stem cells to multiple lung tumors. Mol. Med. 15, 321–327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Nelson, D., Fisher, S. & Robinson, B. The “Trojan Horse” approach to tumor immunotherapy: targeting the tumor microenvironment. J. Immunol. Res. 2014, 789069 (2014).

    PubMed  PubMed Central  Google Scholar 

  202. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    CAS  PubMed  Google Scholar 

  204. Lv, F. J., Tuan, R. S., Cheung, K. M. & Leung, V. Y. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32, 1408–1419 (2014).

    CAS  PubMed  Google Scholar 

  205. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    CAS  PubMed  Google Scholar 

  206. Serafini, M. et al. Establishment of bone marrow and hematopoietic niches in vivo by reversion of chondrocyte differentiation of human bone marrow stromal cells. Stem Cell Res. 12, 659–672 (2014).

    PubMed  Google Scholar 

  207. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010). The experiments in this publication show that nestin is a marker for tracing bone marrow MSCs and the partnership between nestin+ cells and hematopoietic stem cells forms a unique bone marrow niche.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Hess, R., Pino, A. M., Rios, S., Fernandez, M. & Rodriguez, J. P. High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J. Cell Biochem. 94, 50–57 (2005).

    CAS  PubMed  Google Scholar 

  209. Le Blanc, K. & Mougiakakos, D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12, 383–396 (2012).

    CAS  PubMed  Google Scholar 

  210. Ohlund, D., Elyada, E. & Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 211, 1503–1523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Moinfar, F. et al. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res. 60, 2562–2566 (2000).

    CAS  PubMed  Google Scholar 

  212. Menendez, P. et al. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J. Exp. Med. 206, 3131–3141 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kurose, K. et al. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat. Genet. 32, 355–357 (2002).

    CAS  PubMed  Google Scholar 

  214. Weber, F. et al. Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. JAMA 297, 187–195 (2007).

    CAS  PubMed  Google Scholar 

  215. Hill, R., Song, Y., Cardiff, R. D. & Van Dyke, T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123, 1001–1011 (2005). This study uses a mouse prostate cancer model and finds that oncogenic stress imposes selective pressure on the mesenchyme with loss of p53.

    CAS  PubMed  Google Scholar 

  216. Huang, Y. et al. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene 33, 3830–3838 (2014).

    CAS  PubMed  Google Scholar 

  217. Patocs, A. et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N. Engl. J. Med. 357, 2543–2551 (2007).

    CAS  PubMed  Google Scholar 

  218. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    CAS  PubMed  Google Scholar 

  219. Condamine, T., Ramachandran, I., Youn, J. I. & Gabrilovich, D. I. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu. Rev. Med. 66, 97–110 (2015).

    CAS  PubMed  Google Scholar 

  220. Yan, C. et al. Human umbilical cord mesenchymal stem cells as vehicles of CD20-specific TRAIL fusion protein delivery: a double-target therapy against non-Hodgkin's lymphoma. Mol. Pharm. 10, 142–151 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. I. Roberts for critically reviewing and discussing the manuscript. We are indebted to those whose work is not discussed owing to space limitations. This work is supported by National Natural Science Foundation of China (81530043, 81330046), the Ministry of Science and Technology of China (2015CB964500), the Scientific Innovation Project of the Chinese Academy of Science (XDA01040100), the Suzhou Science and Technology Program (SZS201616), the Shanghai Rising-Star Program (14QA1404200), the Youth Innovation Promotion Association research fund from the Chinese Acadmey of Sciences (2060206),and the Department of Science and Technology of Jiangsu Province research fund (BE2016671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Inducible nitric oxide synthase

(iNOS). One of the key enzymes generating nitric oxide from L-arginine. The expression of iNOS is usually regulated by inflammatory cytokines.

Indoleamine 2,3-dioxygenase

(IDO). A rate-limiting enzyme that catalyses L-tryptophan catabolism through the kynurenine pathway.

ARE/poly(U)-binding/degradation factor 1

(AUF1). A regulatory protein that controls mRNA stability through its interaction with the adenosine- and uridine-rich regions of the target mRNA.

Secretome

All of the factors secreted by cells, tissues, organs and organisms in a given biological setting.

5-Fluorouracil

(5-FU). A drug used for the treatment of tumours. 5-FU can inhibit the synthesis of thymidylate and thus induce the cell death of tumour cells.

1-Methyl-DL-tryptophan

(1-MT). A competitive inhibitor of indoleamine 2, 3-dioxygenase.

Cytosine deaminase

(CD). A hydrolase acting on carbon–nitrogen bonds other than peptide bonds, specifically in cyclic amidines. CD converts non-toxic prodrug 5-fluorocytosine (5-FC) to the tumour-toxic chemotherapeutic agent 5-fluorouracil (5-FU).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Du, L., Lin, L. et al. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 16, 35–52 (2017). https://doi.org/10.1038/nrd.2016.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.193

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer