Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Principles of transthoracic echocardiographic evaluation

Key Points

  • Transthoracic echocardiography utilizes both visual (qualitative) and quantitative tools to evaluate cardiac structure and function

  • Traditional techniques, such as two-dimensional and Doppler imaging, continue to provide the framework for the continual improvements in transthoracic echocardiography

  • Tissue Doppler, strain, and torsion echocardiography, are new imaging techniques that provide accurate and reliable quantitative assessment of myocardial function

  • Other advanced techniques, including stress, contrast, and three-dimensional echocardiography, provide additional diagnostic and functional information

  • The technological advances in transthoracic echocardiography are evolving at a rapid rate

Abstract

Transthoracic echocardiography is the most widely used imaging test in cardiology. Although completely noninvasive, transthoracic echocardiography has a well-established role in the diagnosis of numerous cardiovascular diseases, and also provides critical qualitative and quantitative information on their prognosis and pathophysiological processes. The aim of this Review is to outline the broad principles of transthoracic echocardiography, including the traditional techniques of two-dimensional, colour, and spectral Doppler echocardiography, and newly developed advances including tissue Doppler, myocardial deformation imaging, torsion, stress echocardiography, contrast and three-dimensional echocardiography. The advantages and disadvantages, clinical application, prognostic value, and salient research findings of each modality are described. Advances in complex imaging techniques are expected to continue unabated, and this Review highlights technical improvements that will influence the diagnosis and improve our understanding of cardiovascular function and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional biplane LVEF calculation in a patient with dilated cardiomyopathy and severe systolic dysfunction (LVEF 22%; normal LVEF >55%).
Figure 2: Colour Doppler assessment.
Figure 3: Spectral Doppler assessment.
Figure 4: Tissue Doppler imaging.
Figure 5: Colour Doppler tissue strain (average strain −25%) in a patient 6 months after Takotsubo cardiomyopathy with normalized function from the basal septal and lateral walls of the apical four chamber view.
Figure 6: Speckle tracking strain.
Figure 7: Torsion assessment.
Figure 8: Stress echocardiography in a patient with exertional dyspnoea and undocumented triple vessel disease with normal resting biplane images and with a global lack of left ventricular augmentation at peak exercise.
Figure 9: Echocardiography using contrast agent.
Figure 10: Three-dimensional echocardiographic imaging of the heart.

Similar content being viewed by others

References

  1. Braunwald, E. The rise of cardiovascular medicine. Eur. Heart J. 33, 838–845 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Edler, I. & Lindstrom, K. The history of echocardiography. Ultrasound Med. Biol. 30, 1565–1644 (2004).

    Article  PubMed  Google Scholar 

  3. Feigenbaum, H. Evolution of echocardiography. Circulation 93, 1321–1327 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Lang, R. M. et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18, 1440–1463 (2005).

    Article  PubMed  Google Scholar 

  5. Ganau, A. et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J. Am. Coll. Cardiol. 19, 1550–1558 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. White, H. D. et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76, 44–51 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. McManus, D. D. et al. Prognostic value of left ventricular end-systolic volume index as a predictor of heart failure hospitalization in stable coronary artery disease: data from the Heart and Soul Study. J. Am. Soc. Echocardiogr. 22, 190–197 (2009).

    Article  PubMed  Google Scholar 

  8. Leung, D. Y. et al. Left ventricular function after valve repair for chronic mitral regurgitation: predictive value of preoperative assessment of contractile reserve by exercise echocardiography. J. Am. Coll. Cardiol. 28, 1198–1205 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Zile, M. R. & Lewinter, M. M. Left ventricular end-diastolic volume is normal in patients with heart failure and a normal ejection fraction: a renewed consensus in diastolic heart failure. J. Am. Coll. Cardiol. 49, 982–985 (2007).

    Article  PubMed  Google Scholar 

  10. Picard, M. H., Wilkins, G. T., Ray, P. A. & Weyman, A. E. Natural history of left ventricular size and function after acute myocardial infarction: assessment and prediction by echocardiographic endocardial surface mapping. Circulation 82, 484–494 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. St John Sutton, M. et al. Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 96, 3294–3299 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Bonow, R. O. et al. Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation 98, 1949–1984 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Michels, V. V. et al. Progression of familial and non-familial dilated cardiomyopathy: long term follow up. Heart 89, 757–761 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harris, K. M. et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 114, 216–225 (2006).

    Article  PubMed  Google Scholar 

  15. Moss, A. J. et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N. Engl. J. Med. 335, 1933–1940 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    Article  PubMed  Google Scholar 

  17. Demir, H. et al. Comparison of gated SPECT, echocardiography and cardiac magnetic resonance imaging for the assessment of left ventricular ejection fraction and volumes. Ann. Saudi Med. 27, 415–420 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Otterstad, J. E. Measuring left ventricular volume and ejection fraction with the biplane Simpson's method. Heart 88, 559–560 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22, 107–133 (2009).

    Article  PubMed  Google Scholar 

  20. Tsang, T. S. et al. Prediction of risk for first age-related cardiovascular events in an elderly population: the incremental value of echocardiography. J. Am. Coll. Cardiol. 42, 1199–1205 (2003).

    Article  PubMed  Google Scholar 

  21. Kizer, J. R. et al. Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the Strong Heart Study (SHS). Am. Heart J. 151, 412–418 (2006).

    Article  PubMed  Google Scholar 

  22. Lim, T. K., Dwivedi, G., Hayat, S., Majumdar, S. & Senior, R. Independent value of left atrial volume index for the prediction of mortality in patients with suspected heart failure referred from the community. Heart 95, 1172–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Moller, J. E. et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation 107, 2207–2212 (2003).

    Article  PubMed  Google Scholar 

  24. Arias, A. et al. Prognostic value of left atrial volume in asymptomatic organic mitral regurgitation. J. Am. Soc. Echocardiogr. 26, 699–705 (2013).

    Article  PubMed  Google Scholar 

  25. Abhayaratna, W. P. et al. Left atrial reservoir function as a potent marker for first atrial fibrillation or flutter in persons > or = 65 years of age. Am. J. Cardiol. 101, 1626–1629 (2008).

    Article  PubMed  Google Scholar 

  26. Cioffi, G., Mureddu, G. F., Stefenelli, C. & de Simone, G. Relationship between left ventricular geometry and left atrial size and function in patients with systemic hypertension. J. Hypertens. 22, 1589–1596 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Chinali, M. et al. Left atrial systolic force and cardiovascular outcome. The Strong Heart Study. Am. J. Hypertens. 18, 1570–1577 (2005).

    Article  PubMed  Google Scholar 

  28. Ho, S. Y. & Nihoyannopoulos, P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 92 (Suppl 1), i2–i13 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rudski, L. G. et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Sco. Echoardiogr. 23, 685–713 (2010).

    Article  Google Scholar 

  30. Burgess, M. I. et al. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J. Am. Soc. Echocardiogr. 15, 633–639 (2002).

    Article  PubMed  Google Scholar 

  31. Fremont, B. et al. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest 133, 358–362 (2008).

    Article  PubMed  Google Scholar 

  32. Zoghbi, W. A. et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J. Am. Soc. Echocardiogr. 16, 777–802 (2003).

    Article  PubMed  Google Scholar 

  33. Zoghbi, W. A. et al. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound. J. Am. Soc. Echocardiogr. 22, 975–1014 (2009).

    Article  PubMed  Google Scholar 

  34. Perry, G. J. & Nanda, N. C. Color doppler echocardiography. Int. J. Card. Imaging 3, 183–191 (1988).

    Article  PubMed  Google Scholar 

  35. Enriquez-Sarano, M. et al. Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method. J. Am. Coll. Cardiol. 25, 703–709 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Grigioni, F., Enriquez-Sarano, M., Zehr, K. J., Bailey, K. R. & Tajik, A. J. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103, 1759–1764 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Enriquez-Sarano, M. et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N. Engl. J. Med. 352, 875–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, L. K., Frenneaux, M. P. & Steeds, R. P. Echocardiography in hypertrophic cardiomyopathy diagnosis, prognosis, and role in management. Eur. J. Echocardiogr. 10, iii9–iii14 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Quinones, M. A., Otto, C. M., Stoddard, M., Waggoner, A. & Zoghbi, W. A. Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 15, 167–184 (2002).

    Article  PubMed  Google Scholar 

  40. Baumgartner, H. et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 22, 1–23 (2009).

    Article  PubMed  Google Scholar 

  41. van Kraaij, D. J. et al. Diagnosing diastolic heart failure. Eur. J. Heart Fail. 4, 419–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322, 1561–1566 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Koren, M. J., Devereux, R. B., Casale, P. N., Savage, D. D. & Laragh, J. H. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann. Intern. Med. 114, 345–352 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Verdecchia, P. et al. Adverse prognostic significance of concentric remodeling of the left ventricle in hypertensive patients with normal left ventricular mass. J. Am. Coll. Cardiol. 25, 871–878 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Schillaci, G. et al. Prognostic significance of left ventricular diastolic dysfunction in essential hypertension. J. Am. Coll. Cardiol. 39, 2005–2011 (2002).

    Article  PubMed  Google Scholar 

  46. Bella, J. N. et al. Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults: the Strong Heart Study. Circulation 105, 1928–1933 (2002).

    Article  PubMed  Google Scholar 

  47. Little, W. C. & Oh, J. K. Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation 120, 802–809 (2009).

    Article  PubMed  Google Scholar 

  48. Grewal, J., McCully, R. B., Kane, G. C., Lam, C. & Pellikka, P. A. Left ventricular function and exercise capacity. JAMA 301, 286–294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Whalley, G. A., Gamble, G. D. & Doughty, R. N. Restrictive diastolic filling predicts death after acute myocardial infarction: systematic review and meta-analysis of prospective studies. Heart 92, 1588–1594 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aljaroudi, W. et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation 125, 782–788 (2012).

    Article  PubMed  Google Scholar 

  51. Mor-Avi, V. et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J. Am. Soc. Echocardiogr. 24, 277–313 (2011).

    Article  PubMed  Google Scholar 

  52. Isaaz, K., Munoz del Romeral, L., Lee, E. & Schiller, N. B. Quantitation of the motion of the cardiac base in normal subjects by Doppler echocardiography. J. Am. Soc. Echocardiogr. 6, 166–176 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Voigt, J. U. et al. Comparison of deformation imaging and velocity imaging for detecting regional inducible ischaemia during dobutamine stress echocardiography. Eur. Heart J. 25, 1517–1525 (2004).

    Article  PubMed  Google Scholar 

  54. Wang, M. et al. Independent and incremental prognostic value of early mitral annulus velocity in patients with impaired left ventricular systolic function. J. Am. Coll. Cardiol. 45, 272–277 (2005).

    Article  PubMed  Google Scholar 

  55. Nikitin, N. P. et al. Prognostic value of systolic mitral annular velocity measured with Doppler tissue imaging in patients with chronic heart failure caused by left ventricular systolic dysfunction. Heart 92, 775–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Agarwal, R. et al. Tissue Doppler imaging for diagnosis of coronary artery disease: a systematic review and meta-analysis. Cardiovasc. Ultrasound 10, 47 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Alam, M., Wardell, J., Andersson, E., Samad, B. A. & Nordlander, R. Effects of first myocardial infarction on left ventricular systolic and diastolic function with the use of mitral annular velocity determined by pulsed wave doppler tissue imaging. J. Am. Soc. Echocardiogr. 13, 343–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Nagueh, S. F. et al. Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104, 128–130 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song, Y. et al. Tissue Doppler imaging predicts left ventricular reverse remodeling after surgery for mitral regurgitation. Ann. Thorac. Surg. 96, 2109–2115 (2013).

    Article  PubMed  Google Scholar 

  60. Kitaoka, H. et al. Tissue Doppler imaging and prognosis in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 14, 544–549 (2013).

    Article  PubMed  Google Scholar 

  61. Dini, F. L. et al. Abnormal left ventricular longitudinal function assessed by echocardiographic and tissue Doppler imaging is a powerful predictor of diastolic dysfunction in hypertensive patients: the SPHERE study. Int. J. Cardiol. 168, 3351–3358 (2013).

    Article  PubMed  Google Scholar 

  62. Altinmakas, S. et al. Prediction of viability by pulsed-wave Doppler tissue sampling of asynergic myocardium during low-dose dobutamine challenge. Int. J. Cardiol. 74, 107–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Marwick, T. H. et al. Use of tissue Doppler imaging to facilitate the prediction of events in patients with abnormal left ventricular function by dobutamine echocardiography. Am. J. Cardiol. 93, 142–146 (2004).

    Article  PubMed  Google Scholar 

  64. Bax, J. J. et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J. Am. Coll. Cardiol. 44, 1834–1840 (2004).

    Article  PubMed  Google Scholar 

  65. Yu, C. M. et al. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am. J. Cardiol. 91, 684–688 (2003).

    Article  PubMed  Google Scholar 

  66. Peterson, P. N. et al. QRS duration, bundle-branch block morphology, and outcomes among older patients with heart failure receiving cardiac resynchronization therapy. JAMA 310, 617–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Yu, C. M., Lin, H., Zhang, Q. & Sanderson, J. E. High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration. Heart 89, 54–60 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sohn, D. W. et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J. Am. Coll. Cardiol. 30, 474–480 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Yu, C. M., Sanderson, J. E., Marwick, T. H. & Oh, J. K. Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J. Am. Coll. Cardiol. 49, 1903–1914 (2007).

    Article  PubMed  Google Scholar 

  70. Wang, M. et al. Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. J. Am. Coll. Cardiol. 41, 820–826 (2003).

    Article  PubMed  Google Scholar 

  71. Nagueh, S. F., Middleton, K. J., Kopelen, H. A., Zoghbi, W. A. & Quinones, M. A. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J. Am. Coll. Cardiol. 30, 1527–1533 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Hillis, G. S. et al. Noninvasive estimation of left ventricular filling pressure by E/e' is a powerful predictor of survival after acute myocardial infarction. J. Am. Coll. Cardiol. 43, 360–367 (2004).

    Article  PubMed  Google Scholar 

  73. Holland, D. J., Prasad, S. B. & Marwick, T. H. Prognostic implications of left ventricular filling pressure with exercise. Circ. Cardiovasc. Imaging 3, 149–156 (2010).

    Article  PubMed  Google Scholar 

  74. Ho, C. Y. et al. Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation 105, 2992–2997 (2002).

    Article  PubMed  Google Scholar 

  75. Koyama, J., Ray-Sequin, P. A., Davidoff, R. & Falk, R. H. Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis. Am. J. Cardiol. 89, 1067–1071 (2002).

    Article  PubMed  Google Scholar 

  76. Pieroni, M. et al. Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 107, 1978–1984 (2003).

    Article  PubMed  Google Scholar 

  77. Oh, J. K., Park, S. J. & Nagueh, S. F. Established and novel clinical applications of diastolic function assessment by echocardiography. Circ. Cardiovasc. Imaging 4, 444–455 (2011).

    Article  PubMed  Google Scholar 

  78. Ho, C. Y. & Solomon, S. D. A clinician's guide to tissue Doppler imaging. Circulation 113, e396–e398 (2006).

    PubMed  Google Scholar 

  79. Unzek, S., Popovic, Z. B., Marwick, T. H. & Diastolic Guidelines Concordance Investigators. Effect of recommendations on interobserver consistency of diastolic function evaluation. JACC Cardiovasc. Imaging 4, 460–467 (2011).

    Article  PubMed  Google Scholar 

  80. Kane, G. C. et al. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA 306, 856–863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reuss, C. S. et al. Using mitral 'annulus reversus' to diagnose constrictive pericarditis. Eur. J. Echocardiogr. 10, 372–375 (2009).

    Article  PubMed  Google Scholar 

  82. Thomas, L. et al. Changes in regional left atrial function with aging: evaluation by Doppler tissue imaging. Eur. J. Echocardiogr. 4, 92–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Yu, C. M. et al. Tissue Doppler echocardiographic evidence of atrial mechanical dysfunction in coronary artery disease. Int. J. Cardiol. 105, 178–185 (2005).

    Article  PubMed  Google Scholar 

  84. Boyd, A. C., Schiller, N. B., Ross, D. L. & Thomas, L. Segmental atrial contraction in patients restored to sinus rhythm after cardioversion for chronic atrial fibrillation: a colour Doppler tissue imaging study. Eur. J. Echocardiogr. 9, 12–17 (2008).

    PubMed  Google Scholar 

  85. Chia, E. M. et al. Effects of age and gender on right ventricular systolic and diastolic function using two-dimensional speckle-tracking strain. J. Am. Soc. Echocardiogr. 27, 1079–1086.e1 (2014).

    Article  PubMed  Google Scholar 

  86. Meluzin, J. et al. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur. Heart J. 22, 340–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Urheim, S. et al. Relation of tissue displacement and strain to invasively determined right ventricular stroke volume. Am. J. Cardiol. 96, 1173–1178 (2005).

    Article  PubMed  Google Scholar 

  88. Bos, J. M. et al. Right ventricular function in asymptomatic individuals with a systemic right ventricle. J. Am. Soc. Echocardiogr. 19, 1033–1037 (2006).

    Article  PubMed  Google Scholar 

  89. La Gerche, A. et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 33, 998–1006 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Sengupta, P. P. et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J. Am. Soc. Echocardiogr. 20, 539–551 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stanton, T., Leano, R. & Marwick, T. H. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ. Cardiovasc. Imaging 2, 356–364 (2009).

    Article  PubMed  Google Scholar 

  92. Nahum, J. et al. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ. Cardiovasc. Imaging 3, 249–256 (2010).

    Article  PubMed  Google Scholar 

  93. Ganame, J. et al. Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J. Am. Soc. Echocardiogr. 20, 1351–1358 (2007).

    Article  PubMed  Google Scholar 

  94. Jurcut, R. et al. Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. J. Am. Soc. Echocardiogr. 21, 1283–1289 (2008).

    Article  PubMed  Google Scholar 

  95. Hare, J. L. et al. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am. Heart J. 158, 294–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Stoodley, P. W. et al. Two-dimensional myocardial strain imaging detects changes in left ventricular systolic function immediately after anthracycline chemotherapy. Eur. J. Echocardiogr. 12, 945–952 (2011).

    Article  PubMed  Google Scholar 

  97. Thavendiranathan, P. et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J. Am. Coll. Cardiol. 63, 2751–2768 (2014).

    Article  PubMed  Google Scholar 

  98. Dokainish, H., Sengupta, R., Pillai, M., Bobek, J. & Lakkis, N. Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am. J. Cardiol. 101, 1504–1509 (2008).

    Article  PubMed  Google Scholar 

  99. Cho, G. Y., Chan, J., Leano, R., Strudwick, M. & Marwick, T. H. Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am. J. Cardiol. 97, 1661–1666 (2006).

    Article  PubMed  Google Scholar 

  100. Leung, D. Y. & Ng, A. C. Emerging clinical role of strain imaging in echocardiography. Heart Lung Circ. 19, 161–174 (2010).

    Article  PubMed  Google Scholar 

  101. Takigiku, K. et al. Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study. Circ. J. 76, 2623–2632 (2012).

    Article  PubMed  Google Scholar 

  102. Marwick, T. H. et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc. Imaging 2, 80–84 (2009).

    Article  PubMed  Google Scholar 

  103. Hoit, B. D. Strain and strain rate echocardiography and coronary artery disease. Circ. Cardiovasc. Imaging 4, 179–190 (2011).

    Article  PubMed  Google Scholar 

  104. Chan, J. et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J. Am. Coll. Cardiol. 48, 2026–2033 (2006).

    Article  PubMed  Google Scholar 

  105. Skulstad, H. et al. Grading of myocardial dysfunction by tissue Doppler echocardiography: a comparison between velocity, displacement, and strain imaging in acute ischemia. J. Am. Coll. Cardiol. 47, 1672–1682 (2006).

    Article  PubMed  Google Scholar 

  106. Ersboll, M. et al. Relationship between left ventricular longitudinal deformation and clinical heart failure during admission for acute myocardial infarction: a two-dimensional speckle-tracking study. J. Am. Soc. Echocardiogr. 25, 1280–1289 (2012).

    Article  PubMed  Google Scholar 

  107. Ersboll, M. et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J. Am. Coll. Cardiol. 61, 2365–2373 (2013).

    Article  PubMed  Google Scholar 

  108. Ersboll, M. et al. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction: a two-dimensional speckle-tracking study. Eur. Heart J. 35, 648–656 (2014).

    Article  PubMed  Google Scholar 

  109. Hsu, P. C. et al. The ratio of early mitral inflow velocity to global diastolic strain rate as a useful predictor of cardiac outcomes in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 27, 717–725 (2014).

    Article  PubMed  Google Scholar 

  110. Yang, H. et al. Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 16, 233–239 (2003).

    Article  PubMed  Google Scholar 

  111. Kato, T. S. et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation 110, 3808–3814 (2004).

    Article  PubMed  Google Scholar 

  112. Bellavia, D. et al. Detection of left ventricular systolic dysfunction in cardiac amyloidosis with strain rate echocardiography. J. Am. Soc. Echocardiogr. 20, 1194–1202 (2007).

    Article  PubMed  Google Scholar 

  113. Sun, J. P. et al. Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am. J. Cardiol. 103, 411–415 (2009).

    Article  PubMed  Google Scholar 

  114. Koyama, J., Ray-Sequin, P. A. & Falk, R. H. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107, 2446–2452 (2003).

    Article  PubMed  Google Scholar 

  115. Phelan, D. et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98, 1442–1448 (2012).

    Article  PubMed  Google Scholar 

  116. Shanks, M. et al. Systolic and diastolic function assessment in fabry disease patients using speckle-tracking imaging and comparison with conventional echocardiographic measurements. J. Am. Soc. Echocardiogr. 26, 1407–1414 (2013).

    Article  PubMed  Google Scholar 

  117. Ogata, H. et al. Myocardial strain changes in Duchenne muscular dystrophy without overt cardiomyopathy. Int. J. Cardiol. 115, 190–195 (2007).

    Article  PubMed  Google Scholar 

  118. Cardinale, D. et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J. Am. Coll. Cardiol. 55, 213–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Stoodley, P. W. et al. Altered left ventricular longitudinal diastolic function correlates with reduced systolic function immediately after anthracycline chemotherapy. Eur. Heart J. Cardiovasc. Imaging 14, 228–234 (2013).

    Article  PubMed  Google Scholar 

  120. Fallah-Rad, N. et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J. Am. Coll. Cardiol. 57, 2263–2270 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Sawaya, H. et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am. J. Cardiol. 107, 1375–1380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tsai, H. R. et al. Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of Hodgkin's lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy. Am. J. Cardiol. 107, 472–477 (2011).

    Article  PubMed  Google Scholar 

  123. Plana, J. C. et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 15, 1063–1093 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sevimli, S. et al. Right ventricular strain and strain rate properties in patients with right ventricular myocardial infarction. Echocardiography 24, 732–738 (2007).

    Article  PubMed  Google Scholar 

  125. Antoni, M. L. et al. Prognostic value of right ventricular function in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Circ. Cardiovasc. Imaging 3, 264–271 (2010).

    Article  PubMed  Google Scholar 

  126. Utsunomiya, H. et al. A simple method to predict impaired right ventricular performance and disease severity in chronic pulmonary hypertension using strain rate imaging. Int. J. Cardiol. 147, 88–94 (2011).

    Article  PubMed  Google Scholar 

  127. Fine, N. M. et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ. Cardiovasc. Imaging 6, 711–721 (2013).

    Article  PubMed  Google Scholar 

  128. Caso, P. et al. Atrial reservoir function by strain rate imaging in asymptomatic mitral stenosis: prognostic value at 3 year follow-up. Eur. J. Echocardiogr. 10, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Kurt, M., Wang, J., Torre-Amione, G. & Nagueh, S. F. Left atrial function in diastolic heart failure. Circ. Cardiovasc. Imaging 2, 10–15 (2009).

    Article  PubMed  Google Scholar 

  130. Wakami, K. et al. Correlation between left ventricular end-diastolic pressure and peak left atrial wall strain during left ventricular systole. J. Am. Soc. Echocardiogr. 22, 847–851 (2009).

    Article  PubMed  Google Scholar 

  131. Cameli, M. et al. Left atrial longitudinal strain by speckle tracking echocardiography correlates well with left ventricular filling pressures in patients with heart failure. Cardiovasc. Ultrasound 8, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Di Salvo, G. et al. Atrial myocardial deformation properties predict maintenance of sinus rhythm after external cardioversion of recent-onset lone atrial fibrillation: a color Doppler myocardial imaging and transthoracic and transesophageal echocardiographic study. Circulation 112, 387–395 (2005).

    Article  PubMed  Google Scholar 

  133. Schneider, C. et al. Strain rate imaging for functional quantification of the left atrium: atrial deformation predicts the maintenance of sinus rhythm after catheter ablation of atrial fibrillation. Eur. Heart J. 29, 1397–1409 (2008).

    Article  PubMed  Google Scholar 

  134. Obokata, M. et al. Left atrial strain provides incremental value for embolism risk stratification over CHA(2)DS(2)-VASc score and indicates prognostic impact in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 27, 709–716 (2014).

    Article  PubMed  Google Scholar 

  135. Buckberg, G. D. Basic science review: the helix and the heart. J. Thorac. Cardiovasc. Surg. 124, 863–883 (2002).

    Article  PubMed  Google Scholar 

  136. Sengupta, P. P., Tajik, A. J., Chandrasekaran, K. & Khandheria, B. K. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc. Imaging 1, 366–376 (2008).

    Article  PubMed  Google Scholar 

  137. Notomi, Y. et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J. Am. Coll. Cardiol. 45, 2034–2041 (2005).

    Article  PubMed  Google Scholar 

  138. Helle-Valle, T. et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation 112, 3149–3156 (2005).

    Article  PubMed  Google Scholar 

  139. Kanzaki, H. et al. Impaired systolic torsion in dilated cardiomyopathy: reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res. Cardiol. 101, 465–470 (2006).

    Article  PubMed  Google Scholar 

  140. Tigen, K. et al. Left ventricular and atrial functions in hypertrophic cardiomyopathy patients with very high LVOT gradient: a speckle tracking echocardiographic study. Echocardiography 31, 833–841 (2014).

    Article  PubMed  Google Scholar 

  141. Zhang, H. J. et al. Assessment of left ventricular twist mechanics by speckle tracking echocardiography reveals association between LV twist and myocardial fibrosis in patients with hypertrophic cardiomyopathy. Int. J. Cardiovasc. Imaging (2014).

  142. Porciani, M. C. et al. Rotational mechanics of the left ventricle in AL amyloidosis. Echocardiography 27, 1061–1068 (2010).

    Article  PubMed  Google Scholar 

  143. Cappelli, F. et al. Characteristics of left ventricular rotational mechanics in patients with systemic amyloidosis, systemic hypertension and normal left ventricular mass. Clin. Physiol. Funct. Imaging 31, 159–165 (2011).

    PubMed  Google Scholar 

  144. Weyman, A. E. The year in echocardiography. J. Am. Coll. Cardiol. 49, 1212–1219 (2007).

    Article  PubMed  Google Scholar 

  145. Pellikka, P. A. et al. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J. Am. Soc. Echocardiogr. 20, 1021–1041 (2007).

    Article  PubMed  Google Scholar 

  146. Sicari, R. et al. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur. J. Echocardiogr. 9, 415–437 (2008).

    Article  PubMed  Google Scholar 

  147. Marwick, T. H. Stress echocardiography. Heart 89, 113–118 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Salerno, M. & Beller, G. A. Noninvasive assessment of myocardial perfusion. Circ. Cardiovasc. Imaging 2, 412–424 (2009).

    Article  PubMed  Google Scholar 

  149. Bjornstad, K., al Amri, M., Lingamanaicker, J., Oqaili, I. & Hatle, L. Interobserver and intraobserver variation for analysis of left ventricular wall motion at baseline and during low- and high-dose dobutamine stress echocardiography in patients with high prevalence of wall motion abnormalities at rest. J. Am. Soc. Echocardiogr. 9, 320–328 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Fleischmann, K. E., Hunink, M. G., Kuntz, K. M. & Douglas, P. S. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA 280, 913–920 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Marwick, T. H. et al. Exercise echocardiography is an accurate and cost-efficient technique for detection of coronary artery disease in women. J. Am. Coll. Cardiol. 26, 335–341 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Chung, G., Krishnamani, R. & Senior, R. Prognostic value of normal stress echocardiogram in patients with suspected coronary artery disease—a British general hospital experience. Int. J. Cardiol. 94, 181–186 (2004).

    Article  PubMed  Google Scholar 

  153. Bangalore, S., Gopinath, D., Yao, S. S. & Chaudhry, F. A. Risk stratification using stress echocardiography: incremental prognostic value over historic, clinical, and stress electrocardiographic variables across a wide spectrum of bayesian pretest probabilities for coronary artery disease. J. Am. Soc. Echocardiogr. 20, 244–252 (2007).

    Article  PubMed  Google Scholar 

  154. Hoffmann, R. et al. Refinements in stress echocardiographic techniques improve inter-institutional agreement in interpretation of dobutamine stress echocardiograms. Eur. Heart J. 23, 821–829 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Vukajlovic, D. et al. Contractile reserve assessed by dobutamine test identifies super-responders to cardiac resynchronization therapy. Arch. Med. Sci. 10, 684–691 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hanekom, L., Cho, G. Y., Leano, R., Jeffriess, L. & Marwick, T. H. Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur. Heart J. 28, 1765–1772 (2007).

    Article  PubMed  Google Scholar 

  157. Ingul, C. B. et al. Automated analysis of myocardial deformation at dobutamine stress echocardiography: an angiographic validation. J. Am. Coll. Cardiol. 49, 1651–1659 (2007).

    Article  Google Scholar 

  158. Hwang, H. J. et al. The value of assessing myocardial deformation at recovery after dobutamine stress echocardiography. J. Cardiovasc. Ultrasound 22, 127–133 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Asrar ul Haq, M. et al. Left ventricular torsional dynamics post exercise for LV diastolic function assessment. Cardiovasc. Ultrasound 12, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zile, M. R. & Brutsaert, D. L. New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 105, 1387–1393 (2002).

    Article  PubMed  Google Scholar 

  161. Oh, J. K. Echocardiography as a noninvasive Swan-Ganz catheter. Circulation 111, 3192–3194 (2005).

    Article  PubMed  Google Scholar 

  162. Maron, M. S. et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 114, 2232–2239 (2006).

    Article  PubMed  Google Scholar 

  163. Elliott, P. M. et al. Left ventricular outflow tract obstruction and sudden death risk in patients with hypertrophic cardiomyopathy. Eur. Heart J. 27, 1933–1941 (2006).

    Article  PubMed  Google Scholar 

  164. Shah, J. S. et al. Prevalence of exercise-induced left ventricular outflow tract obstruction in symptomatic patients with non-obstructive hypertrophic cardiomyopathy. Heart 94, 1288–1294 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Argulian, E. & Chaudhry, F. A. Stress testing in patients with hypertrophic cardiomyopathy. Prog. Cardiovasc. Dis. 54, 477–482 (2012).

    Article  PubMed  Google Scholar 

  166. Henri, C. et al. Exercise testing and stress imaging in valvular heart disease. Can. J. Cardiol. 30, 1012–1026 (2014).

    Article  PubMed  Google Scholar 

  167. Monin, J. L. et al. Low-gradient aortic stenosis: operative risk stratification and predictors for long-term outcome: a multicenter study using dobutamine stress hemodynamics. Circulation 108, 319–324 (2003).

    Article  PubMed  Google Scholar 

  168. Lancellotti, P. et al. Prognostic importance of quantitative exercise Doppler echocardiography in asymptomatic valvular aortic stenosis. Circulation 112 (Suppl. I), I377–I382 (2005).

    PubMed  Google Scholar 

  169. Lee, R. & Marwick, T. H. Assessment of subclinical left ventricular dysfunction in asymptomatic mitral regurgitation. Eur. J. Echocardiogr. 8, 175–184 (2007).

    Article  PubMed  Google Scholar 

  170. Haluska, B. A., Short, L. & Marwick, T. H. Relationship of ventricular longitudinal function to contractile reserve in patients with mitral regurgitation. Am. Heart J. 146, 183–188 (2003).

    Article  PubMed  Google Scholar 

  171. Lancellotti, P. et al. Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking. J. Am. Soc. Echocardiogr. 21, 1331–1336 (2008).

    Article  PubMed  Google Scholar 

  172. Stewart, M. J. Contrast echocardiography. Heart 89, 342–348 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Senior, R. et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur. J. Echocardiogr. 10, 194–212 (2009).

    Article  PubMed  Google Scholar 

  174. Malm, S., Frigstad, S., Sagberg, E., Larsson, H. & Skjaerpe, T. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: a comparison with magnetic resonance imaging. J. Am. Coll. Cardiol. 44, 1030–1035 (2004).

    Article  PubMed  Google Scholar 

  175. Marwick, T. H. et al. Accuracy and feasibility of contrast echocardiography for detection of perfusion defects in routine practice: comparison with wall motion and technetium-99m sestamibi single-photon emission computed tomography. J. Am. Coll. Cardiol. 32, 1260–1269 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Al-Mansour, H. A., Mulvagh, S. L., Pumper, G. M., Klarich, K. W. & Foley, D. A. Usefulness of harmonic imaging for left ventricular opacification and endocardial border delineation by optison. Am. J. Cardiol. 85, 795–799 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Rainbird, A. J. et al. Contrast dobutamine stress echocardiography: clinical practice assessment in 300 consecutive patients. J. Am. Soc. Echocardiogr. 14, 378–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Plana, J. C. et al. A randomized cross-over study for evaluation of the effect of image optimization with contrast on the diagnostic accuracy of dobutamine echocardiography in coronary artery disease The OPTIMIZE Trial. JACC Cardiovasc. Imaging 1, 145–152 (2008).

    Article  PubMed  Google Scholar 

  179. Kaul, S. Myocardial contrast echocardiography: a 25-year retrospective. Circulation 118, 291–308 (2008).

    Article  PubMed  Google Scholar 

  180. Moir, S., Haluska, B. A., Jenkins, C., Fathi, R. & Marwick, T. H. Incremental benefit of myocardial contrast to combined dipyridamole-exercise stress echocardiography for the assessment of coronary artery disease. Circulation 110, 1108–1113 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Shah, B. N. et al. The feasibility and clinical utility of myocardial contrast echocardiography in clinical practice: results from the incorporation of myocardial perfusion assessment into clinical testing with stress echocardiography study. J. Am. Soc. Echocardiogr. 27, 520–530 (2014).

    Article  PubMed  Google Scholar 

  182. Porter, T. R. et al. Patient outcome following 2 different stress imaging approaches: a prospective randomized comparison. J. Am. Coll. Cardiol. 61, 2446–2455 (2013).

    Article  PubMed  Google Scholar 

  183. Hung, J. et al. 3D echocardiography: a review of the current status and future directions. J. Am. Soc. Echocardiogr. 20, 213–233 (2007).

    Article  PubMed  Google Scholar 

  184. Lang, R. M., Mor-Avi, V., Sugeng, L., Nieman, P. S. & Sahn, D. J. Three-dimensional echocardiography: the benefits of the additional dimension. J. Am. Coll. Cardiol. 48, 2053–2069 (2006).

    Article  PubMed  Google Scholar 

  185. Jenkins, C., Bricknell, K., Hanekom, L. & Marwick, T. H. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J. Am. Coll. Cardiol. 44, 878–886 (2004).

    Article  PubMed  Google Scholar 

  186. Jenkins, C. et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur. Heart J. 30, 98–106 (2009).

    Article  PubMed  Google Scholar 

  187. Stanton, T., Jenkins, C., Haluska, B. A. & Marwick, T. H. Association of outcome with left ventricular parameters measured by two-dimensional and three-dimensional echocardiography in patients at high cardiovascular risk. J. Am. Soc. Echocardiogr. 27, 65–73 (2014).

    Article  PubMed  Google Scholar 

  188. Ahmad, M., Xie, T., McCulloch, M., Abreo, G. & Runge, M. Real-time three-dimensional dobutamine stress echocardiography in assessment stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. J. Am. Coll. Cardiol. 37, 1303–1309 (2001).

    Article  CAS  PubMed  Google Scholar 

  189. Matsumura, Y. et al. Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods. Eur. Heart J. 26, 1625–1632 (2005).

    Article  PubMed  Google Scholar 

  190. Caiani, E. G. et al. Improved quantification of left ventricular mass based on endocardial and epicardial surface detection with real time three dimensional echocardiography. Heart 92, 213–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Mor-Avi, V. et al. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc. Imaging 1, 413–423 (2008).

    Article  PubMed  Google Scholar 

  192. Niemann, P. S. et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J. Am. Coll. Cardiol. 50, 1668–1676 (2007).

    Article  PubMed  Google Scholar 

  193. Sugeng, L. et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc. Imaging 3, 10–18 (2010).

    Article  PubMed  Google Scholar 

  194. Bussadori, C. et al. Evaluation of right ventricular function in adults with congenital heart defects. Echocardiography 32 (Suppl. 1), S38–S52 (2015).

    Article  PubMed  Google Scholar 

  195. Lang, R. M. et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur. Heart J. Cardiovasc. Imaging 13, 1–46 (2012).

    Article  PubMed  Google Scholar 

  196. Lang, R. M., Tsang, W., Weinert, L., Mor-Avi, V. & Chandra, S. Valvular heart disease. The value of 3-dimensional echocardiography. J. Am. Coll. Cardiol. 58, 1933–1944 (2011).

    Article  PubMed  Google Scholar 

  197. Watanabe, N. et al. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J. Am. Coll. Cardiol. 45, 763–769 (2005).

    Article  PubMed  Google Scholar 

  198. Mannaerts, H. F., Kamp, O. & Visser, C. A. Should mitral valve area assessment in patients with mitral stenosis be based on anatomical or on functional evaluation? A plea for 3D echocardiography as the new clinical standard. Eur. Heart J. 25, 2073–2074 (2004).

    Article  PubMed  Google Scholar 

  199. Saura, D. et al. Aortic valve stenosis planimetry by means of three-dimensional transesophageal echocardiography in the real clinical setting: feasibility, reliability and systematic deviations. Echocardiography 32, 508–515 (2014).

    Article  PubMed  Google Scholar 

  200. Buechel, R. R. et al. Head-to-head comparison of two-dimensional and three-dimensional echocardiographic methods for left atrial chamber quantification with magnetic resonance imaging. J. Am. Soc. Echocardiogr. 26, 428–435 (2013).

    Article  PubMed  Google Scholar 

  201. Mor-Avi, V. et al. Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR. JACC Cardiovasc. Imaging 5, 769–777 (2012).

    Article  PubMed  Google Scholar 

  202. Wu, V. C. et al. Prognostic value of LA volumes assessed by transthoracic 3D echocardiography: comparison with 2D echocardiography. JACC Cardiovasc. Imaging 6, 1025–1035 (2013).

    Article  PubMed  Google Scholar 

  203. Montserrat, S. et al. Left atrial size and function by three-dimensional echocardiography to predict arrhythmia recurrence after first and repeated ablation of atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 15, 515–522 (2014).

    Article  PubMed  Google Scholar 

  204. Seo, Y., Ishizu, T., Atsumi, A., Kawamura, R. & Aonuma, K. Three-dimensional speckle tracking echocardiography. Circ. J. 78, 1290–1301 (2014).

    Article  PubMed  Google Scholar 

  205. Altman, M. et al. Assessment of left ventricular systolic function by deformation imaging derived from speckle tracking: a comparison between 2D and 3D echo modalities. Eur. Heart J. Cardiovasc. Imaging 15, 316–323 (2014).

    Article  PubMed  Google Scholar 

  206. Xu, T. Y. et al. Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular function. Int. J. Cardiol. 176, 360–366 (2014).

    Article  PubMed  Google Scholar 

  207. Yu, H. K. et al. Right ventricular mechanics in adults after surgical repair of tetralogy of fallot: insights from three-dimensional speckle-tracking echocardiography. J. Am. Soc. Echocardiogr. 27, 423–429 (2014).

    Article  PubMed  Google Scholar 

  208. Smith, B. C. et al. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 64, 41–51 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.C.B. wrote the manuscript. A.C.B. and L.T. researched data for the article. All authors made substantial contribution to the discussion of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Liza Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, A., Schiller, N. & Thomas, L. Principles of transthoracic echocardiographic evaluation. Nat Rev Cardiol 12, 426–440 (2015). https://doi.org/10.1038/nrcardio.2015.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.57

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing