Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small-diameter vascular tissue engineering

Abstract

Vascular occlusion remains the leading cause of death in Western countries, despite advances made in balloon angioplasty and conventional surgical intervention. Vascular surgery, such as CABG surgery, arteriovenous shunts, and the treatment of congenital anomalies of the coronary artery and pulmonary tracts, requires biologically responsive vascular substitutes. Autografts, particularly saphenous vein and internal mammary artery, are the gold-standard grafts used to treat vascular occlusions. Prosthetic grafts have been developed as alternatives to autografts, but their low patency owing to short-term and intermediate-term thrombosis still limits their clinical application. Advances in vascular tissue engineering technology—such as self-assembling cell sheets, as well as scaffold-guided and decellularized-matrix approaches—promise to produce responsive, living conduits with properties similar to those of native tissue. Over the past decade, vascular tissue engineering has become one of the fastest-growing areas of research, and is now showing some success in the clinic.

Key Points

  • Coronary artery occlusion accounts for 50% of deaths from cardiovascular diseases; given the limited number of autologous vessel substitutes, an urgent need for engineered vascular grafts exists

  • Synthetic polymers were investigated as vascular substitutes because of their availability, structural diversity, and mechanical properties; however, mechanical mismatch and adverse host response remain major impediments to their clinical applicability

  • Natural polymers (collagen, elastin, and fibrin) were originally used as vascular scaffolds; synthetic degradable and nondegradable polymers have subsequently been explored and have improved mechanical properties

  • Self-assembled cell sheets have emerged as alternatives to scaffold-based vascular tissue engineering—vascular cells are cultured on a flat surface, and then the cell sheet is rolled around a mandrel

  • Decellularized, natural matrices from allogenic, heterogenic, or xenogenic sources are an alternative form of scaffold—complete cellular removal is followed by recellularization with cells from a patient

  • None of these approaches has produced ideal small-diameter vascular grafts for reconstructive surgery, but they have greatly advanced our understanding of vascular tissue engineering

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progressive stages of vascular disease and the corresponding treatment modalities.
Figure 2: Advances in cell biology and engineering contribute to vascular tissue engineering.
Figure 3: Self-assembled vascular tissue engineering.
Figure 4: Scaffold-guided vascular tissue engineering.
Figure 5: Decellularized-matrix vascular tissue engineering.
Figure 6: Timelines of various vascular tissue engineering techniques.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. WHO. Cardiovascular diseases (CVDs) [online], (2013).

  2. Population Reference Bureau. World population data sheet 2012 [online], (2012).

  3. Eisenberg, M. J. et al. Outcomes and cost of coronary artery bypass graft surgery in the United States and Canada. Arch. Intern. Med. 165, 1506–1513 (2005).

    PubMed  Google Scholar 

  4. Matsuo, Y. et al. Plaque characteristics and arterial remodeling in coronary and peripheral arterial systems. Atherosclerosis 223, 365–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Krueger, K. D., Mitra, A. K., Del Core, M. G., Hunter, W. J. 3rd & Agrawal, D. K. A comparison of stent-induced stenosis in coronary and peripheral arteries. J. Clin. Pathol. 59, 575–579 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwann, T. A., Engoren, M., Bonnell, M., Clancy, C. & Habib, R. H. Comparison of late coronary artery bypass graft survival effects of radial artery versus saphenous vein grafting in male and female patients. Ann. Thorac. Surg. 94, 1485–1491 (2012).

    PubMed  Google Scholar 

  7. Kannan, R. Y., Salacinski, H. J., Butler, P. E., Hamilton, G. & Seifalian, A. M. Current status of prosthetic bypass grafts: a review. J. Biomed. Mater. Res. B Appl. Biomater. 74, 570–581 (2005).

    PubMed  Google Scholar 

  8. McBane, J. E. et al. Tissue engineering a small diameter vessel substitute: engineering constructs with select biomaterials and cells. Curr. Vasc. Pharmacol. 10, 347–360 (2012).

    CAS  PubMed  Google Scholar 

  9. Nobel Prize. The Nobel Prize in Physiology or Medicine 1912: Alexis Carrel [online], (2013).

  10. Persijn, G. Alexis Carrel. Transpl. Int. 25, 367–368 (2012).

    PubMed  Google Scholar 

  11. Chlupác, J., Filová, E. & Bacáková, L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol. Res. 58 (Suppl. 2), S119–S139 (2009).

    PubMed  Google Scholar 

  12. Menzoian, J. O., Koshar, A. L. & Rodrigues, N. Alexis Carrel, Rene Leriche, Jean Kunlin, and the history of bypass surgery. J. Vasc. Surg. 54, 571–574 (2011).

    PubMed  Google Scholar 

  13. Testart, J. Jean Kunlin (1904–1991). Ann. Vasc. Surg. 9 (Suppl.), S1–S6 (1995).

    PubMed  Google Scholar 

  14. Sabik, J. F. 3rd. Understanding saphenous vein graft patency. Circulation 124, 273–275 (2011).

    PubMed  Google Scholar 

  15. Gu, C. X., Yang, J. F., Zhang, H. C., Wei, H. & Li, L. K. Off-pump coronary artery bypass grafting using a bilateral internal mammary artery Y graft. J. Geriatr. Cardiol. 9, 247–251 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Verma, S. et al. Should radial arteries be used routinely for coronary artery bypass grafting? Circulation 110, e40–e46 (2004).

    PubMed  Google Scholar 

  17. Desai, N. D., Cohen, E. A., Naylor, C. D. & Fremes, S. E. for the Radial Artery Patency Study Investigators. A randomized comparison of radial-artery and saphenous-vein coronary bypass grafts. N. Engl. J. Med. 351, 2302–2309 (2004).

    CAS  PubMed  Google Scholar 

  18. Lee, J. D., Srivastava, M. & Bonatti, J. History and current status of robotic totally endoscopic coronary artery bypass. Circ. J. 76, 2058–2065 (2012).

    PubMed  Google Scholar 

  19. Levonen, A. L., Vähakangas, E., Koponen, J. K. & Ylä-Herttuala, S. Antioxidant gene therapy for cardiovascular disease: current status and future perspectives. Circulation 117, 2142–2150 (2008).

    CAS  PubMed  Google Scholar 

  20. Akowuah, E. F., Sheridan, P. J., Cooper, G. J. & Newman, C. Preventing saphenous vein graft failure: does gene therapy have a role? Ann. Thorac. Surg. 76, 959–966 (2003).

    PubMed  Google Scholar 

  21. Owens, C. D., Wake, N., Conte, M. S., Gerhard-Herman, M. & Beckman, J. A. In vivo human lower extremity saphenous vein bypass grafts manifest flow mediated vasodilation. J. Vasc. Surg. 50, 1063–1070 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. Schmitto, J. D., Rajab, T. K. & Cohn, L. H. Prevalence and variability of internal mammary graft use in contemporary multivessel coronary artery bypass graft. Curr. Opin. Cardiol. 25, 609–612 (2010).

    PubMed  Google Scholar 

  23. Weintraub, W. S., Jones, E. L., Craver, J. M. & Guyton, R. A. Frequency of repeat coronary bypass or coronary angioplasty after coronary artery bypass surgery using saphenous venous grafts. Am. J. Cardiol. 73, 103–112 (1994).

    CAS  PubMed  Google Scholar 

  24. Rashid, S. T., Fuller, B., Hamilton, G. & Seifalian, A. M. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 22, 2084–2089 (2008).

    CAS  PubMed  Google Scholar 

  25. Maisel, W. H. A device for proximal anastomosis of autologous coronary vein grafts: report from the meeting of the Circulatory System Devices Panel of the Food and Drug Administration Center for Devices and Radiologic Health. Circulation 112, 1516–1518 (2005).

    PubMed  Google Scholar 

  26. Voorhees, A. B. Jr, Jaretzki, A. 3rd & Blakemore, A. H. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann. Surg. 135, 332–336 (1952).

    PubMed  PubMed Central  Google Scholar 

  27. Abbott, W. M. et al. Evaluation and performance standards for arterial prostheses. J. Vasc. Surg. 21, 746–756 (1993).

    Google Scholar 

  28. Bennion, R. S. et al. Patency of autogenous saphenous vein versus polytetrafluoroethylene grafts in femoropopliteal bypass for advanced ischemia of the extremity. Surg. Gynecol. Obstet. 160, 239–242 (1985).

    CAS  PubMed  Google Scholar 

  29. Desmet, W. et al. Isolated single coronary artery: a review of 50,000 consecutive coronary angiographies. Eur. Heart J. 13, 1637–1640 (1992).

    CAS  PubMed  Google Scholar 

  30. Hoenig, M. R., Campbell, G. R., Rolfe, B. E. & Campbell, J. H. Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler. Thromb. Vasc. Biol. 25, 1128–1134 (2005).

    CAS  PubMed  Google Scholar 

  31. Baguneid, M. et al. In vivo study of a model tissue-engineered small-diameter vascular bypass graft. Biotechnol. Appl. Biochem. 58, 14–24 (2011).

    CAS  PubMed  Google Scholar 

  32. Desai, M., Seifalian, A. M. & Hamilton, G. Role of prosthetic conduits in coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 40, 394–398 (2011).

    PubMed  Google Scholar 

  33. Medtech Insight, LLC. European Markets for Prosthetic Vacular Grafts. Ch. 3. (Medtech Insight, LCC, 2006).

  34. Zilla, P., Bezuidenhout, D. & Human, P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials 28, 5009–5027 (2007).

    CAS  PubMed  Google Scholar 

  35. Annis, D. Polyether-urethane elastomers for small-diameter arterial prostheses. Life Support Syst. 5, 47–52 (1987).

    CAS  PubMed  Google Scholar 

  36. Grasl, C., Bergmeister, H., Stoiber, M., Schima, H. & Weigel, G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J. Biomed. Mater. Res. A 93, 716–723 (2010).

    PubMed  Google Scholar 

  37. Brothers, T. E., Stanley, J. C., Burkel, W. E. & Graham, L. M. Small-caliber polyurethane and polytetrafluoroethylene grafts: a comparative study in a canine aortoiliac model. J. Biomed. Mater. Res. 24, 761–771 (1990).

    CAS  PubMed  Google Scholar 

  38. Tiwari, A., Salacinski, H., Seifalian, A. M. & Hamilton, G. New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovasc. Surg. 10, 191–197 (2002).

    PubMed  Google Scholar 

  39. Rashid, S. T. et al. Cellular engineering of conduits for coronary and lower limb bypass surgery: role of cell attachment peptides and pre-conditioning in optimising smooth muscle cells (SMC) adherence to compliant poly(carbonate-urea)urethane (MyoLink) scaffolds. Eur. J. Vasc. Endovasc. Surg. 27, 608–616 (2004).

    CAS  PubMed  Google Scholar 

  40. Seifalian, A. M. et al. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials 24, 2549–2557 (2003).

    CAS  PubMed  Google Scholar 

  41. Shin'oka, T., Imai, Y. & Ikada, Y. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 344, 532–533 (2001).

    CAS  PubMed  Google Scholar 

  42. L'Heureux, N. et al. Technology insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 4, 389–395 (2007).

    PubMed  Google Scholar 

  43. Rabkin, E. & Schoen, F. J. Cardiovascular tissue engineering. Cardiovasc. Pathol. 11, 305–317 (2002).

    PubMed  Google Scholar 

  44. Platt, J. L. & Nagayasu, T. Current status of xenotransplantation. Clin. Exp. Pharmacol. Physiol. 26, 1026–1032 (1999).

    CAS  PubMed  Google Scholar 

  45. Nerem, R. M. & Seliktar, D. Vascular tissue engineering. Annu. Rev. Biomed. Eng. 3, 225–243 (2001).

    CAS  PubMed  Google Scholar 

  46. Stegemann, J. P., Kaszuba, S. N. & Rowe, S. L. Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 13, 2601–2613 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Poh, M. et al. Blood vessels engineered from human cells. Lancet 365, 2122–2124 (2005).

    PubMed  Google Scholar 

  48. McKee, J. A. et al. Human arteries engineered in vitro. EMBO Rep. 4, 633–638 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kassem, M., Abdallah, B. M., Yu, Z. T., Ditzel, N. & Burns, J. S. The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 45, 39–46 (2004).

    PubMed  PubMed Central  Google Scholar 

  50. Wang, A. J. et al. Derivation of smooth muscle cells with neural crest origin from human induced pluripotent stem cells. Cells Tissues Organs 195, 5–14 (2012).

    PubMed  Google Scholar 

  51. Sundaram, S. & Niklason, L. E. Smooth muscle and other cell sources for human blood vessel engineering. Cells Tissues Organs 195, 15–25 (2012).

    CAS  PubMed  Google Scholar 

  52. Kane, N. M. et al. Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol. Ther. 129, 29–49 (2011).

    CAS  PubMed  Google Scholar 

  53. Liu, J. Y., Peng, H. F. & Andreadis, S. T. Contractile smooth muscle cells derived from hair-follicle stem cells. Cardiovasc. Res. 79, 24–33 (2008).

    CAS  PubMed  Google Scholar 

  54. Gong, Z. D. & Niklason, L. E. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 22, 1635–1648 (2008).

    CAS  PubMed  Google Scholar 

  55. Bajpai, V. K. & Andreadis, S. T. Stem cell sources for vascular tissue engineering and regeneration. Tissue Eng. Part B Rev. 18, 405–425 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wagner, W. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33, 1402–1416 (2005).

    CAS  PubMed  Google Scholar 

  57. Matsumura, G., Miyagawa-Tomita, S., Shin'oka, T., Ikada, Y. & Kurosawa, H. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108, 1729–1734 (2003).

    PubMed  Google Scholar 

  58. Cho, S. W. et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg. 241, 506–515 (2005).

    PubMed  PubMed Central  Google Scholar 

  59. L'Heureux, N. et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12, 361–365 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. L'Heureux, N., Paquet, S., Labbe, R., Germain, L. & Auger, F. A. A completely biological tissue-engineered human blood vessel. FASEB J. 12, 47–56 (1998).

    CAS  PubMed  Google Scholar 

  61. Peck, M., Dusserre, N., McAllister, T. N. & L'Heureux, N. Tissue engineering by self-assembly. Materials Today 14, 218–224 (2011).

    CAS  Google Scholar 

  62. Marelli, B. et al. Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromol. Biosci. 12, 1566–1574 (2012).

    CAS  PubMed  Google Scholar 

  63. Yao, L., Swartz, D. D., Gugino, S. F., Russell, J. A. & Andreadis, S. T. Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity. Tissue Eng. 11, 991–1003 (2005).

    CAS  PubMed  Google Scholar 

  64. Peng, H. F., Liu, J. Y., Andreadis, S. T. & Swartz, D. D. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media. Tissue Eng. Part A 17, 981–990 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Patterson, J. T. et al. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen. Med. 7, 409–419 (2012).

    CAS  PubMed  Google Scholar 

  66. Heine, J. et al. Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach: preclinical comparative biomechanical studies. Artif. Organs 35, 930–940 (2011).

    PubMed  Google Scholar 

  67. Quint, C., Arief, M., Muto, A., Dardik, A. & Niklason, L. E. Allogeneic human tissue-engineered blood vessel. J. Vasc. Surg. 55, 790–798 (2012).

    PubMed  Google Scholar 

  68. Birchall, M. & Hamilton, G. Tissue-engineered vascular replacements for children. Lancet 380, 197–198 (2012).

    PubMed  Google Scholar 

  69. Olausson, M. et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 380, 230–237 (2012).

    PubMed  Google Scholar 

  70. Gwyther, T. A., Hu, J. Z., Billiar, K. L. & Rolle, M. W. Directed cellular self-assembly to fabricate cell-derived tissue rings for biomechanical analysis and tissue engineering. J. Vis. Exp. e3366 (2011).

  71. Norotte, C., Marga, F. S., Niklason, L. E. & Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30, 5910–5917 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Peck, M., Gebhart, D., Dusserre, N., McAllister, T. N. & L'Heureux, N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 195, 144–158 (2012).

    CAS  PubMed  Google Scholar 

  73. Peck, M. K. et al. New biological solutions for hemodialysis access. J. Vasc. Access 12, 185–192 (2011).

    PubMed  Google Scholar 

  74. Song, L., Wang, L., Shah, P. K., Chaux, A. & Sharifi, B. G. Bioengineered vascular graft grown in the mouse peritoneal cavity. J. Vasc. Surg. 52, 994–1002 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Campbell, J. H., Efendy, J. L. & Campbell, G. R. Novel vascular graft grown within recipient's own peritoneal cavity. Circ. Res. 85, 1173–1178 (1999).

    CAS  PubMed  Google Scholar 

  76. Patel, A., Fine, B., Sandig, M. & Mequanint, K. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc. Res. 71, 40–49 (2006).

    CAS  PubMed  Google Scholar 

  77. Tranquillo, R. T. The tissue-engineered small-diameter artery. Ann. N. Y. Acad. Sci. 961, 251–254 (2002).

    PubMed  Google Scholar 

  78. Kim, B. S. & Mooney, D. J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16, 224–230 (1998).

    CAS  PubMed  Google Scholar 

  79. Zhang, W. J., Liu, W., Cui, L. & Cao, Y. Tissue engineering of blood vessel. J. Cell. Mol. Med. 11, 945–957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vats, A., Tolley, N. S., Polak, J. M. & Gough, J. E. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin. Otolaryngol. Allied Sci. 28, 165–172 (2003).

    CAS  PubMed  Google Scholar 

  81. Berglund, J. D. & Galis, Z. S. Designer blood vessels and therapeutic revascularization. Br. J. Pharmacol. 140, 627–636 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Martin, I., Wendt, D. & Heberer, M. The role of bioreactors in tissue engineering. Trends Biotechnol. 22, 80–86 (2004).

    CAS  PubMed  Google Scholar 

  83. Nilsang, S. et al. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnol. Prog. 24, 1122–1131 (2008).

    CAS  PubMed  Google Scholar 

  84. Nilsang, S. et al. Monoclonal antibody production using a new supermacroporous cryogel bioreactor. Biotechnol. Prog. 23, 932–939 (2007).

    CAS  PubMed  Google Scholar 

  85. Isenberg, B. C., Williams, C. & Tranquillo, R. T. Small-diameter artificial arteries engineered in vitro. Circ. Res. 98, 25–35 (2006).

    CAS  PubMed  Google Scholar 

  86. Bilodeau, K. & Mantovani, D. Bioreactors for tissue engineering: focus on mechanical constraints: a comparative review. Tissue Eng. 12, 2367–2383 (2006).

    CAS  PubMed  Google Scholar 

  87. Riha, G. M., Lin, P. H., Lumsden, A. B., Yao, Q. & Chen, C. Roles of hemodynamic forces in vascular cell differentiation. Ann. Biomed. Eng. 33, 772–779 (2005).

    PubMed  Google Scholar 

  88. Bilodeau, K., Couet, F., Boccafoschi, F. & Mantovani, D. Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses. Artif. Organs 29, 906–912 (2005).

    PubMed  Google Scholar 

  89. Lee, A. A., Graham, D. A., Dela Cruz, S., Ratcliffe, A. & Karlon, W. J. Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. J. Biomech. Eng. 124, 37–43 (2002).

    PubMed  Google Scholar 

  90. Zhao, S. et al. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler. Thromb. Vasc. Biol. 15, 1781–1786 (1995).

    CAS  PubMed  Google Scholar 

  91. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995).

    CAS  PubMed  Google Scholar 

  92. Weinberg, C. B. & Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 231, 397–400 (1986).

    CAS  PubMed  Google Scholar 

  93. Niklason, L. E. et al. Functional arteries grown in vitro. Science 284, 489–493 (1999).

    CAS  PubMed  Google Scholar 

  94. Niklason, L. E. Medical technology: replacement arteries made to order. Science 286, 1493–1494 (1999).

    CAS  PubMed  Google Scholar 

  95. Kolpakov, V., Rekhter, M. D., Gordon, D., Wang, W. H. & Kulik, T. J. Effect of mechanical forces on growth and matrix protein synthesis in the in vitro pulmonary artery: analysis of the role of individual cell types. Circ. Res. 77, 823–831 (1995).

    CAS  PubMed  Google Scholar 

  96. Jackson, Z. S., Gotlieb, A. I. & Langille, B. L. Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90, 918–925 (2002).

    CAS  PubMed  Google Scholar 

  97. Kanda, K. & Matsuda, T. Behavior of arterial wall cells cultured on periodically stretched substrates. Cell Transplant. 2, 475–484 (1993).

    CAS  PubMed  Google Scholar 

  98. Hirai, J. & Matsuda, T. Self-organized, tubular hybrid vascular tissue composed of vascular cells and collagen for low-pressure-loaded venous system. Cell Transplant. 4, 597–608 (1995).

    CAS  PubMed  Google Scholar 

  99. Hirai, J. & Matsuda, T. Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process. Cell Transplant. 5, 93–105 (1996).

    CAS  PubMed  Google Scholar 

  100. Bilodeau, K., Couet, F., Boccafoschi, F. & Mantovani, D. Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses. Artif. Organs 29, 906–912 (2005).

    PubMed  Google Scholar 

  101. Boccafoschi, F., Habermehl, J., Vesentini, S. & Mantovani, D. Biological performances of collagen-based scaffolds tor vascular tissue engineering. Biomaterials 26, 7410–7417 (2005).

    CAS  PubMed  Google Scholar 

  102. Crombez, M. et al. Improving arterial prosthesis neo-endothelialization: application of a proactive VEGF construct onto PTFE surfaces. Biomaterials 26, 7402–7409 (2005).

    CAS  PubMed  Google Scholar 

  103. Rajan, N., Habermehl, J., Cote, M. F., Doillon, C. J. & Mantovani, D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 1, 2753–2758 (2006).

    CAS  PubMed  Google Scholar 

  104. Boccafoschi, F., Rajan, N., Habermehl, J. & Mantovani, D. Preparation and characterization of a scaffold for vascular tissue engineering by direct-assembling of collagen and cells in a cylindrical geometry. Macromol. Biosci. 7, 719–726 (2007).

    CAS  PubMed  Google Scholar 

  105. Couet, F., Rajan, N. & Mantovani, D. Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromol. Biosci. 7, 701–718 (2007).

    CAS  PubMed  Google Scholar 

  106. Couet, F., Rajan, N., Vesentini, S. & Mantovani, D. Design of a collagen/silk mechano-compatible composite scaffold for the vascular tissue engineering: focus on compliance. Key Eng. Mater. 334335, 1169–1172 (2007).

    Google Scholar 

  107. Seliktar, D., Nerem, R. M. & Galis, Z. S. Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng. 9, 657–666 (2003).

    CAS  PubMed  Google Scholar 

  108. Schutte, S. C., Chen, Z. Z., Brockbank, K. G. M. & Nerem, R. M. Cyclic strain improves strength and function of a collagen-based tissue-engineered vascular media. Tissue Eng. Part A 16, 3149–3157 (2010).

    CAS  PubMed  Google Scholar 

  109. Bulick, A. S. et al. Impact of endothelial cells and mechanical conditioning on smooth muscle cell extracellular matrix production and differentiation. Tissue Eng. Part A 15, 815–825 (2009).

    CAS  PubMed  Google Scholar 

  110. Amadori, L., Rajan, N., Vesentini, S. & Mantovani, D. Atomic force and confocal microscopic studies of collagen-cell-based scaffolds for vascular tissue engineering. Adv. Mater. Res. 1517, 83–88 (2007).

    Google Scholar 

  111. Couet, F. & Mantovani, D. Experimental validation of a new approach for the development of mechano-compatible composite scaffolds for vascular tissue engineering. J. Mater. Sci. Mater. Med. 19, 2551–2554 (2008).

    CAS  PubMed  Google Scholar 

  112. Couet, F. & Mantovani, D. How to optimise the maturation conditions in a bioreactor? Toward an intelligent bioreactor for vascular tissue engineering [abstract]. Tissue Eng. Part A 14, 858 (2008).

    Google Scholar 

  113. Couet, F. & Mantovani, D. How to optimize maturation in a bioreactor for vascular tissue engineering: focus on a decision algorithm for experimental planning. Ann. Biomed. Eng. 38, 2877–2884 (2010).

    PubMed  Google Scholar 

  114. Couet, F. & Mantovani, D. A new bioreactor adapts to materials state and builds a growth model for vascular tissue engineering. Artif. Organs 36, 438–445 (2012).

    PubMed  Google Scholar 

  115. Couet, F., Meghezi, S. & Mantovani, D. Fetal development, mechanobiology and optimal control processes can improve vascular tissue regeneration in bioreactors: an integrative review. Med. Eng. Phys. 34, 269–278 (2012).

    PubMed  Google Scholar 

  116. Achilli, M., Lagueux, J. & Mantovani, D. On the effects of UV-C and pH on the mechanical behavior, molecular conformation and cell viability of collagen-based scaffold for vascular tissue engineering. Macromol. Biosci. 10, 307–316 (2010).

    CAS  PubMed  Google Scholar 

  117. Achilli, M., Meghezi, S., Lagueux, J. & Mantovani, D. Mechano-compatible collagen-based scaffolds for vascular tissue engineering: low doses of UV affect the viscoelastic behaviour. Tissue Eng. Part A 14, 878–878 (2008).

    Google Scholar 

  118. Rajan, N. et al. Low doses of ultraviolet radiation stimulate cell activity in collagen-based scaffolds. Biotechnol. Prog. 24, 884–889 (2008).

    CAS  PubMed  Google Scholar 

  119. Haisch, A. et al. Preparation of a pure autologous biodegradable fibrin matrix for tissue engineering. Med. Biol. Eng. Comput. 38, 686–689 (2000).

    CAS  PubMed  Google Scholar 

  120. Swartz, D. D., Russell, J. A. & Andreadis, S. T. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J. Physiol. Heart Circ. Physiol. 288, H1451–H1460 (2005).

    CAS  PubMed  Google Scholar 

  121. Celebi, B., Cloutier, M., Balloni, R., Mantovani, D. & Bandiera, A. Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation. Macromol. Biosci. 12, 1546–1554 (2012).

    CAS  PubMed  Google Scholar 

  122. Tiwari, A., Salacinski, H., Seifalian, A. M. & Hamilton, G. New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovasc. Surg. 10, 191–197 (2002).

    PubMed  Google Scholar 

  123. Kim, B. S., Nikolovski, J., Bonadio, J., Smiley, E. & Mooney, D. J. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp. Cell Res. 251, 318–328 (1999).

    CAS  PubMed  Google Scholar 

  124. Williams, C. & Wick, T. M. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 10, 930–941 (2004).

    CAS  PubMed  Google Scholar 

  125. Yow, K. H., Ingram, J., Korossis, S. A., Ingham, E. & Homer-Vanniasinkam, S. Tissue engineering of vascular conduits. Br. J. Surg. 93, 652–661 (2006).

    PubMed  Google Scholar 

  126. Hubbell, J. A. Bioactive biomaterials. Curr. Opin. Biotechnol. 10, 123–129 (1999).

    CAS  PubMed  Google Scholar 

  127. Ito, Y., Kajihara, M. & Imanishi, Y. Materials for enhancing cell adhesion by immobilization of cell-adhesive peptide. J. Biomed. Mater. Res. 25, 1325–1337 (1991).

    CAS  PubMed  Google Scholar 

  128. Ye, Q. et al. Scaffold precoating with human autologous extracellular matrix for improved cell attachment in cardiovascular tissue engineering. ASAIO J. 46, 730–733 (2000).

    CAS  PubMed  Google Scholar 

  129. Higgins, S. P., Solan, A. K. & Niklason, L. E. Effects of polyglycolic acid on porcine smooth muscle cell growth and differentiation. J. Biomed. Mater. Res. A 67, 295–302 (2003).

    PubMed  Google Scholar 

  130. Kurobe, H., Maxfield, M. W., Breuer, C. K. & Shinoka, T. Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cells Transl. Med. 1, 566–571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Vogel, G. Tissue engineering: mending the youngest hearts. Science 333, 1088–1089 (2011).

    CAS  PubMed  Google Scholar 

  132. Dolgin, E. Taking tissue engineering to heart. Nat. Med. 17, 1032–1035 (2011).

    CAS  PubMed  Google Scholar 

  133. Rosellini, E., Vozzi, G., Barbani, N., Giusti, P. & Cristallini, C. Three-dimensional microfabricated scaffolds with cardiac extracellular matrix-like architecture. Int. J. Artif. Organs 33, 885–894 (2010).

    CAS  PubMed  Google Scholar 

  134. Quint, C. et al. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl Acad. Sci. USA 108, 9214–9219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Keane, T. J., Londono, R. Turner, N. J. & Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33, 1771–1781 (2012).

    CAS  PubMed  Google Scholar 

  136. Mitchell, S., Koh, J., Probhakar, V. & Niklason, L. Decellularized tissue engineered constructs and tissues. US Patent 6,962,814 (2001).

  137. Wolfinbarger, L. Jr, Lange, P., Linhurst Jones, A., Moore, E. & Nolf, B. Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced. US Patent 6,734,018 (2000).

  138. Wolfinbarger, L. Jr, Lange, P., Linhurst Jones, A., Moore, E. & Nolf, B. Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced. US Patent 7,338,757 (2003).

  139. Leyh, R. G. et al. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J. Thorac. Cardiovasc. Surg. 126, 1000–1004 (2003).

    CAS  PubMed  Google Scholar 

  140. Pasterkamp, G. et al. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery. Atherosclerosis 150, 245–253 (2000).

    CAS  PubMed  Google Scholar 

  141. Villalona, G. A. et al. Cell-seeding techniques in vascular tissue engineering. Tissue Eng. Part B Rev. 16, 341–350 (2010).

    PubMed  PubMed Central  Google Scholar 

  142. Cleary, M. A. et al. Vascular tissue engineering: the next generation. Trends Mol. Med. 18, 394–404 (2012).

    CAS  PubMed  Google Scholar 

  143. Vilain, K. R. et al. Costs and cost-effectiveness of carotid stenting versus endarterectomy for patients at standard surgical risk: results from the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST). Stroke 43, 2408–2416 (2012).

    PubMed  PubMed Central  Google Scholar 

  144. Shinoka, T. et al. Substrate for culture of cardiovascular tissue. US Patent 8,372,433 (2008).

  145. McAllister, T. N., Garrido, S. & L'Heureux, N. Guided percutaneous bypass. US Patent 2012/0150092 (2010).

  146. Smith, M. J. et al. Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study. Acta Biomater. 4, 58–66 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed substantially to discussion of its content, wrote the manuscript, and reviewed/edited the article before submission.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifu, D., Purnama, A., Mequanint, K. et al. Small-diameter vascular tissue engineering. Nat Rev Cardiol 10, 410–421 (2013). https://doi.org/10.1038/nrcardio.2013.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.77

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research